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Chapter 1

The Mathematical Pendulum

Many interesing ordinary differential equations (ODEs) arise from applications. One
reason for understanding these applications in a mathematics class is that you can
combine your physical intuition with your mathematical intuition in the same prob-
lem. Usually the result is an improvement of both. One such application is the
motion of a pendulum, i.e. a ball of mass m suspended from an ideal rigid rod that
is fixed at one end. The problem is to describe the motion of the mass point in a
constant gravitational field. Since this is a mathematics class we will not normally
be interested in deriving the ODE from physical priniciples; rather, we will sim-
ply write down various differential equations and claim that they are “interesting.”
However, to give you the flavor of such derivations (which you will see repeatedly in
your science and engingeering courses), we will derive from Newton’s equations the
differential equation that describes the time evolution of the angle of deflection of
the pendulum.

Let
¢ = length of the rod measured, say, in meters,
m = mass of the ball measured, say, in kilograms,
g = accerleration due to gravity = 9.8 m/ s2.

The motion of the pendulum is confined to a plane (this is an assumption on how
the rod is attached to the pivot point), which we take to be the z —y plane. We treat
the ball as a “mass point” and observe there are two forces acting on this ball: the
force due to gravity, mg, which acts vertically downward and the tension T in the
rod (acting in the direction indicated in figure). Newton’s equations for the motion

1



2 CHAPTER 1. PENDULUM

of a point Z in a plane are vector equations’

F=mad

where F is the sum of the forces acting on the the point and @ is the acceleration of
the point, i.e.

L 4’7
a=—.
dt?
In z — y coordinates Newton’s equations become two equations
d’z d?y
Fw:mﬁ, Fy:mw,

where F, and F are the z and y components, respectively, of the force F. From
the figure (note definition of the angle §) we see, upon resolving T into its = and Y
components, that

F, = —-Tsinf, Fy, =T cost — mg.

(T is the magnitude of the vector T.)
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Substituting these expressions for the forces into Newton’s equations, we obtain the
differential equations

d2
—T'sinf = md—tf, (1.1)
2
Tcos@ —mg = m(leg (1.2)
From the figure we see that
x =/{sinf, y =4~ — Lcosb. (1.3)

!In your applied courses vectors are usually denoted with arrows above them. We adopt this
notation when discussing certain applications; but in later chapters we will drop the arrows and
state where the quantity lives, e.g. = € R



(The origin of the z — y plane is chosen so that at z = y = 0, the pendulum is at
the bottom.) Differentiating? (1.3) with respect to ¢, and then again, gives

T = Ecosé’é,
i = Lcos@b— Lsinf ()% (1.4)
y = [{sinfé,
i = {£sinff+ Lcosh ()% (1.5)

Substitute (1.4) in (1.1) and (1.5) in (1.2) to obtain

—Tsind = mlcoshf —misind (0)?, (1.6)
Tcos—mg = mlsin®b+mlcosh (9)>. (1.7)
Now multiply (1.6) by cosf, (1.7) by sin6, and add the two resulting equations to
obtain
—mgsin @ = mlo,
or
. g . o
0+ 7 sinf = 0. (1.8)
Remarks

e The ODE (1.8) is called a second-order equation because the highest derivative
appearing in the equation is a second derivative.

e The ODE is nonlinear because of the term sin (this is not a linear function
of the unknown quantity 6).

e A solution to this ODE is a function 6 = 6(t) such that when it is substituted
into the ODE, the ODE is satisfied for all .

e Observe that the mass m dropped out of the final equation. This says the
motion will be independent of the mass of the ball.

e The derivation was constructed so that the tension, f, was eliminated from
the equations. We could do this because we started with two unknowns, T
and 6, and two equations. We manipulated the equations so that in the end
we had one equation for the unknown 6 = 6(¢).

*We use the dot notation for time derivatives, e.g. = dz/dt, % = d°z/dt>.
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e We have not discussed how the pendulum is initially started. This is very
important and such conditions are called the initial conditions.

We will return to this ODE later in the course. At this point we note that if we were
interested in only small deflections from the origin (this means we would have to
start out near the origin), there is an obvious approximation to make. Recall from
calculus the Taylor expansion of sin 6

) 6 05
s1n0:9—§+5+---.

For small 6 this leads to the approximation sinf ~ 6 . Using this small deflection
approximation in (1.8) leads to the ODE

é+%0:0. (1.9)

We will see that (1.9) is mathematically simpler than (1.8). The reason for this is
that (1.9) is a linear ODE. It is linear because the unknown quantity, 6, and its
derivatives appear only to the first or zeroth power.



Chapter 2

First Order Equations

2.1 Linear First Order Equations

2.1.1 Introduction

The simplest differential equation is one you already know from calculus; namely,
dy

To find a solution to this equation means one finds a function y = y(z) such that

its derivative, dy/dz, is equal to f(z). The fundamental theorem of calculus tells us

that all solutions to this equation are of the form

y(z) = yo + / " f(s) ds.

Observe

e y(zo) = yo and yo is arbitrary. That is, there is a one-parameter family of
solutions; y = y(x;yo) to (2.1). The solution is unique once we specify the
initial condition y(zo) = yo. This is the solution to the initial value problem.
That is, we have found a function that satisfies both the ODE and the initial
value condition.

e Every calculus students knows that differentiation is easier than integration.
Observe that solving a differential equation is like integration—you must find a
function such that when it and its derivatives are substituted into the equation
the equation is identically satisfied. Thus we sometimes say we “integrate” a
differential equation. In the above case it is exactly integration as you under-
stand it from calculus. This also suggests that solving differential equations
can be expected to be difficult.
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A simple generalization of (2.1) is to replace the right-hand side by a function that
depends upon both x and y
dy

Some examples are f(z,y) = zy?, f(x,y) = y, and the case (2.1). The simplest
choice in terms of the y dependence is for f(z,y) to depend linearly on y. Thus we

are led to study

dy

— =g(z) — p(z

1 = 9@) —p(@)y,
where g(z) and p(z) are functions of z. We leave them unspecified. (We have
put the minus sign into our equation to conform with the standard notation.) The

conventional way to write this equation is

Z—z +p(z)y = g(). (2.2)

It’s possible to give an algorithm to solve this ODE for more or less general choices
of p(z) and g(z). We say more or less since one has to put some restrictions on p
and g—that they are continuous will suffice. It should be stressed at the outset that
this ability to find an explicit algorithm to solve an ODE is the exception—most
ODEs encountered will not be so easily solved.

2.1.2 Method of Integrating Factors

If (2.2) were of the form (2.1), then we could immediately write down a solution
in terms of integrals. For (2.2) to be of the form (2.1) means the left-hand side
is expressed as the derivative of our unknown quantity. We have some freedom in
making this happen—for instance, we can multiply (2.2) by a function, call it u(z),
and ask whether the resulting equation can be put in form (2.1). Namely, is

w(@) Y+ p(ap(ay = o (u(a)y)? (2.3)

Taking derivatives we ask can p be chosen so that

1@ 4 (a)p(a) = u(e) 2L + %y

dzx dr dx
holds? This immediately simplifies to'
dp
%a
INotice y and its first derivative drop out. This is a good thing since we wouldn’t want to express
1 in terms of the unknown quantity y.

p(z)p(z) =
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or

% log u(z) = p(x).

Integrating this last equation gives

log u(z) = /p(s) ds + c.

Taking the exponential of both sides (one can check later that there is no loss in
generality if we set ¢ = 0) gives

u(x) = exp </zp(s) ds) . (2.4)

Defining p(x) by (2.4), the differential equation (2.3) is transformed to

L (ulz)y) = n(@)g(a)

This last equation is precisely of the form (2.1), so we can immediately conclude

p@)y@) = [ us)g(s) s +e,

or

1 z c
Wo) = s [ Hedats)ds + s (2)

where p(z), called the integrating factor, is defined by (2.4). The constant ¢ will be
determined from the initial condition y(zo) = yo.

2.1.3 Application to Mortgage Payments

Suppose an amount P, called the principal, is borrowed at an interest I (1001%) for
a period of N years. One is to make monthly payments in the amount D/12 (D
equals the amount paid in one year). The problem is to find D in terms of P, I and
N. Let

y(t) = amount owed at time ¢ (measured in years).

We have the initial condition

y(0) = P (at time O the amount owed is P).
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We are given the additional information that the loan is to be paid off at the end of
N years,

y(N) =0.
We want to derive an ODE satisfied by y. Let At denote a small interval of time
and Ay the change in the amount owed during the time interval At. This change is
determined by

e Ay is increased by compounding at interest I; that is, Ay is increased by the
amount Iy(t)At.

e Ay is decreased by the amount paid back in the time interval At. If D denotes
this constant rate of payback, then DAt is the amount paid back in the time

interval At.

Thus we have
Ay = IyAt — DA,

or

Ay
— =1Iy—D.
N
Letting At — 0 we obtain the sought after ODE,
dy
— =1Iy—D. 2.6
o= (2.6)

This ODE is of form (2.2) with p = —I and g = —D. One immediately observes
that this ODE is not exactly what we assumed above, i.e. D is not known to us. Let
us go ahead and solve this equation for any constant D by the method of integrating
factors. So we choose p according to (2.4),

pt) = exp (/tp(S) d8>
= exp <—/t1ds>

= exp(—TIt).

Applying (2.5) gives
1t c
w0 = o [ Heets)ds+ o

t
= eIt/ e 15(—D)ds + celt

— _Delt <_%e—lt> 4 eelt

= —+4 ceIt.

I
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The constant c is fixed by requiring

y(0) = P,
that is D
7 +c= P

Solving this for ¢ gives ¢ = P — D/I. Substituting this expression for ¢ back into

our solution y(t) gives
D D It
y(t)—I—<I—P>e.

First observe that y(t) grows if D/I < P. (This might be a good definition of loan
sharking!) We have not yet determined D. To do so we use the condition that the
loan is to be paid off at the end of N years, y(N) = 0. Substituting ¢ = N into our
solution y(¢) and using this condition gives

D D NI

Solving for D,
eNI

eN — 1’

D =PI

(2.7)

gives the sought after relation between D, P, I and N. For example, if P =
$100,000, I = 0.06 (6% interest) and the loan is for N = 30 years, then D =
$7,188.20 so the monthly payment is D/12 = $599.02. Some years ago the mort-
gage rate was 12%. A quick calculation shows that the monthly payment on the
same loan at this interest would have been $1028.009.

We remark that this model is a continuous model—the rate of payback is at the
continuous rate D. In fact, normally one pays back only monthly. Banks, therefore,
might want to take this into account in their calculations. I've found from personal
experience that the above model predicts the bank’s calculations to within a few
dollars.

Suppose we increase our monthly payments by, say, $50. ( We assume no prepayment
penalty.) This $50 goes then to paying off the principal. The problem then is how
long does it take to pay off the loan? It is an exercise to show that the number of
years is (D is the total payment in one year)

—% log (1 - %) . (2.8)

Another questions asks on a loan of N years at interest I how long does it take to
pay off one-half of the principal? That is, we are asking for the time 7" when
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It is an exercise to show that

T = %log G(em + 1)) : (2.9)

For example, a 30 year loan at 9% is half paid off in the 23rd year. Notice that T'
does not depend upon the principal P.

2.2 Separation of Variables Applied to Mechanics

2.2.1 Energy Conservation

Consider the motion of a particle of mass m in one dimension, i.e. the motion is
along a line. We suppose that the force acting at a point z, F(x), is conservative.
This means there exists a function V(z), called the potential energy, such that

dv
-
(Tradition has it we put in a minus sign.) In one dimension this requires that F'
is only a function of z and not & (= dz/dt) which physically means there is no
friction. In higher spatial dimensions the requirement that F' is conservative is more
stringent. The concept of conservation of energy is that

F(z) =

FE = Kinetic energy + Potential energy

does not change with time as the particle’s position and velocity evolves according to
Newton’s equations. We now prove this fundamental fact. We recall from elementary
physics that the kinetic energy (KE) is given by

KE = §m'u2, v = velocity = .

Thus the energy is

1 dz\?
E=E(zi)=-m(—) +V().
@) =gm () +V@
To show that E = E(z, ) does not change with ¢ when = = z(t) satisfies Newton’s
equations, we differentiate E with respect to ¢ and show the result is zero:

dE d_x"Q_w+ﬂd_x(
dt ™at ar T dz dt

_ de [ d’z  dV(z)
T oa \Mar T dr

dx d%x
= (2 _Fa).
dt <m de? (w)>

by the chain rule)
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Now not any function z = z(t) describes the motion of the particle—z(t) must
satisfy

d’z
F=mae
and we now get the desired result
dE
— =0.
dt

This implies that E is constant on solutions to Newton’s equations.

We now use energy conservation and what we know about separation of variables
to solve the problem of the motion of a point particle in a potential V(x). Now

B=m <‘2—‘:)2 +V(2) (2.10)

is a nonlinear first order differential equation. (We know it is nonlinear since the
first derivative is squared.) We rewrite the above equation as

(&)= 2 m-ve),

m
or
dz 2
— = —(E — .
dt + m ( V()

(In what follows we take the + sign, but in specific applications one must keep in
mind the possibility that the — sign is the correct choice of the square root.) This
last equation is of the form in which we can separate variables. We do this to obtain

d
° = dt.
& (B=V(z))
This can be integrated to
i/ ! de =t—t
=t~ to- 2.11
Z(B- V(@) (21

2.2.2 Hooke’s Law

Consider a particle of mass m subject to the force

F = —kz, k > 0, (Hooke’s Law). (2.12)
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The minus sign (with & > 0) means the force is a restoring force—as in a spring.
Indeed, to a good approximation the force a spring exerts on a particle is given by
Hooke’s Law. In this case z = z(t) measures the displacement from the equilibrium
position at time ¢; and the constant k is called the spring constant. Larger values of
k correspond to a stiffer spring.

“0000-

Newton’s equations are in this case

d’z
m—- + kx = 0. 2.13
12 (2.13)
This is a second order linear differential equation, the subject of the next chapter.
However, we can use the energy conservation principle to derive an associated non-
linear first order equation as we discussed above. To do this, we first determine the

potential corresponding to Hooke’s force law.

One easily checks that the potential equals
1
V(z) = 2 k22,

(This potential is called the harmonic potential.) Let’s substitute this particular V'
into (2.11):

dz =t — to. (2.14)

/ \/ZE/ml— kxz2/m

Recall the indefinite integral

/ dx . < T ) +
——— —arcsin [ — c.
Va2 — z2 |al

Using this in (2.14) we obtain

1 1 dz
/\/2E/m—kw2/mdw \/k/m/\/2E/k—:v2

1 i x
= k/m arcsin (\/m) + c.
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Thus (2.14) becomes?

arcsin (ﬁ) = ”%t+ C.

Taking the sine of both sides of this equation gives

o,
2k o \Vmtte)
z(t) = \/% sin (\/gt + c) . (2.15)

Observe that there are two constants appearing in (2.15), E and ¢. Suppose one
initial condition is

or

z(0) = xo.

xo = \/% sin(c). (2.16)

Now use the sine addition formula,

Evaluating (2.15) at ¢ = 0 gives

sin(f; + 62) = sin 6y cos Bz + sin by cos by,

z(t) = % {sin (\/gt) cos ¢ + cos (\/%1&) sinc}
= \/% sin (\/gt> cos ¢ + zg cos (&t) (2.17)

where we use (2.16) to get the last equality.

in (2.14):

Now substitute ¢ = 0 into the energy conservation equation,

1 1 1
E = 5mv§+V(m0) = 5mv§+§kx%.

(vo equals the velocity of the particle at time ¢ = 0.) Substituting (2.16) in the right
hand side of this equation gives

1 1 2FE
Ezamv§+§k75in20

2We use the same symbol ¢ for yet another unknown constant.
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or )
E(1 —sin’c) = 2 mug.

Recalling the trig identity sin? @ + cos? § = 1, this last equation can be written as

1
Ecos?c = = muv?.
2 O

Solve this for vy to obtain the identity

2F
vg = {/ — cosc.
m
We now use this in (2.17)

m . k k
x(t) =wvo4/ - sin |4/ —t] +zocos | /1
k m m

To summarize, we have eliminated the two constants E and c in favor of the contants
zo and vp. As it must be, (0) = zo and £(0) = vy. The last equation is more easily

interpreted if we define
| k
=4/—. 2.18
wo m ( )

Observe that wo has the units of 1/time, i.e. frequency. Thus our final expression
for the position z = z(t) of a particle of mass m subject to Hooke’s Law is

z(t) = :—Z sin(wot) + xo cos(wpt). (2.19)

Observe that this solution depends upon two arbitrary constants, zo and vg.> In
(2.5), the general solution depended only upon one constant. It is a general fact
that the number of independent constants appearing in the general solution of a nth
order? ODE is n.

3wo is a contant too, but it is a parameter appearing in the differential equation that is fixed by
the mass m and the spring constant k. Observe that we can rewrite (2.13) as

&+ wor = 0. (2.20)

Dimensionally this equation is pleasing: # has the dimensions of d/t* (d is distance and t is time)
and so does w] = since wo is a frequency. It is instructive to substitute (2.19) into (2.20) and verify
directly that it is a solution. Please do so!

4The order of a scalar differential equation is equal to the order of the highest derivative appearing
in the equation. Thus (2.2) is first order whereas (2.13) is second order.
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Period of Mass-Spring System Satisfying Hooke’s Law
The sine and cosine are periodic functions of period 2, i.e.
sin(6 4 27) = sinf, cos(f + 27) = cos 6.
This implies that our solution z = z(t) is periodic in time,
2t +T) = a(t),

where the period T is

2
T="c=on /™ (2.21)
wo k

2.2.3 Period of the Nonlinear Pendulum

In this section we use the method of separation of variables to derive an exact formula
for the period of the pendulum. Recall that the ODE describing the time evolution
of the angle of deflection, 6, is (1.8). This ODE is a second order equation and so
the method of separation of variables does not apply to this equation. However, we
will use energy conservation in a manner similar to the previous section on Hooke’s
Law.

To get some idea of what we should expect, first recall the approximation we derived
for small deflection angles, (1.9). Comparing this differential equation with (2.13),
we see that under the identification z — 6 and % — %, the two equations are
identical. Thus using the period derived in the last section, (2.21), we get as an
approximation to the period of the pendulum

2
Ty="" =or \/Z (2.22)
wo g

An important feature of 1j is that it does not depend upon the amplitude of the
oscillation.? That is, suppose we have the initial conditions®

0(0) = 6o, 6(0) =0, (2.23)

50f course, its validity is only for small oscillations.
5For simplicity we assume the initial angular velocity is zero, §(0) = 0. This is the usual initial
condition for a pendulum.
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then T does not depend upon 6y. We now proceed to derive our formula for the
period, T', of the pendulum.

We claim that the energy of the pendulum is given by

. 1 )
E=E(6,0) = 2 me% 6% + mgl(1 — cos6). (2.24)
Proof of (2.24)
We begin with
E = Kinetic energy + Potential energy
= % mv? + mgy. (2.25)

(This last equality uses the fact that the potential at height h in a constant gravi-
tational force field is mgh. In the pendulum problem with our choice of coordinates
h =y.) The z and y coordinates of the pendulum ball are, in terms of the angle of
deflection 6, given by

x ={sinf, y=£(1 — cosh).

Differentiating with respect to ¢ gives
T = ZcosHé, Y= Esinﬁé,

from which it follows that the velocity is given by

o= @2 P

= 262
Substituting these in (2.25) gives (2.24).
The energy conservation theorem states that for solutions 8(t) of (1.8), E(6(t),8(t))
is independent of ¢t. Thus we can evaluate E at ¢t = 0 using the initial conditions
(2.23) and know that for subsequent ¢ the value of E remains unchanged,
E = hfmf*6(0)% + mgl (1 — cos6(0))
= mgl(1 — cosbp).

Using this (2.24) becomes
1 )
mgl(1l — cosby) = 2 ml% 6% + mgl(1 — cosb),

which can be rewritten as

1 .
3 me%6? = mgl(cosf — cosbp).
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Solving for 0,

6 = \/279 (cos@ — cosby) ,
followed by separating variables gives
dé
\/geg (cos@ — cosby)

= dt. (2.26)

We now integrate (2.26). The next step is a bit tricky—to choose the limits of
integration in such a way that the integral on the right hand side of (2.26) is related
to the period T'. By the definition of the period, T is the time elapsed from ¢ = 0
when 6 = 6 to the time T when 0 first returns to the point 6y. By symmetry, 7'/2
is the time it takes the pendulum to go from 6y to —6g. Thus if we integrate the left
hand side of (2.26) from —6j to 6y the time elapsed is T//2. That is,

1 b df
sz/O .
2 —bg \/279 (cos @ — cos by)

Since the integrand is an even function of 6,

%o do
=4 / > : (2.27)
0 \/79 (cos 6 — cos byp)

This is the sought after formula for the period of the pendulum. For small 6y we
expect that T', as given by (2.27), should be approximately equal to Ty (see (2.22)).
It is instructive to see this precisely.

We now assume |0y| < 1 so that the approximation
1 1
cosf~1— =62+ —¢*
2! + 4
is accurate for |0| < 6y. Using this approximation we see that

1
(03 — %) + 5 (6% — 0%)

Q

1
cos g — cosf o

1 1
= @ <1 ~ @+ 92)> .
From Taylor’s formula we get the approximation, valid for |z| < 1,

1

l1—2z

~1+

Z.

DN | =
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Thus

1

2Zg (cos @ — cos byp) \/7\/02—02 \/1—— (62 + 62)
=

Now substitute this approximate expression for the integrand appearing in (2.27) to
find

Q

1+— 00+02)>

6o
\/7 / \/7 (1 + — (63 + 02)> + higher order corrections.
02

Make the change of variables 8 = 6px, then

b o
/0 /2_02

1 o
/0 V1 —z2 Pk

b 62do o 1 22dx o
/ = 00 7=90—.
0 V1—2x2 4

Using these definite integrals we obtain
T (7 s
— = /= 03— + 05—
4 g <2 24( 5+ 4)>

Y4 02
= \/;;T <1 + 16) + higher order terms.

Recalling (2.22), we conclude

T=T(+0—2+ ) (2.28)

where the --- represent the higher order correction terms coming from higher order
terms in the expansion of the cosines. These higher order terms will involve higher
powers of 8y. It now follows from this last expression that

lim T = Tp.

90 —0

Observe that the first correction term to the linear result, 7Ty, depends upon the
initial amplitude of oscillation 6.
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Numerical Example

Suppose we have a pendulum of length £ = 1 meter. The linear theory says that the
period of the oscillation for such a pendulum is

L /1
To =2m 4| — =27/ — = 2.0071 sec.
g 9.8

If the amplitude of oscillation of the of the pendulum is 6y ~ 0.2 (this corresponds
to roughly a 20 cm deflection for the one meter pendulum), then (2.28) gives

1
T =Ty (1 + 16 (.2)2> = 2.0121076 sec.

One might think that these are so close that the correction is not needed. This
might well be true if we were interested in only a few oscillations. What would be
the difference in one week (1 week=604,800 sec)?

One might well ask how good an approximation is (2.28) to the exact result (2.27)7
To answer this we have to evaluate numerically the integral appearing in (2.27).
Evaluating (2.27) numerically (using say Mathematica’s NIntegrate) is a bit tricky
because the endpoint 6y is singular—an integrable singularity but it causes numerical
integration routines some difficulty. Here’s how you get around this problem. One
isolates where the problem occurs—near p—and takes care of this analytically. For
€ > 0 and € < 1 we decompose the integral into two integrals: one over the interval
(0,80 — ¢) and the other one over the interval (6p — €,6p). It’s the integral over this
second interval that we estimate analytically. Expanding the cosine function about
the point 8y, Taylor’s formula gives

cos Oy

cos@ = cosfy —sinby (0 — bp) — (0 —60p)%+---.
Thus )
cos — cosby = sinby (0 — 6p) <1—2cot90(0—00)> 4o,
So
I S 1 1 N
Vcos b — cos by V/sinfp (6 — 6o) \/1— %coteo(ﬁo—e)
1 1
= 1+ = cot (8 —9>+...
sin00(00—9)< 7 cot%0 (60 —9)
Thus
[% 9 1
/0 L == ’ - da <1+—C0t00(9—90)> d0+
6o—e v/cos O — cos b 90— /sin by (6p — 0) 4
1 c 12 1 /E 1/2 >
_ du + > cot 8 du+ - =0y — 0
mU“ ukgeotho fywdut o) (wi=bo=6)

1
= \/i (281/2+6C0t9063/2) + ..
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Choosing € = 1072, the error we make in using the above expression is of order
€5/2 = 1075, Substituting 6y = 0.2 and € = 10~2 into the above expression, we get

the approximation
%o do
/ ——— = 0.4506
6p—e /cosf — cos by

where we estimate the error lies in fifth decimal place. Now any numerical integration
routine can quickly evaluate the other integral:

Go—e
B 1764
0 v/cos ) — cos b

for 8 = 0.2 and & = 10~2. Hence for y = 0.2 we have

fo do
0 +/cosf — cosby

~ 0.4506 4 1.77664 = 2.2270

This implies
T =~ 2.0121.

Thus the first order approximation (2.28) is accurate to some four decimal places
when 6y < 0.2. (The reason for such good accuracy is that the correction term to
(2.28) is of order 63.)

2.3 Exercises for Chapter 2

#1: Morgage Payment Problem

In the problem dealing with mortgate rates, prove (2.8) and (2.9).

#2. Application to Population Dynamics

In biological applications the population P of certain organisms at time ¢ is some-
times assumed to obey the equation

dP P

where a and F are positive constants.

1. Find the equilibrium solutions. (That is solutions that don’t change with ¢.)
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2. From (2.29) determine the regions of P where P is increasing (decreasing) as a
function of t. Again using (2.29) find an expression for d2P/dt? in terms of P
and the constants a and E. From this expression find the regions of P where
P is convex (d?P/dt? > 0) and the regions where P is concave (d?P/dt* < 0).

3. Using the method of separation of variables solve (2.29) for P = P(t) assuming
that at t =0, P = Py > 0. Find

lim P(t)

t—o0
Hint: To do the integration first use the identity

1 _ 1,1
Pl—-P/E) P E-P

4. Sketch P as a function of ¢ for 0 < Py < E and for F < Py < 0.

#3: Nonlinear Mass-Spring System

Consider a mass-spring system where z = z(¢) denotes the displacement of the mass
m from its equilibrium position at time ¢. The linear spring (Hooke’s Law) assumes
the force exerted by the spring on the mass is given by (2.12). Suppose instead that
the force F' is given by

F=F(z)=—kz —ea? (2.30)

where ¢ is a small positive number.” The second term represents a nonlinear cor-
rection to Hooke’s Law. Why is it reasonable to assume that the first correction
term to Hooke’s Law is of order z* and not z?? (Hint: Why is it reasonable to
assume F'(z) is an odd function of x?) Using the solution for the period of the pen-
dulum as a guide, find an ezact integral expression for the period T of this nonlinear
mass-spring system assuming the initial conditions

2(0) = =0, Z—‘t”(()) 0.

Define
_ 7
2k
Show that z is dimensionless and that your expression for the period T can be

written as
1

4 1
T = —/ du (2.31)
woJo V1—u2+z—zut

"One could also consider € < 0. The case € > 0 is a called a hard spring and € < 0 a soft spring.
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where wy = \/k/m. We now assume that z < 1. (This is the precise meaning of the
parameter € being small.) Taylor expand the function

1
V1—u2+ 2z — zut
in the variable z to first order. You should find
1 1 1+ u?
V1—u2+ 2z — zut - V1 —u2 B 21 — u2

Now use this approximate expression in the integrand of (2.31), evaluate the definite
integrals that arise, and show that the period T has the Taylor expansion

z+ 0(2?).

_ 27 3 9
T_wo <1 4z+0(z ))

#4: Mass-Spring System with Friction

We reconsider the mass-spring system but now assume there is a frictional force
present and this frictional force is proportional to the velocity of the particle. Thus
the force acting on the particle comes from two terms: one due to the force exerted
by the spring and the other due to the frictional force. Thus Newton’s equations
become

—kz — BT = mi (2.32)

where as before x = z(t) is the displacement from the equilibrium position at time
t. B and k are positive constants. Introduce the energy function

1 1
E = E(z,2) = 5ma‘ﬂ + ika’ (2.33)
and show that if x = x(t) satisfies (2.32), then
dE <0
dt ’

What is the physical meaning of this last inequality?

#5: Motion in a Central Field

A (three-dimensional) force F is called a central force if the direction of F lies along
the the direction of the position vector 7. This problem asks you to show that the
motion of a particle in a central force, satisfying

d?v

= m@, (2.34)

lies in a plane.
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1. Show that

M :=7xp with p:=mv (2.35)
is constant in t for ¥ = 7(t) satisfying (2.34). (Here v is the velocity vector
and p'is the momentum vector.) The X in (2.35) is the vector cross product.
Recall (and you may assume this result) from vector calculus that

. d@ - db
&'xb)zd—ij—#d’x%.

d
7

The vector M is called the angular momentum vector.

2. From the fact that M is a constant vector, show that the vector 7(t) lies in a
plane perpendicular to M. Hint: Look at 7- M. Also you may find helpful the
vector identity

-,

@-(bxd)=b-(Gxa)=¢ (@xhb).

#6: Motion in a Central Field (cont)

From the preceding problem we learned that the position vector 7(¢) for a particle
moving in a central force lies in a plane. In this plane, let (r,0) be the polar
coordinates of the point 7, i.e.

z(t) = r(t)cosb(t), y(t) =r(t)sinb(t) (2.36)

1. In components, Newton’s equations can be written (why?)

F, = f(r)% =mi, F,=f(r)2 =mj (2.37)

3 =

where f(r) is the magnitude of the force F. By twice differentiating (2.36)
with respect to ¢, derive formulas for & and ¢ in terms of r, # and their
derivatives. Use these formulas in (2.37) to show that Newton’s equations in
polar coordinates (and for a central force) become

1 . . .
— f(r)cos@ = icosf— 2-0sin® — 16 cos O — rOsiné, (2.38)
m
1 ) ) .
p- f(r)sin@ = #sin@ + 270 cosf — r6?sin@ + rd cos 6. (2.39)

Multiply (2.38) by cos 6, (2.39) by sinf, and add the resulting two equations
to show that

F—rf? = %f(r) (2.40)
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Now multiply (2.38) by sin#6, (2.39) by cos 6, and substract the resulting two
equations to show that ‘ )
20 + 1 = 0. (2.41)

Observe that the left hand side of (2.41) is equal to

Using this observation we then conclude (why?)
r20 = H (2.42)

for some constant H. Use (2.42) to solve for 8, eliminate 6 in (2.40) to conclude
that the polar coordinate function r = r(t) satisfies

= % i+ (2.43)

. Equation (2.43) is of the form that a second derivative of the unknown r is

equal to some function of r. We can thus apply our general energy method to
this equation. Let ® be a function of r satisfying

1 d®
E f(?") - _%7
and find an effective potential V = V (r) such that (2.43) can be written as
av
F=—— 2.44
= (2.44)

(Ans: V(r) = ®(r) + L

5.z)- Remark: The most famous choice for f(r) is the

inverse square law

mMG
fr)= =57

which describes the gravitational attraction of two particles of masses m and

M. (Gp is the universal gravitational constant.) In your physics courses, this

case will be analyzed in great detail. The starting point is what we have done

here.



Chapter 3

Second Order Linear
Differential Equations

3.1 Theory of Second Order Equations

3.1.1 Vector Space of Solutions

First order linear differential equations are of the form

dy

—= = . 3.1
Yt play = f(2) (31)
Second order linear differential equations are linear differential equations whose high-

est derivative is second order:

d’y dy

g2 TP@) - +a(@)y = f(2). (3.2)
If f(z) =0, ,
Y 2@ Y 1 gz =0, (33)

the equation is called homogeneous. For the discussion here, we assume p and gq
are continuous functions on an interval [a,b]. There are many important examples
where this condition fails and the points at which either p or ¢ fail to be continuous
are called singular points. Though the textbook discusses singular points, we will
not take up this topic in this class. Here are some important examples where the
continuity condition fails.

Legendre’s Eqn

2z _ n(n+1)

p(z) = 12 q(z) = 122

25
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At the points £ = +1 both p and ¢ fail to be continuous.
Bessel’s Eqn

At the point £ = 0 both p and ¢ fail to be continuous.

We saw that a solution to (3.1) was uniquely specified once we gave one initial
condition,
y(zo) = yo-

In the case of second order equations we must give two initial conditions to specify
uniquely a solution:

y(zo) =yo and y'(z0) = y1. (3.4)
This is a basic theorem of the subject. It says that if p and ¢ are continuous on
some interval (a,b) and a < zg < b, then there exists an unique solution to (3.3)
satisfying the initial conditions (3.4).! We will not prove this theorem in this class.
As an example of the appearance to two constants in the general solution, recall
that the solution of the harmonic oscillator

F+wiz =0
contained zg and vg.

Let V denote the set of all solutions to (3.3). The most important feature of V is
that it is a two-dimensional vector space. That it is a vector space follows from the
linearity of (3.3). (If y1 and y, are solutions to (3.3), then so is c1y1 + cay2 for all
constants ¢; and c2.) To prove that the dimension of V is two, we first introduce
two special solutions. Let Y7 and Y3 be the unique solutions to (3.3) that satisfy the
initial conditions

Y1(0) =1, ¥{(0) =0, and Y3(0) =0, Y5(0) =1,
respectively.

We claim that {Y7,Y2} forms a basis for V. To see this let y(z) be any solution to
(3.3).2 Let c;1 := y(0), c2 := 3/(0) and

A(z) :=y(z) — c1 Yi(z) — c2 Yao(z).
Since y, Y7 and Y; are solutions to (3.3), so too is A. (V is a vector space.) Observe

A(0) =0 and A’(0)=0. (3.5)

1See Theorem 3.2.1 in the textbook, pg. 131.
*We assume for convenience that = 0 lies in the interval (a, b).
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Now the function yo(z) := 0 satisfies (3.3) and the initial conditions (3.5). Since
solutions are unique, it follows that A(x) = yo = 0. That is,

y=c1 Y1 +c2Yo.

To summarize, we’ve shown every solution to (3.3) is a linear combination of Y;
and Ys. That Y; and Y5 are linearly independent follows from their initial values:
Suppose

ca1Y1(z) + c2Ya(z) = 0.

Evaluate this at x = 0, use the initial conditions to see that ¢; = 0. Take the
derivative of this equation, evaluate the resulting equation at x = 0 to see that
ca = 0. Thus, Y7 and Y, are linearly independent. We conclude, therefore, that
{Y1,Y2} is a basis and dimV = 2.

3.1.2 Wronskians

Given two solutions y; and ys of (3.3) it is useful to find a simple condition that tests
whether they form a basis of V. Let ¢ be the solution of (3.3) satisfying ¢(z¢) = ¢o
and ¢'(zg) = p1. We ask are there constants ¢; and ¢y such that

¢(x) = cry1 () + caya(z)

for all 7 A necessary and sufficient condition that such constants exist at £ = xg
is that the equations

o = c1yi(zo) + c2y2(w0),

e1 = c1y(z0) + c2 y3(0),
have a unique solution {c1,c2}. From linear algebra we know this holds if and only
if the determinant

y1(zo)  ya(zo)
y1(zo)  wa(zo)

We define the Wronskian of two solutions y; and yp of (3.3) to be

£0

vi(z) ya(z)

W(yla Y23 .CL‘) =

From what we have said so far one would have to check that W (y1, y2; z) # 0 for all
x to conclude {y1,y2} forms a basis.

We now derive a formula for the Wronskian that will make the check necessary at
only one point. Since y; and y2 are solutions of (3.3), we have

i +p(x)yy + @)y = 0, (3.7)
vy + p(2)ys + q(2)y2 0.
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Now multiply (3.7) by y2 and multiply (3.8) by yi. Subtract the resulting two
equations to obtain

y1yz — y1y2 + p(2) (Y192 — y192) = 0. (3.9)

Recall the definition (3.6) and observe that

aw
Iy =Y vy
Hence (3.9) is the equation
aw
=, TP@W(@) =0, (3.10)

whose solution is "
W (y1,y2; ) = c exp (—/ p(s) dx) . (3.11)

Since the exponential is never zero we see from (3.11) that either W (yy,y2;z) =0
or W (y1,ys2;x) is never zero.

To summarize, to determine if {y1,y2} forms a basis for V, one needs to check at
only one point whether the Wronskian is zero or not.

Applications of Wronskians

1. Claim: Suppose {y1,y2} form a basis of V, then they cannot have a common
point of inflection in @ < z < b unless p(z) and ¢(z) simultaneously vanish
there. To prove this, suppose xg is a common point of inflection of y; and ys.
That is,

y1(z0) =0 and y5(zo0) = 0.
Evaluating the differential equation (3.3) satisfied by both y; and y2 at z = xg
gives

/

p(z0)¥i (o) + a(zo)y1(z0) = O,
p(20)yz(20) + q(z0)y2(z0) = O.
Assuming that p(xo) and g(z¢) are not both zero at z¢, the above equations

are a set of homogeneous equations for p(zp) and g(xo). The only way these
equations can have a nontrivial solution is for the determinant

vi(zo) wi(@o) | _
y2(z0)  y2(zo) .

That is, W (y1,y2;x0) = 0. But this contradicts that {y1,y2} forms a basis.
Thus there can exist no such common inflection point.
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2. Claim: Suppose {y1,y2} form a basis of V and that y; has consecutive zeros
at x = z1 and = z3. Then y2 has one and only one zero between z; and xs.
To prove this we first evaluate the Wronskian at z = z,

W (y1,y2521) = y1(x1)ya(21) — v1(21)y2(21) = —y1(21)y2(21)

since y1(z1) = 0. Evaluating the Wronskian at z = x5 gives
W (y1,y2; 22) = —u1 (z2)ya(z2).

Now W (y1,y2;x1) is either positive or negative. (It can’t be zero.) Let’s
assume it is positive. (The case when the Wronskian is negative is handled
similarly. We leave this case to the reader.) Since the Wronskian is always of
the same sign, W (y1, y2; 2) is also positive. Since z1 and zy are consecutive
zeros, the signs of y}(z1) and yj(z2) are opposite of each other. But this
implies (from knowing that the two Wronskian expressions are both positive),
that y2(z1) and ya(z2) have opposite signs. Thus there exists at least one zero
of yo at x = x3, 1 < 3 < x9. If there exist two or more such zeros, then
between any two of these zeros apply the above argument (with the roles of
y1 and ys reversed) to conclude that y; has a zero between z; and z2. But 1
and x2 were assumed to be consecutive zeros. Thus y2 has one and only one
zero between z; and zs.

In the case of the harmonic oscillator, yi(z) = coswoz and y2(z) = sinwpz,
and the fact that the zeros of the sine function interlace those of the cosine
function is well known.

3.2 Reduction of Order

Suppose y; is a solution of (3.3). Let

y(@) = v(z)y ().
Then
y' =v'yr+oyh and o' ="y +20'y; + vy
Substitute these expressions for y and its first and second derivatives into (3.3)

and make use of the fact that y; is a solution of (3.3). One obtains the following
differential equation for v:

/
v+ <p+ 2y—1> v =0,
hn
or upon setting u = v/,

yl
u' + <p+2—1> u=0.
)
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This last equation is a first order linear equation. Its solution is

u(xz) = cexp <—/ <p+ 233) das) = y%((:x) exp <—/p(w) dw) .

This implies

v(z) = /u(m) dz,
so that

y(z) = cyi(x) /u(w) dz.

The point is, we have shown that if one solution to (3.3) is known, then a second
solution can be found—expressed as an integral.

3.3 Constant Coefficients

We assume that p(z) and ¢(z) are constants independent of z. We write (3.3) in

this case as®

ay” +by' +cy =0. (3.12)
We “guess” a solution of the form

y(z) = .

Substituting this into (3.12) gives

al2e® + b + ce® = 0.

Since e

is never zero, the only way the above equation can be satisfied is if
a2 +bA+¢c=0. (3.13)

Let AL denote the roots of this quadratic equation, i.e.

_ —bEVb? —4dac

2a

At

We consider three cases.

1. Assume b%> — 4ac > 0 so that the roots Ay are both real numbers. Then
exp(Ay z) and exp(A_ z) are two linearly independent solutions to (3.13). That

3This corresponds to p(z) = b/a and g(x) = c¢/a. For applications it is convenient to introduce
the constant a.
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they are solutions follows from their construction. They are linearly indepen-
dent since
W(eM®,er%z) = (A — Ay )er %2 £0

Thus in this case, every solution of (3.12) is of the form
cr1exp(Ay z) + caexp(A_x)
for some constants c¢; and cs.

2. Assume b? —4ac = 0. In this case Ay = A_. Let A denote their common value.
Thus we have one solution y; (z) = e**. We could use the method of reduction
of order to show that a second linearly independent solution is ys(z) = ze®.
However, we choose to present a more intuitive way of seeing this is a second
linearly independent solution. (One can always make it rigorous at the end by

verifying that that it is indeed a solution.) Suppose we are in the distinct root

case but that the two roots are very close in value: Ay = A4+¢ and A_ = A,
Choosing ¢; = —cy = 1/e, we know that
1 1
ciyr +oayr = —ePOT_ et
€ €
€

is also a solution. Letting e — 0 one easily checks that

et —1

g

— T,

so that the above solution tends to

me)\ar:7
our second solution. That {e**, ze*?} is a basis is a simple Wronskian calcu-
lation.

3. We assume b2 — 4ac < 0. In this case the roots A+ are complex. At this point
we review the the exponential of a complex number.

Complex Exponentials

Let z = x + iy (z, y real numbers, i> = —1) be a complex number. Recall

that x is called the real part of z, Rz, and y is called the imaginary part of z,
Sz. Just as we picture real numbers as points lying in a line, called the real
line R; we picture complex numbers as points lying in the plane, called the
complex plane C. The coordinates of z in the complex plane are (z,y). The
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absolute value of z, denoted |z|, is equal to \/z2 + y2. The complex conjugate
of z, denoted Z, is equal to x — iy. Note the useful relation

- 2
zZ =|z|”.

In calculus, or certainly an advanced calculus class, one considers (simple)
functions of a complex variable. For example the function

fz) =7

takes a complex number, z, and returns it square, again a complex number.
(Can you show that Rf = 22 — y? and Sf = 2zy?). Using complex addition
and multiplication, one can define polynomials of a complex variable

2" + ap_ 12" 4 a1z + ap.

The next (big) step is to study power series

oo
Z anz".
n=0

With power series come issues of convergence. We defer these to your advanced
calculus class.

With this as a background we are (almost) ready to define the exponential of
a complex number z. First, we recall that the exponential of a real number x
has the power series expansion

oo

e =exp(z) = ) Z—T (0':=1).

n=0

In calculus classes, one normally defines the exponential in a different way*
and then proves e has this Taylor expansion. However, one could define
the exponential function by the above formula and then prove the various
properties of e® follow from this definition. This is the approach we take for
defining the exponential of a complex number except now we use a power series
in a complex variable:®

o0 n

e” = exp(z) := Z %, ze€C (3.14)
n=0 """

4A common definition is e* = limp—oo(1+ 2/n)".
It can be proved that this infinite series converges for all complex values z.
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We now derive some properties of exp(z) based upon this definition.

e Let € R, then

exp(if) = i(

_ 00 (i0)2n 00 (i0)2n+1
= 2 +Z < (2n + 1)

n=0
i Z 92n+1
= 2n = (2n+1)!

= cosf +isinf.

This last formula is called Euler’s Formula. Two immediate consequences

of Euler’s formula (and the facts cos(—6) = cosf and sin(§) = — sin )
are
exp(—i0) = cosf —isinf
exp(i0) = exp(—if)
Hence

lexp(i0) > = exp(if) exp(—if) = cos®f + sin?H = 1
That is, the values of exp(i6) lie on the unit circle. The coordinates of
the point € are (cos@,sin6).
e We claim the addition formula for the exponential function, well-known
for real values, also holds for complex values

exp(z + w) = exp(z) exp(w), z,w € C. (3.15)
‘We are to show
> 1
eXp(Z + U)) = Z _' z + ,w)n
n=0 n:
o0 1 n n
= - Z ( k) 2Rk (binomial theorem)
n=0"" k=0
is equal to
0o 1 00 1
_ k
exp(z) exp(w) = Z e Z mwm
k=0 m=0
1
= zkwm
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= Y > ——uwF ni=k+m
== kl(n — k)!
© 1 " n! k —k

S SE RN
= n! =kl (n—k)!

Since

n n!
(k) T R(n—k)’

we see the two expressions are equal as claimed.

e We can now use these two properties to understand better exp(z). Let
z =z + 1y, then

exp(z) = exp(z + 1y) = exp(x) exp(iy) = €® (cosy + isiny).

Observe the right hand side consists of functions from calculus. Thus
with a calculator you could find the exponential of any complex number
using this formula.b

A form of the complex exponential we frequently use is if A = o + ¢y and
z € R, then

exp(Az) = exp ((o +ip)z)) = €7® (cos(ux) + isin(uz)) .

Returning to (3.12) in case b — 4ac < 0 and assuming a, b and c are all real,
we see that the roots Ay are of the form”

Ay =o0+tu and A_ =0 —ipu.
Thus e*+* and e are linear combinations of
e?® cos(pzr) and e’”sin(uzx).
That they are linear independent follows from a Wronskian calculuation. To

summarize, we have shown that every solution of (3.12) in the case b* —4ac < 0
is of the form

c1e%% cos(ux) + coe?® sin(px)

for some constants ¢; and cs.

50f course, this assumes your calculator doesn’t overflow or underflow in computing e”.

"o = —b/2a and p = V4ac — b?/2a.
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3.4 Exercises

#1. Higher Order Equations

The third order homogeneous differential equation with constant coefficients is

n

azy  + agy” + aly' +apy =0 (3.16)
where a; are constants. Assume a solution of the form
y(z) =e

and derive an equation that A must satisfy in order that y is a solution. (You should
get a cubic polynomial.) What is the form of the general solution to (3.16)7
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Chapter 4

Difference Equations

4.1 Introduction

We have learned that the general inhomogeneous second order linear differential
equation is of the form

() T4+ b)Y+ clay = f(@).

The independent variable, z, takes values in R. (We say z is a continuous variable.)
Many applications lead to problems where the independent variable is discrete; that
is, it takes values in the integers. Instead of y(z) we now have y,, n an integer. The
discrete version of the above equation, called an inhomogeneous second order linear
difference equation, is

Qn Yn+2 + bn Yn+1 + CnYn = fn (41)
where we assume the sequences {an}, {bn}, {cn} and {f} are known. For example,

(N + 5)ynto + 2Uni1 + iyn =e", n=0,1,2,3,...
n+1

is such a difference equation. Usually we are given yo and y; (the initial values),
and the problem is to solve the difference equation for y,.

In this chapter we consider the special case of constant coefficient difference equa-
tions:

aYnt2 +bYnt1 +cyn = fn
where a, b, and ¢ are constants independent of n. If f, = 0 we say the difference
equation is homogeneous. An example of a homogeneous second order constant
coefficient difference equation is

1
6yn+2 + gyn—f—l + 2yn =0.

37
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4.2 Constant Coefficient Difference Equations

4.2.1 Solution of Constant Coefficient Difference Equations

In this section we give an algorithm to solve all second order homogeneous constant
coeflicient difference equations

aYnt2 +bynt1 +cy, =0. (4.2)

The method is the discrete version of the method we used to solve contant coefficient
differential equations. We first guess a solution of the form

Yn = A", A#N0.

(For differential equations we guessed y(z) = e**.) We now substitute this into (4.2)
and require the result equal zero,

0 = a\*2 A" L
= A" (a/\2-|-b)\+c).

This last equation is satisfied if and only if
ad? +bA+c=0. (4.3)

Let A; and Ay denote the roots of this quadratic equation. (For the moment we
consider only the case when the roots are distinct.) Then

Al and A}

are both solutions to (4.2). Just as in our study of second order ODEs, the linear
combination

c1 )\? + co Xg

is also a solution and every solution of (4.2) is of this form. The constants ¢; and
co are determined once we are given the initial values yo and y;:

Yo = cC1+ ¢,
Y1 = ciA1+ Ao,

are two equation that can be solved for ¢; and c».
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4.2.2 Fibonnaci Numbers

Consider the sequence of numbers
112358 13 21 34 ---
that is, each number is the sum of the preceding two numbers starting with
1 1

as initial values. These integers are called Fibonnaci numbers and are denoted Fi,.
From their definition, F,, satisfies the difference equation

Fopwn=F,+F, 1 forn>1

with
Fop=0,F; =1.
The quadratic equation we must solve is
A =2+1,

whose roots are

A2 = 5

Setting
F, = Cl)\rf + Cz)\g,

we see that at n = 0 and 1 we require

0 = ¢+ co,
1 = c1M1+ e

Solving these we find
1 1

C1 =

—F= C =R
N

-5 ((50) - (59)):

Since A\; > 1 and |A2| < 1, A} grows with increasing n whereas A} — 0 as n — oco.
Thus for large n

and hence

F, ~

and
li Fn—l - 1 L
nl—>n;olo FE - )\_1 =

n
V-1
2

The number

= 0.61803398......

w =

is called the golden mean.
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4.3 Inhomogeneous Difference Equations

In a completely analogous way to the ODE case, one proves that every solution to
the inhomogeneous linear difference equation (4.1) is of the form

(yn)hom() + (yn)part

where (Yn)pomo 1S @ solution to the homogeneous equation (4.1) with f, = 0 and
(yn)part is a particular solution to the inhomogeneous equation (4.1).

4.4 Exercises

#1. Degenerate Roots

Consider the constant coefficient difference equation (4.2) but now assume the two
roots Ay 2 are equal. Show that
nAy

is a second linearly independent solution to (4.2).

#2. Rational Approximations to v/2

Solve the difference equation
Tp41 = 2%Tp + Tp_1, n 21

with initial conditions zg = 0 and z; = 1 that corresponds to the sequence 0, 1, 2,
5,12, 29,.... Show that

lim "% _ 5

n—00 Ty

The rational numbers
Tn4+1 — Tn

Tn

provide us with very good approximations to v/2.
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Matrix Differential Equations

5.1 The Matrix Exponential

Let A be a n X n matrix with constant entries. In this chapter we study the matrix
differential equation

d
d_j = Az where z € R". (5.1)

We will present an algorithm that reduces solving (5.1) to problems in linear algebra.

The exponential of the matrix tA, t € R, is defined by the infinite series’

t? ¢
et = exp(tA) =T +tA + §A2 + §A3 +e (5.2)

Remark: In an advanced course you will prove that this infinite series of matrices
converges to a n X n matrix.

It is important to note that for matrices A and B, in general,

exp(tA) exp(tB) # exp(tA + tB).

1We put the scalar factor ¢ directly into the definition of the matrix exponential since it is in
this form we will use the matrix exponential.

41
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If A and B commute (AB = BA) then it is the case that

exp(tA) exp(tB) = exp(tA + tB).

This last fact can be proved by examining the series expansion of both sides—on the
left hand side one has to multiply two infinite series. You will find that by making
use of AB = BA the result follows precisely as in the case of complex exponentials.

Here are some examples:

1.

A = D = diagonal matrix = diag (A1, A2,...,An) -

Observe that
D* = diag (,\’f,)\’g, . .,,\,’g) .

Thus
R A A A
_ 3 1 2 n
,}, _k!D —dlag<e ,e? e )

. Suppose that A is a diagonalizable matrix; that is, there exist matrices S and

D with S invertible and D diagonal such that
A=SDS .
Observe
A? = (SDS 1) (SDS 1) =8D?*s 1,
and more generally,
A*F = §pkg1,
Thus

exp(tA) = ZEA’“
k=0 "

o] tk
= > Espks—l
k=0 "

= Sexp(tD)S™!.

In the next to the last equality, we used the fact that S and S~! do not depend
upon the summation index k and can therefore be brought outside of the sum.
The last equality makes use of the previous example where we computed the
exponential of a diagonal matrix. This example shows that if one can find
such S and D, then the computation of the exp(tA) is reduced to matrix
multiplications.
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3. Let

Matrix multiplication shows

A? =],
and thus .
AZIG — (AZ) — (_I)k — (_1).’9[’
A2k+1 — A2kA _ (_1)kA
Hence
o0 tk .
exp(tAd) = > EA (5.3)
k=0 """
o 12 2k — 2k 2k+1
pIRUEVERS g
o 42k . 0o 42k+1 .
= —1)*T + —(—1)*A
S VTS D
= costl +sintA
- cost 0 " 0 —sint
o 0 cost sint 0
cost —sint
o < sint cost ) ) (5-4)

Remark: You can also compute

exp |t 0 -1
P 1 0
by the method of Example #2. Try it!

5.2 Application of ¢!4 to differential equations

5.2.1 Derivative of ¢!4 with respect to ¢

The following is the basic property of the exponential that we apply to differential
equations. As before, A denotes a n X n matrix with constant coefficients.

9 exp(t4) = Aexp(tA) = exp(t4)A. (5.5)
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Here is the proof: Differentiate
t2 t3
etA:I+tA+§A2+§A3+---

term-by-term? with the result

d s _ A+tA2+ﬁA3+
at® 9l

t2
= A(I+tA+§A2+--->
—_ AetA

e A,

The last equality follows by factoring A out on the right instead of the left.

5.2.2 Solution to Matrix ODE with Constant Coefficients

We now use (5.5) to prove

Theorem: Let

dz
—=A )
g x (5.6)

where z € R™ and A is a n X n matrix with constant coefficients. Then every solution
of (5.6) is of the form
z(t) = exp(tA)zo (5.7)

for some constant vector g € R™.
Proof: (i) First we show that z(t) = 4z is a solution:

dx d d
T i (e0) = (G )

= AetAwO
= Az(t).

(ii) We now show that every solution of (5.6) is of the form (5.7). Let y(¢) by any
solution to (5.6). Let
A(t) == ety (t).

2In a complex analysis course you will prove that convergent complex power series can be dif-
ferentiated term-by-term and the resulting series has the same radius of convergence. Note there
really is something to prove here since there is an interchange of two limits.
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If we can show that A(¢) is independent of ¢—that it is a constant vector which we
call g, then we are done since multiplying both sides by e!4 shows

etzg = eAA(t) = e My(t) = y(1).

(We used the fact that tA and —tA commute so that the addition formula for the
matrix exponential is valid.) To show that A(t) is independent of ¢ we show its
derivative with respect to t is zero:

dA d
—e ty(t)

dt dt
d —tA —tA dy .
= — - h 1
( te > y(t) +e . (chain rule)

= (~e™A)y@®) + e (Ay(t) (y(t) satisfies ODE)
0.

The next theorem relates the solution z(t) of (5.6) to the eigenvalues and eigenvectors
of the matrix A (in the case A is diagonalizable).

Theorem: Let A be a diagonalizable matrix. Any solution to (5.6) can be written

as

z(t) = clet)‘llm + Czet)‘2¢2 + -+ cne”‘“;bn (5.8)
where A1, ..., A, are the eigenvalues of A with associated eigenvectors 1, ..., ¢¥,,
and cy,...,c, are constants.

Proof: All solutions of (5.6) are of the form (5.7). Since A is diagonalizable, the
eigenvectors of A can be used to form a basis: {11,...,%,}. Since this is a basis
there exist constants cy,...,c, such that

zo = 11 + oo + -+ - + Cap.
(zo is the constant vector appearing in (5.7).)
For any eigenvector ¢ of A with eigenvalue A we have
ey — ey,

(This can be proved by applying the infinite series (5.2) to the eigenvector ¢ and
noting A¥vy = A4 for all positive integers k.) Thus

elzo = crey + - cnet iy,

= clet)\l'l/)l + Cnet)\nqbrr

Here are two immediate corollaries of this theorem:
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1. If A is diagonalizable and has only real eigenvalues, then any solution z(t) of
(5.1) will have no oscillations.

2. If A is diagonalizable and the real part of every eigenvalue is negative, then
z(t) = 0 (zero vector), as t — 400
To see this recall that if A = o0 + i (0 and p both real), then
oM — ot gint

If 0 <0, e’ — 0ast— +oo. Now apply preceding theorem.

5.3 Relation to Earlier Methods of Solving Constant
Coefficient DEs

Earlier we showed how to solve
ay’ +by +cy=0

where a, b and c are constants. Indeed, we proved that the general solution is of the
form
y(t) = cre™ + cpet?

where A1 and Ay are the roots to
aX’ +bA+c=0.
(We consider here only the case of distinct roots.)

Let’s analyze this familiar result using matrix methods. The z € R? is

2(t) = ( o ) = ( dy)di )

dz dy/dt
at d?y/dt?

Therefore,
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This last equality defines the 2 x 2 matrix A. The characteristic polynomial of A is

—-A 1

c b
~a —a—/\‘

b
p()\):det(A—/\I):‘ :)\2—1-5)\-}—2.

Thus the eigenvalues of A are the same quantities A\; and Ay appearing above. Since

tA1
z(t) = etzo =8 ( 60 eg\z ) 571z,

x1(t) is a linear combination of M and et?2.

5.4 Exercises

#1. Harmonic Oscillator via Matrix Exponentials

Write the oscillator equation
F4+wiz=0

as a first order system (5.1). (Explicitly find the matrix A.) Compute exp(tA) and
show that z(t) = exp(tA)zo gives the now familiar solution. Note that we computed
exp(tA) in (5.4) for the case wy = 1.

#2. Exponential of Nilpotent Matrices

1. Using the series expansion for the matrix exponential, compute exp(tN) where

Nz(g;).

Answer the same question for

N =

o O O

1
0
0

e R

How do these answers differ from exp(tz) where z is any real number?

2. A n x n matrix N is called nilpotent? if there exists a positive integer k such
that
N¥ =0
3In an advanced course in linear algebra, it will be proved that every matrix A can be written

uniquely as D + N where D is a diagonalizable matrix, N is a nilpotent matrix, and DN = ND.
Furthermore, an algorithm will be given to find the matrices D and N from the matrix A. Once
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where the 0 is the n X n zero matrix. If N is nilpotent let £ be the smallest
integer such that N* = 0. Explain why exp(tN) is a matrix whose entries are
polynomials in ¢ of degree at most k£ — 1.

this is done then one can compute exp(tA) as follows
exp(tA) = exp(tD + tN) = exp(tD) exp(tN).

We showed above how to reduce the computation of exp(tD), D a diagonalizable matrix, to linear
algebra. This problem shows that exp(tN) reduces to finitely many matrix multiplications. Thus
the computation of both exp(tD) and exp(¢IV) are reduced to linear algebra and hence so is exp(tA).
Observe that it is crucial that we know DN = ND.



Chapter 6

The Weighted String

6.1 Derivation of Differential Equations

The weighted string is a system in which the mass is concentrated in a set of equally
spaced mass points, N in number with spacing d, imagined to be held together by
massless springs of equal tension 7. We further assume that the construction is such
that the mass points move only in the vertical direction (y direction) and there is a
constraining force to keep the mass points from moving in the horizontal direction (z
direction). We call it a “string” since these mass points give a discrete string—the
tension in the string is represented by the springs. The figure below illustrates the
weighted string for N = 5.

0 1d 2d 3d 4d 5d 6d

The string is “tied down” at the endpoints 0 and (N + 1)d. The horizontal coordi-
nates of the mass points will be at x = d, 2d, ..., Nd. We let u; denote the vertical
displacement of the j** mass point and F}; the transverse force on the jth particle.
To summarize the variables introduced so far:

m = mass of particle,
N = total number of particles,
T = tension of spring,
d = horizontal distance between two particles,
u; = vertical displacement of j* particle, j=1,2,...N,
F; = transverse force on jth particle, j7=1,2,...N.

49
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To impose the boundary conditions that the ends of the string are rigidly fixed at
z =0 and z = (N + 1)d, we take

up=0 and wuny41 =0.

Newton’s equations for these mass points are

20, .
d“u;

fr=mg

j=1,2,...,N.

This is a system of N second order differential equations. We now find an expression
for the transverse force Fj in terms of the vertical displacements.

In the diagram below, the forces acting on the j** particle are shown.

From the diagram,

F; =Tsinf —Tsina.

We make the assumption that the angles o and (3 are small. (The string is not
stretched too much!) In this small angle approximation we have

sina ~tana and sing = tanp.
Therefore, in this small angle approximation

F; ~ TtanpB—Ttana
Ujpl — Uj Uj — Uj_1
= T J+ J)_T( J J )
(o) T (=

d®u; T .
m dtzj = E(Uj+1—2u]'+uj,1), j=1,2,...,N. (6.1)
Note that these equations are valid for j = 1 and 7 = N when we interpret ug = 0
and uny41 = 0. For example, for j = 1 the force F} is determined from the diagram:

Thus,
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A G )

U1
72
d d

T
= E(UQ—2U1+U,0), ug = 0.

Equation (6.1) is a system of N second order linear differential equations. Thus the
dimension of the vector space of solutions is 2/N; that is, it takes 2N real numbers
to specify the initial conditions (/N initial positions and N initial velocities). Define
the N x N matrix

2 =1 0 0 0 0 0
-1 2 -1 0 0 0 0
o -1 2 -1 --- 0 0 0
VN = L L (6.2)
0 0 0 0 -1 2 -1
0 0 0 0 0o -1 2
and the column vector u
Uy
U2
u= . (6.3)
uN

Then (6.1) can be written in the compact matrix form

d*u T
Z 4+~ Vwu=0. 6.4
p7 + d Nu ( )
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Note: We could also have written (6.1) as a first order matrix equation of the form

dx

—=A 6.5
o = Ax (6.5)
where A would be a 2N x 2N matrix. However, for this application it is simpler to
develop a special theory for (6.4) rather than to apply the general theory of (6.5)
since the matrix manipulations with V will be a bit clearer than they would be

with A.

6.2 Reduction to an Eigenvalue Problem

Equation (6.4) is the matrix version of the harmonic oscillator equation

d’z  k 9 k
Indeed, we will show that (6.4) is precisely N harmonic oscillators (6.6)—once one
chooses the correct coordinates. We know that solutions to (6.6) are linear combi-
nations of
coswot and sinwgt.

Thus we “guess” that solutions to (6.4) are linear combinations of the form
coswtf and sinwtf

where w is to be determined and f is a column vector of length N. (Such a “guess”
can be theoretically deduced from the theory of the matrix exponential when (6.4)
is rewritten in the form (6.5).)

Thus setting
u = e“'f,

we see that (6.4) becomes the matrix equation

md

That is, we must find the eigenvalues and eigenvectors of the matrix V. Since
Vi is a real symmetric matrix, it is diagonalizable with real eigenvalues. To each
eigenvalue A, i.e.

Vnta = Afn, n=1,2,...,N,

there will correspond a positive frequency

wi=—M,, n=12,...,N,
md
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and a solution of (6.4) of the form
up = (ay, cos(wpt) + by, sin(w,t)) fa

where a,, and b, are constants. This can now be easily verified by substituting this
above expression into the differential equation. To see we have enough constants
of integration we observe that we have two constants, a, and b,, for each (vector)
solution u,. And we have N vector solutions u,—thus 2N constants in all. We
now turn to an explicit evaluation of the frequencies w2—such frequencies are called
normal modes.

6.3 Computation of the Eigenvalues of Vy

We introduce the characteristic polynomial of the matrix Vy:
DN()\) = Dy = det (VN - )\I) .

Expanding the determinant Dy in the last column, we see that it is a sum of
two terms—each a determinant of matrices of size (N — 1) x (N — 1). One of
these determinants equals (2 — A\)Dy_1 and the other equals Dy_o as is seen after
expanding again, this time by the last row. In this way one deduces

Dy=(2-ADy_1—Dyo, N=234,...

with
D():l and D1=2—)\.

We now proceed to solve this constant coefficient difference equation (in N). From
earlier work we know that the general solution is of the form

C1/«6{V + Czuév
where p1 and ps are the roots of
pr—(2-Np+1=0.

Solving this quadratic equation gives

A1
=1—=*=4/(2—X)2—-4.
11,2 5 TV (2-A)
It will prove convenient to introduce an auxiliary variable 8 through

2— A= 2cosb,
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A simple computation now shows

pi2 = e:I:'LG ]

Thus
Dy = clezNQ + CQe—zNG.
To determine ¢y and ¢y we require that

D():l and D1=2—>\.

That is,

ci+c = 1,

c1e? +coe™® = 2 —\=2cosb.
Solving for ¢ and c2,
ei6’
1 = i _o—if’
efie

2 = TLf _ b

Therefore,
1 . »
D — ez(N—i—l)O —e i(N+1)6
N eif _ g i0

sin (N + 1)6)

sin 6
The eigenvalues of Vi are solutions to
Dyn(A) = det(Vy — AI) = 0.

Thus we require
sin (N +1)6) =0,

which happens when

nm

=80, = =1,2 N

n N + 17 n ) 7 7
Thus the eigenvalues of Vi are
Ap =2 —2cos b, = 4sin(0,/2), n=1,2,...,N. (6.7)

The eigenfrequencies are

T 2T

w: = %)\n = —d(l — cosby)
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Ei genval ues for N=50 particles

10 aw w w0 s

Figure 6.1: Eigenvalues Ay, (6.7), for N = 50 particles.

Remark: We know there are at most N distinct eigenvalues of V. The index n
does not start at zero because this would imply 8§ = 0, but 8§ = 0—due to the
presence of sinf in the denominator of Dy—is not a zero of the determinant and
hence does not correspond to an eigenvalue of Vy. We also conclude there are N
distinct eigenvalues of Viy.

6.4 The Eigenvectors

6.4.1 Constructing the Eigenvectors f,

We now find the eigenvector f,, corresponding to eigenvalue A,. That is, we want a
column vector f,, that satisfies

Vnfn =2(1 —cosb,)fn, n=1,2,...,N.
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Setting,
fnl

fn2
fn = ) )
an

the above equation in component form is

—fnj—1+2fnj — faj+1=2(1 — cosOn) fn;
with
fn,O = fn,N—i—l =0.

This is a constant coefficient difference equation in the j index. Assume, therefore,
a solution of the form

— L
fnj = €99
The recursion relation becomes with this guess

—2cosp+ 2 =2(1 — cosby,),

l.e.

p = 106,.
The f, ; will be linear combinations of eiijon,
fn,j = c18in(jOn) + c2 cos(j0n).

We require f, 0= fn nv+1 = 0 which implies ¢, = 0.

To summarize,

Vntn = %lwifn, n=12,...,N,
2T nm
2
= 1 —cosbn), On= ,

wi md( cosO,) N1
sin(6) (6.8)
sin(265,)

fn = . n=12,...,N
sin(N6,)
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The general solution to (6.4) is

N
u(t) = Z (an cos(wnt) + by, sin(wpt)) fa,
n=1
or in component form,
N
uj(t) = Z (an, cos(wpt) + by, sin(wyt)) sin(j56,,). (6.9)
n=1

6.4.2 Orthogonality of Eigenvectors

The set of eigenvectors {f, })_; forms a basis for R" since the matrix Vjy is symmet-
ric. (Another reason they form a basis is that the eigenvalues of Viy are distinct.) We
claim the eigenvectors have the additional (nice) property that they are orthogonal,
ie.

fo - fm =0, n#m,

where - denotes the vector dot product. To prove this we use (6.8) to compute

N
fo-fm = Z sin(j6r,) sin(j6m,)- (6.10)
j=1

To see that this is zero for n # m, we leave as an exercise to prove the trigonometric

identity
i":, <nj7r>, <mj7r> LN 118
S { ———— ] sIn = =
o \N+1 N+1) 2 o

where 0y, , is the Kronecker delta function. (One way to prove this identity is first
to use the formula sinf = (e — e7)/2i to rewrite the above sum as a sum of
exponentials. The resulting sums will be finite geometric series.) From this identity
we also get that the length of each vector, ||f,||, is

N+1
A

6.5 Determination of constants a, and b,

Given the initial vectors u(0) and @(0), we now show how to determine the constants
an and b,. At t =0,

N
u(0) = Z anfn.
n=1
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Dotting the vector f;, into both sides of this equation and using the orthogonality of
the eigenvectors, we see that

2 U pjm
= — in|{ ——— ) u;(0 =12,...,N. 6.11
ap N+1j_151n<N+1>u‘7( )3 p y 4y ) ( )
Differentiating u(t) with respect to t and then setting ¢ = 0, we have

1(0) = ) wnbnfa.
n=1

Likewise dotting f, into both sides of this equation results in

21N_<pj7r

by = —— —
b N-i—lcupj:lsnr1 N+1

)uj(O), p=12,...,N. (6.12)
If we assume the weighted string starts in an initial state where all the initial veloc-
ities are zero,

then the solution u(t) has components

N
u;(t) = Z ay, cos(wyt) sin(j6,,)

n=1

where the constants a,, are given by (6.11) in terms of the initial displacements u(0).
The special solutions obtained by setting all the a,, except for one to zero, are called
the normal modes of oscillation for the weighted string. They are most interesting
to graph as a function both in space (the j index) and in time (the ¢ variable). In
figures we show a “snapshot” of various normal mode solutions at various times ¢.

6.6 Inhomogeneous Problem

The inhomogeneous version of (6.4) is

d*u T
F + %VNU = F(t) (6.13)
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Figure 6.2: Vertical displacements u; for the two lowest (n = 1 and n = 2) normal
modes are plotted as function of the horizontal position index j. Each column gives
the same normal mode but at different times ¢. System is for N = 25 particles.
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In A A la 2 a2 a a
0.5/% fyv it 0.5p% ;0 «v v It

20406980100 202060780100
-0.5 35 % ° -0.5 LTl 10
-1 vV Vv B I I

o
a1
>
2
o O
o

— Ol

ol

— Ol

Figure 6.3: Vertical displacements u; for the two normal modes n = 5 and n = 10
are plotted as function of the horizontal position index j. Each column gives the
same normal mode but at different times ¢. System is for N = 100 particles.
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where F(t) is a given driving term. The j*" component of F(t) is the external force
acting on the particle at site j. An interesting case of (6.13) is

F(t) = coswt f

where f is a constant vector. The general solution to (6.13) is the sum of a particular
solution and a solution to the homogeneous equation. For the particular solution
we assume a solution of the form

u,(t) = coswt g.

Substituting this into the differential equation we find that g satisfies

md ) md
— = —f.
<[’N T w I> g T

For w? #w?, n=1,2,...,N, the matrix
md

is invertible and hence

d d , N\
g =" <VN— m?uﬂI) £.

Writing (possible since the eigenvectors form a basis)

N
f=>" anfa,
n=1
we conclude that N
Olp
g= Z W2 — 2 fa
n=1
for w? # w2, n=1,2,..., N. The solution with initial values
u(0)=0, 0(0)=0 (6.14)
is therefore of the form
N «
t) = ty —f t) + by, si ) fa.
u( ) Cos w 7;1 w% — 2, + ngl (an Cos(wn ) + nSln(wn )) n

Imposing the initial conditions (6.14) we obtain the two equations

Z<w2an 2+an> f, = 0, (6.15)

n=1 n W

> wpbnfa = 0. (6.16)
n=1
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From the fact that {f,})_, is a basis we conclude

an = —%, bp,=0 for n=1,2,...,N.
w2 —w
Thus the solution is
Yoa
u(t) = Z ——— (cos(wt) — cos(wnt)) fa (6.17)
n=1 Wy — W
N
2a yal . (1
= ngl ﬁ sin <§(wn + w)t) sin <§(wn — w)t) £ - (6.18)

We observe that there is a beat whenever the driving frequency w is close to a
normal mode of oscillation w,. Compare this discussion with that on page 195 of
Boyce-DiPrima.

6.7 Exercises

#1. Coupled Pendulums

Consider the system of two mathematical pendulums of lengths #; and £ and masses
my and me, respectively, in a gravitional field mg which move in two parallel vertical
planes perpendicular to a common flexible support such as a string from which they
are suspended. Denote by 61 (62) the angle of deflection of pendulum #1 (#2). The
kinetic energy of this system is

1 o 1 :
KE = imlzie)% + §m2e§0§,

and the potential energy is
PE = m1g£1(1 — cosby) + mag (1 — cosbs) + Viny

where Vjy,; is the interaction potential energy.! If there is no twist of the support,
then there is no interaction of the two pendulums. We also expect the amount of
twist to depend upon the difference of the angles #; and 62. It is reasonable to
assume V;n: to be an even function of 61 — 65. Thus

V;nt(o) =0, zInt(O) =0.

For small deflection angles (the only case we consider) the simplest assumption is
then to take

1
Vint (01 — 02) = Eﬁ(el — 05)?

!These expressions should be compared with (2.24).
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where k is a positive constant. Since we are assuming the angles are small, the
potential energy is then given, to a good approximation, by

1 1 1
PE = Smigh 6? + 5296 02 + 5,@(01 —6,)2.

Under these assumptions it can be shown that Newton’s equations are

mlffél = —(miglh + k)01 + kb2,
m2£%éz = kb — (m2g€2 + 5)92 .

Observe that for kK = 0 the ODEs reduce to two uncoupled equations for the lin-
earized mathematical pendulum. To simplify matters somewhat, we introduce

gklz K K

9 —
= — w2

= _— 2= —=.
51’ fg mlﬁ%’ mzf%

Then it is not difficult to show (you need not do this) that the above differential
equations become

0y = kob; — (w% + k2)02 .

We could change this into a system of first order DEs (the matrix A would be 4 x 4).
However, since equations of this form come up frequently in the theory of small
oscillations, we proceed to develop a “mini theory” for these equations. Define

_ (&
o ()
Show that the equations (6.19) can be written as

6 = 40 (6.20)

where A is a 2 X 2 matrix. Find the matrix A. Assume a solution of (6.20) to be of

the form
O(t) = et < o ) . (6.21)
az

Using (6.21) in (6.20) show that (6.20) reduces to

A® = —u?0. (6.22)
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This is an eigenvalue problem. Show that w? must equal

1
wi o= (Wl +ws+ kit k)

i%\/(w% — 02?4+ 2002 —wd) (ks — ko) + (k1 4 ko)2.  (6.23)

Show that an eigenvector for w?,_ is

1
fl = ( —kz(w_2|_ _w% —kz)_l ) ’ (624)

and an eigenvector corresponding to w? is

f2= ( “h(w2 _f}% — k)™ ) : (6.25)

Now show that the general solution to (6.19) is

< Z;Eg ) = (c1 cos(wyt) + cosin(wit)) f1 + (czcos(w_t) + casin(w_t)) fo  (6.26)

where ¢; are real constants. One can determine these constants in terms of the initial
data

61(0), 61(0), 62(0), 6(0).
To get some feeling for these rather complicated expressions, we consider the special
case
61(0) = 6y, 61(0) =0, 62(0) =0, 62(0) =0 (6.27)
with
m1 = mg =1m, ﬁl = EQ = /. (6.28)

These last conditions imply
W1 = W2 ‘= Wo.

Explain in words what these initial conditions, (6.27), correspond to in the physical
set up.

If we define
K

T me’

show that in the special case (6.27) and (6.28) that

wi =/wd+2k and w_ = wp. (6.29)

k
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In this same case solve for the coefficients c1, cg, c3 and ¢4 and show that
1
c1 = 590, co =0, c3= 590, cqs =0,

and hence (6.26) becomes
1 1
01(t) = 6pycos (2(w+ + w_)t) cos <2(w+ - w_)t> ,
1 1
O2(t) = 6Opsin <§(w+ + w)t) sin <§(w+ - w)t) .

Suppose further that

k
= <1 (6.30)
wWo

What does this correspond to physically? Under assumption (6.30), show that
approzimately

01(t) = g cos (wot) cos <%t> ,

k
02(t) = O sin (wpt) sin (—t) . (6.31)
2wo

Discuss the implications of (6.31) in terms of the periods

2T 2T
To=" and Ty = ——.
0 wo an ! k/Zwo

Show that in this approximation
T > Tp.

Draw plots of 0;(t) and 65(t) using the approximate expressions (6.31).
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Chapter 7

The Laplace Transform

7.1 Matrix version of the method of Laplace transforms
for solving constant coefficient DE’s

In §6.1 of Boyce and DiPrima we learned that the Laplace transform of a function
f(¢) satisfying the hypotheses of Theorem 6.1.2. is

F) = L)) = [~ e r(t)at (7.1)
for s sufficiently large. We extend (7.1) to vector-valued functions f(£),
f1(?)
f=| (7.2
fa(®)

(each of whose components satisfy the hypotheses of Theorem 6.1.2.) by

JoT e B f1(t)dt
Jol e fa(t)dt

F(s) = L(f)(s) = _ (7.3)
JoT e fu(t) dt
Theorem 6.2.1 generalizes immediately to vector-valued functions; namely,
df
L()(s) = sL(f)(s) = f(0). (7.4)

67
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We now explain how matriz Laplace transforms are used to solve the matrix ODE

dz
i Az + f(t) (7.5)

where A is a constant coefficient n x n matrix, f(¢) is a vector-valued function of
the independent variable ¢ (“forcing term”) with initial condition

z(0) = zo. (7.6)

First, we take the Laplace transform of both sides of (7.5). From (7.4) we see that
the Laplace transform of the LHS of (7.5) is

E(j—f) = sL(z) — xo.

The Laplace transform of the RHS of (7.5) is

L(Az+ f) = L(Az)+ L(f)
= AL(z)+ F(s)

where we set F((s) = L(f)(s) and we used the fact that A is independent of ¢ to
conclude!

L(Az) = AL(z). (7.7)
Thus the Laplace transform of (7.5) is

sL(z) —xo = AL(z) + F,

or

(sIp — A)L(z) = 2o + F(s) (7.8)

where I, is the n X n identity matrix. Equation (7.8) is a linear system of algebraic
equations for £(z). We now proceed to solve (7.8). This can be done once we know
that (sI, — A) is invertible. Recall that a matrix is invertible if and only if the
determinant of the matrix is nonzero. The determinant of the matrix in question is

p(s) := det(sl, — A), (7.9)

which is the characteristic polynomial of the matrix A. We know that the zeros of
p(s) are the eigenvalues of A. If s is larger than the absolute value of the largest
eigenvalue of A; in symbols,

s > max|\;|, (7.10)

then p(s) cannot vanish and hence (sI,, — A)~! exists. We assume s satisfies this
condition. Then multiplying both sides of (7.8) by (s, — A)~! results in

You are asked to prove (7.7) in an exercise.
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L(z)(s) = (sI, — A) ‘zo + (sI, — A) " F(s).

69

(7.11)

Equation (7.11) is the basic result in the application of Laplace transforms to the
solution of constant coefficient differential equations with an inhomogeneous forcing
term. Equation (7.11) will be a quick way to solve initial value problems once
we learn efficient methods to (i) compute (sI, — A)~!, (ii) compute the Laplace
transform of various forcing terms F(s) = L£(f)(s), and (iii) find the inverse Laplace
transform. Step (iii) is made easier by the use of extensive Laplace transform tables.
It should be noted that many of the DE techniques one learns in engineering courses
can be described as efficient methods to do these three steps for examples that are

of interest to engineers.

We now give two examples that apply (7.11).

7.1.1 Example 1

Consider the scalar ODE
d?y . dy
—2 4+ b= = f(t

where b and ¢ are constants. We first rewrite this as a system

«0=(2)= (Vo)

so that
= (% 3 ()
dt  \—c —b f@))"
Then
s -1
sz_A_(c s+b>’
and
_ 1 s+b 1
—_ 1:—
(sl = 4) s2+bs+c<—c s)'

Observe that the characteristic polynomial

p(s) = det(slp — A) = s>+ bs+c

(7.12)
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appears in the denominator of the matrix elements of (sl — A) 1. (This factor in
Laplace transforms should be familiar from the scalar treatment—here we see it is
the characteristic polynomial of A.) By (7.11)

_ 1 (s +0)y(0) +'(0) F(s) 1
L(z)(s) = s2 +bs+c ( —cy(0) + sy'(0) ) T +bs+c (8)

where F(s) = L(f)(s). This implies that the Laplace transform of y(t) is given by

(s +b)y(0) +3'(0) F(s)
s24+bs+c s24+bs+c’

L(y)(s) = (7.13)

This derivation of (7.13) should be compared with the derivation of equation (16)
on page 298 of Boyce and DiPrima (in our example a = 1).

7.1.2 Example 2

We consider the system (7.5) for the special case of n = 3 with f(¢) = 0 and A given
by
1 0 -1
A=[1 2 1]. (7.14)
1 -1 -1
The characteristic polynomial of (7.14) is
p(s) =525 +5—-2=(s2+1)(s—2) (7.15)

and so the matrix A has eigenvalues +7 and 2. A rather long linear algebra compu-
tation shows that

1 s2—s5—-1 1 —s+2
(sIz3 — A)™! = (5] s+2 s 5—2 . (7.16)
p s—3 —s+1 s2—-3s+2

If one writes a partial fraction decomposition of each of the matrix elements appear-
ing in (7.16) and collects together terms with like denominators, then (7.16) can be
written as

1 (1/5 1/5 0)
(sI; — A)™! = 4/5 4/5 0
s=2\_1/5 —1/5 0
) (3+4s)/5 —(2+s)/5 -1
+m (—(3+4s)/5 (2+s)/5 1 ).(7.17)

(T+s)/5 (-3+4+s)/6 —1+s
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We now apply (7.17) to solve (7.5) with the above A and f = 0 for the case of initial
conditions
1
o = (—2) . (7.18)
1
We find

ESVE . 6/5 1 2/5
L(z)(s) = (sI3 — A)"lzg = —4/5 | + —6/5 | + — -2/5 | .

1/5
(7.19)
To find z(t) from (7.19) we use Table 6.2.1 on page 300 of Boyce and DiPrima; in
particular, entries 2, 5, and 6. Thus

~1/5 6/5 2/5
z(t) = e (—4/5) + cost (—6/5) +sint (—2/5) .
1/5 4/5 8/5

We give now a second derivation of (7.19) using the eigenvectors of A. As noted
above, the eigenvalues of A are A1 = 2, Ay = 4, and A3 = —i. If we denote by ¢;
an eigenvector associated to eigenvalue A; (j = 1,2, 3), then a routine linear algebra
computation gives the following possible choices for the ¢;:

~1 (1+1)/2 (1—1i)/2
61 = (—4>, $o = (—(1+i>/2>, ¢s = ((—1+i)/2>.

1 1 1

Now for any eigenvector ¢ corresponding to eigenvalue A of a matrix A we have
(sIn— A) 6 = (s — )6,
To use this observation we first write
To = c1¢1 + c2¢2 + cads.
A computation shows that
c1=1/5, c2=2/5-4i/5, and c3=2/5+ 4i/5.

Thus

2—4

; o 2+ 41
5 (8—1) 1<I52+

5

(sIs — A)'mp = é(s —2)"'¢1+ (s+1) " ¢s.

Combining the last two terms gives (7.19).
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7.2 Structure of (s, — A)~! when A is diagonalizable

In this section we assume that the matrix A is diagonalizable; that is, we assume a
set of linearly independent eigenvectors of A form a basis. Recall the following two
theorems from linear algebra: (1) If the n X n matrix A has n distinct eigenvalues,
then A is diagonalizable; and (2) If the matrix A is symmetric (hermitian if the
entries are complex), then A is diagonalizable.

Since A is assumed to be diagonalizable, there exists a nonsingular matrix P such
that

A=PDpP!
where D is
M 0 ...00
p=| % ® o 0
0 0 ... A

and each eigenvalue \; of A appears as many times as the (algebraic) multiplicity of

X;. Thus

sl,—A = sI,— PDP™!
= P(sI,—D)P !,

so that

-1
(sly—A)' = (P(sI,— D)P™Y))
= P(sI,— D) 'p7L
Since P and P! are independent of s, the s dependence of (sI,, — A)~! resides in the

diagonal matrix (sI, — D)~'. This tells us that the partial fraction decomposition
of the matrix (sI, — A)~! is of the form

(sT, —A)_lzi;P-
" —~ 5 —)j J
7j=1

where
P; = PE;P™!

and E; is the diagonal matrix with all zeros on the main diagonal except for 1 at
the (4, j)th entry. This follows from the fact that

1
5 —Aj

(sI,—D) '=>" E;
j=1
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Note that P; have the property that
2
Such matrices are called projection operators.

In general, it follows from Cramer’s method of computing the inverse of a matrix,
that the general structure of (s, — A) ! will be 1/p(s) times a matrix whose entries
are polynomials of at most degree n — 1 in s. When an eigenvalue, say A1, is
degenerate and of (algebraic) multiplicity mi, then the characteristic polynomial
will have a factor (s — A1)™. We have seen that if the matrix is diagonalizable,
upon a partial fraction decomposition only a single power of (s — A1) will appear
in the denominator of the partial fraction decompostion. Finally, we conclude by
mentioning that when the matrix A is not diagonalizable, then this is reflected in
the partial fraction decomposition of (sI, — A)~! in that some powers of (s — ;)
occur to a higher degree than 1.

7.3 Exercises

#1.
Use the Laplace transform to find the solution of the initial value problem
dx 1 -1 0 0 0
= 0 -1 1 x+ | 12 |, x(0)=| 0
0 1 -1 0 0

#2.

Let A be a n X n matrix whose entries are real numbers and z € R™. Prove that
L(Az) = AL(x)

where £ denotes the Laplace transform.

#3.

Let E; denote the diagonal n x n matrix with all zeros on the main diagonal except
for 1 at the (j, ) entry.

e Prove that EJ2 = Ej.

e Show that if P is any invertible n X n matrix, then sz = Pj where P; :=
PE; P~
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#4.

It is a fact that you will learn in an advanced linear algebra course, that if a 2 x 2
matrix A is not diagonalizable, then there exists a nonsingular matrix P such that

A=PBP!
A1

e Show that A must be an eigenvalue of A with algebraic multiplicity 2.

where

for some constant .

e Find an eigenvector of A (in terms of the matrix P), and show that A has no
other eigenvectors (except, of course, scalar multiples of the vector you have
already found).

e Show that

1 1 1
(sI, — A)~ ' = AP&%P_l+———XPEbP_1+—————JHVP_1
8_

s— (s —A)2
01
(31

e Relate what is said here to the footnote in Exercise 5.4.2.

where



