
Statistical Mechanics, Math 266: Week 1 Notes

January 5 and 7, 2010

1 The Microcanonical Ensemble

The Microcanonical Ensemble refers to a choice of a probability distribution
on state space in which all configurations of a fixed energy E are given equal
weight. To be concrete, we illustrate with a simple example. Consider a system
of N classical point particles of mass m in a finite box Λ = [0, L]3 ⊂ R3. The
phase space of this system is given by Γ = [0, L]3N × R3N where

(q,p) = (q1, . . . , qN , p1, . . . , pN ) ∈ Γ

and qi ∈ [0, L]3 and pi ∈ R3 for all 1 ≤ i ≤ N . The energy of the system is
given by the Hamiltonian, H : Γ→ R given by

H(q,p) =
N∑
i=1

1
2m
|pi|2 (1)

The Hamiltonian enables us to define the submanifold of constant energy, ΓE :

ΓE = {(q,p) ∈ Γ|H(q,p) = E} (2)

Hamiltonian dynamics is given by Hamilton’s equations of motion:

q̇i =
∂

∂pi
H(q,p) (3)

ṗi = − ∂

∂qi
H(q,p) (4)

The following theorem of Liouville, stated without proof, will be necessary to
define a measure on ΓE .

Theorem 1.1. Liouville
The measure dqdp on Γ is preserved under the Hamiltonian flow solving

equations 3 and 4.
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What this means precisely is the following. Consider the flow, ϕt : Γ → Γ
such that ϕt(q0,p0) = (q(t),p(t)) is a solution of equations 3 and 4 when
q(0) = q0 and p(0) = p0. Then letting B be a Lebesgue measurable set, define

Bt = {ϕt(q,p)|(q,p) ∈ B}

Liouville’s theorem then says that

vol(Bt) = vol(B) for all t (5)

i.e., ∫
Bt

dqdp =
∫
B

dqdp (6)

In our concrete example, this is easy to see, since

pi(t) = pi(0) (7)

qi(t) = qi(0) +
1
m
pit (8)

is just translation which clearly preserves volume.
Another important property is that H, energy, is conserved.

H(q(t),p(t)) = H(q(0),p(0)) for all t (9)

This is a direct consequence of the form of the Hamilton equations of motion:

d

dt
H(q(t),p(t)) =

N∑
i=1

∂H

∂qi

dqi
dt

+
∂H

∂pi

dpi
dt

(10)

=
N∑
i=1

∂H

∂qi

∂H

∂pi
− ∂H

∂pi

∂H

∂qi
= 0 (11)

This means that ΓE , the manifold of constant energy E is invariant under the
flow, i.e.,

For all (q,p) ∈ ΓE , ϕt(q,p) ∈ ΓE (12)

It follows also that the trace measure of dqdp on ΓE will also be preserved under
the flow ϕt. It may be intuitively clear what the “trace measure” means, but
we provide a mathematical definition.

Let B ⊂ ΓE be a nice set and suppose ΓE is a differentiable submanifold of
Γ so that we define the normal to each point of ΓE . Consider the normals at
each point of B and define

B(∆E) =
{

(q,p) ∈ Γ
∣∣∣∣ (q,p) lies on a normal to a point in B ⊂ ΓE

and H(q,p) ∈ [E,E + ∆E]

}
(13)

and

νE(B) = lim
∆E↘0

vol(B(∆E))
∆E

(14)
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It can be shown that this defines a measure of ΓE which will clearly be invariant
under the flow ϕt. In our case, ΓE is compact, and

νE(ΓE) =
d

dE
vol({(q,p)|H(q,p) ≤ E}) ≡ ΩE (15)

which we can easily compute:

ΓE = [0, L]3N × S3N−1(
√

2mE)νE(ΓE) =
d

dE

{
L3N (2mE)

3N
2 ω3N

}
(16)

where ωd is the volume of the unit ball in Rd which is given by

ωd =
πd/2

Γ(d2 + 1)
(17)

So

ΩE = νE(ΓE) = 2mL3Nπ
3N
2 (2mE)

3N
2 −1

3N
2

Γ( 3N
2 + 1)

(18)

(νE is an invariant positive measure, but it is not normalized.) The microcanon-
ical probability measure is the normalized version of νE ,

µE(A) =
νE(A)
νE(ΓE)

(19)

which represents the “equal” probability distribution of all configurations (q,p)
of fixed energy E.

2 Derivation of the Maxwell Distribution

Now assuming the probability distribution µE on ΓE , what is the resulting
distribution of one particle?

We want to find the distribution function,

P
(

1
2m

p2
1 ≤ e

)
= µE(A(e)) (20)

where
A(e) = {(q,p) ∈ ΓE |p2

1 ≤ 2me} (21)

Then the probability density function will be

f(e) =
d

de
P
(

1
2m

p2
1 ≤ e

)
=

d

de

d

dE
νE(A(e)(∆E)) (22)

=
L34π2meL3N−3ν3N−3

E (Γ3N−3
E−e )

ν3N
E (Γ3N

E )
(23)

= 4π2me
(2m(E − e)) 3

2 (N−1)−1

(2mE)
3N
2 −1

3(N−1)
2

3(N)
2

Γ(N2 + 1)

Γ( 3(N−1)
2 + 1)

(24)

≈ 4π2meC
1

(2mE)3/2

(
1− e

E
)

3N
2 −

5
2

)(3N
2

)3/2

(25)
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where in the last (almost) equality, we have made use of Stirling’s formula:

Γ(n) =
√

2πnn−1/2 exp(−n)
(

1−O(
1
n

)
)

(26)

We shall be interested in taking the thermodynamic limit in which we take

N →∞ N
L3 = ρ

L→∞ E
L3 = η

E →∞
(27)

Therefore, in the thermodynamic limit,

f(e) = C
e√
2m

(
3ρ
2η

)3/2

exp(−3ρ
2η
e) (28)

Recalling now that e = 1
2mv

2 where v is the speed of the first particle, we can
change variables,

f(v) = Cv2 exp
(
−β 1

2
mv2

)
(29)

where β = 3ρ
2η is to be interpreted as inverse temperature.

3 Explanations and Issues

Why does the Maxwell distribution just derived so accurately describe the reality
of molecules in a gas?

When we measure this distribution for a gas in equilibrium, we sample the
system over a long time and by Poincare’s recurrence theorem, explores the
available portion of phase space over and over again such that the net effect is
that the time averages become averages over phase space. To make this more
precise, we will use Birkhoff’s Ergodic theorem without proof.

Theorem 3.1. Birkhoff
For Γ0 ⊂ Γ such that vol(Γ0) <∞ and for all f ∈ L1(Γ0),

lim
T→∞

1
T

∫ T

0

f ◦ ϕt(q,p)dt = 〈f〉(q,p)

exists for almost all (q,p) ∈ Γ0

Here 〈f〉(q,p) is the time average of f on a trajectory of dynamics with
initial condition (q,p). The theorem says that this time average is defined
almost everywhere on Γ0. We can prove furthermore,

• 〈f〉(q,p) on a trajectory (q(t),p(t)) is actually independent of t
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• If we assume further that Γ0 is metrically indecomposable, then

〈f〉(q,p) =
1

vol(Γ0)

∫
Γ0

f(q,p)dqdp (30)

independent of (q,p) ∈ Γ0 where the right hand side is the phase space
average with respect to the invariant measure. Here, metric decompos-
ability means that there is no non-trivial decomposition Γ0 = Γ1 ∪ Γ2

such that Γ1 ∩ Γ2 = ∅ where Γ1 and Γ2 are of non-zero measure and are
invariant under the flow.

So now one can argue that the microcanonical measure gives the correct re-
sult because phase space averages computed with it are equal to time averages.
This makes sense except that the condition of metric indecomposability would
have to be checked, which is usually impossibly difficult or else demonstrably
false. In the case at hand, it is the latter, since ΓE is actually metrically de-
composable, since the energies of individual particles are conserved. Of course,
in an experiment, we would have to pick many different particles to build a
histogram of their energy distribution. So implicitly we are also averaging over
a larger number of different particles. Whatever the precise explanation may
be, the experimental fact is that the assumption of uniform distribution over
a configuration of given energy gives the correct prediction under very general
circumstances.
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Statistical Mechanics, Math 266: Week 2 Notes

January 12 and 14, 2010

1 The Canonical Gibbs Measure

By analysis similar to the derivation of the Maxwell distribution, one can show
for Λ0 b Λ, N0 � N , E

Λ = η, N
Λ = ρ, and N,E,Λ → ∞, the phase space

distribution for Λ0, and N0 are obtained by conditioning µE,Λ,N on the N0

particles found in the region Λ0. In the thermodynamic limit,

µCan
Λ0,N0,β ∼ e

−βHΛ0,N0 (1)

where β = 3ρ
2η as before. (See Minlos for details.) This is a special case of a

canonical ensemble measure.
Note that the expected value of the energy of the subsystem in Λ0 is then

given by∫
HΛ0,N0(q,p)µCan

Λ0,N0,β(dqdp) =
∫
HΛ0,N0,β(q,p)e−βHΛ0,N0,β(qp)dqdp

ZCan(Λ0, N0, β)
(2)

Here, ZCan(Λ0, N0, β) is the partition function

ZCan(Λ0, N0, β) =
∫
e−βHΛ0,N0 (q,p)dqdp (3)

Therefore
〈H〉Can = − d

dβ
logZCan(Λ0, N0, β) (4)

So we can compute ZCan and derive the energy from this expression. For later
use, we also define the free energy

F (Λ, N, β) = − 1
β

logZΛ,N,β (5)

To close out this section, we compute the partition function for a simple model.
Let us suppose that we have N classical particles in a box Λ ⊂ R3 as before,
with Hamiltonian given by H(q,p) =

∑N
i=1

∑
j 6=i

p2
i

2m + U(|qi − qj |). If U = 0,
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then

ZΛ,N,β = |Λ|N
(∫ ∞
−∞

e−β
p2

2m dp

)3N

(6)

=

(
|Λ|
(

2πm
β

)3/2
)N

(7)

We can also calculate the expected energy

〈H〉 = − d

dβ
logZ =

3N
2β

(8)

So that we obtain equipartition of energy of 1
2kBT per degree of freedom. In

the case that U 6= 0, then |Λ|N is replaced by∫
Λ

dq1 . . .

∫
Λ

dqN
∏

1≤i<j≤N

e−βU(|qi−qj |)

2 The Ising Model

We shall be interested in the Ising Model because it is

• a simple model.

• historically significant in the development of Statistical Mechanics.

• a model that exhibits phenomena and allows us to ask questions that are
central in Statistical Mechanics.

• a useful model for a number of physical phenomena, including some as-
pects of liquid-gas phase transitions, and adsorbtion of molecules on a
surface such as in catalytic converter.

The point is that we will be able to understand the effects of interaction between
particles in this model in considerable detail.

To define the model, we replace the continuous space Rd with the lattice Zd,
and attach variables to each lattice site

For all x ∈ Zd , σx ∈ {−1,+1} (9)

which can take only two values. One interpretation is that σx represents the ro-
tation of a magnetic dipole attached to position x. Another useful interpretation
is that of a “lattice gas” where we make the transformation

nx =
1
2

(1 + σx) (10)

nx ∈ {0, 1} (11)
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so that each nx is considered an occupation variable where a value of 0 denotes
that the site x is empty, and a value of 1 denotes that site x is occupied by a gas
molecule. One could think of a layer of gas molecules attaching to the surface
of a catalytic material. In both cases, the model is only a caricature of the real
stuff, but we will see that it is a useful caricature.

The phase space Γ is replaced by the configuration space

ΩΛ = {−1,+1}|Λ| (12)
= { all functions σ : Λ→ {−1, 1}} (13)

where σ = (σx)x∈Λ is called a configuration. The minimal description of the
physics that we need to do Statistical Mechanics is the energy, i.e., the Hamil-
tonian defined on ΩΛ which assigns to each configuration its energy. (There are
no Hamilton equations of motion here.)

HIsing
Λ = −J

∑
x,y∈Λ
|x−y|=1

σxσy + h
∑
x∈Λ

σx (14)

One could generalize to J(x, y) and h(x) or even random variables Jxy but for
now we restrict to constant J and h. J is a coupling constant and h gives the
strength of an external magnetic field. We could again show from the micro-
canonical measure which assigns equal weight to all configurations of a given
energy. With some effort we could then prove that restricted to the variables in
a subvolume, and after taking Λ→∞, we get a canonical distribution. But we
don’t have to work with the subset of configuration of a given energy. In fact,

µΛ,β(σΛ) =
e−βHΛ(σΛ)

Z(Λ, β)
(15)

defines a probability measure in which lower energy configurations have higher
probability. But counterbalancing this is the fact that there are many more
configurations of energy ∼ Λ than there are of energy = minσH(σ). This will
eventually lead us to introduce the concept of entropy and the competition
between energy and entropy is at the core of the most interesting phenomena
in Statistical Mechanics.

The Ising model is named after Ising, who studied it for his PhD thesis. It
was his adviser, Lenz, who introduced it. It took a while to understand it, and
Ising solved the one dimensional case in his dissertation. We will turn to that
solution in a minute. It turned out to be less interesting than they had hoped,
but Ising didn’t realize that the dimension plays a crucial role.

What do we mean by “solution”? Here, we mean calculating Z, logZ, or
limΛ→Zd

1
|Λ| logZ. Let’s first explain why this calculation indeed allows one to

answer the most important questions. The free energy density in the thermo-
dynamic limit is given by

f(β, h) = lim
Λ↗Zd

− 1
β|Λ|

logZ(Λ, β, h) (16)
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For a finite system Λ ⊂ Zd, the free energy is

FΛ(β, h) = − 1
β

logZ(Λ, β, h) (17)

We already noted that

〈HΛ〉 =
∂

∂β
βFΛ(β, h) (18)

Another important quantity is the magnetization (related to the particle number
in the lattice gas interpretation)

〈MΛ〉 =
∑
σ(
∑
x∈Λ σx)e−βHΛ(σ)

ZΛ(β, h)
(19)

= − 1
β

∂

∂h
logZΛ(β, h) (20)

=
∂

∂h
FΛ(β, h) (21)

For any “observable” AΛ, one could add a term λAΛ to HΛ and define the
corresponding FΛ(β, λ) so that

〈AΛ〉 =
∂

∂λ
FΛ(β, λ) (22)

Moreover, it doesn’t stop with the mean. We can also calculate variance and,
in principle, any moment we like. For example,

V (AΛ) = 〈(AΛ − 〈AΛ〉)2〉 (23)

= 〈A2
Λ〉 − 〈AΛ〉2 (24)

and 〈A2
Λ〉 =

∂2

∂λ2
FΛ(β, λ) (25)

One can show that the limits

lim
Λ↗Zd

1
|Λ|

FΛ(β, h) (26)

lim
Λ↗Zd

〈HΛ〉
|Λ|

= e(β, h) =
∂

∂β
βf(β, h) (27)

lim
Λ↗Zd

〈MΛ〉
|Λ|

= m(β, h)[=
∂

∂h
f(β, h)] (28)

all exist, and where the energy density, e, was previously denoted η. Here
interchanging the derivative and the thermodynamic limit is an interchange
of limits and requires further justification. This interchange can be shown to
be true under quite general assumptions, but this does not mean that all such
limits are interchangeable. For example, m(β, h) is, in general, not a continuous
function of h and

lim
h→0±

= ∓µ 6= 0 (29)
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while m(β, 0) = 0. This is the signature of a phase transition. In fact, this is
what Ising hoped to show. To this end, he calculated f and m for the one-
dimensional Ising model.

3 More on the Ising Model

Recall that Hamiltonian of the the Ising model is

HΛ = −J
∑
x,y∈Λ
|x−y|=1

σxσy (30)

where we restrict to the situation where J > 0. This corresponds to the fer-
romagnetic Ising model. We have previously considered the thermodynamic
limit as a limit in which a clear picture of the asymptotic behavior emerges.
But there is more. In order to give a mathematically rigorous description of
non-uniformity of the thermodynamic limit, the hallmark of phase transitions,
we introduce the mathematical formulation of ∗-systems. We first focus on the
Ising model and generalize later.

The set of configurations, Ω, is given by

Ω =
∏
x∈Z
{−1,+1} (31)

and we recall that Ω is compact with the Tychonoff topology. There is no
difficulty with considering infinite configurations σ ∈ Ω; in d = 1, σ is a bi-
infinite sequence. In general, it just means that we are given a value σx ∈
{−1,+1} for all x ∈ Zd.

It does not make sense in general to talk about probabilities of infinite
configurations– not even ratios of probabilities, since typically “µβ(σ) = 0”.
The solutions is to limit the kind of events under consideration to the cylinder
sets:

AX(σX) = {η ∈ Ω|ηx = σx for all x ∈ X} (32)

and X ⊂ Zd is a finite set. Then we can make sense of µ(AX) and the ratio

µ(AX(σ′X))
µ(AX(σX))

= e−β∆HX(σ′,σ) (33)

We can make this a bit more elegant by defining a fuction

fA(σ) =
{

1 if σ ∈ AX(σX)
0 if σ /∈ AX(σX

(34)

and considering linear combinations and uniform limits of such functions. This
leads to the algebra of functions C(Ω), since such functions are continuous on Ω
with the Tychonoff topology. Instead of defining a probability measure directly,
we define the expectation of all such functions

µ(f) =
∑
σ∈Ω

f(σ)µ(σ) (35)
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By the Riesz Representation Theorem for measures, this is actually equivalent
to defining a Borel probability measure on Ω.

References:
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4 Explicit Calculation of the Thermodynamic
Limit of the 1-Dimensional Ising Model

In the following section, we shall use the transfer matrix method which also
appears in the analysis of transition matrices of Markov chains. For the Ising
model in one dimension, we have

Λ = [−L,L] ⊆ Z (36)

H(σ) = −J
L−1∑
x=−L

σxσx+1 (37)

ZΛ(β) =
∑

σ−L,...,σL=±1

eβJ
PL−1
x=−L σxσx+1 (38)

=
∑

σ−L,...,σL=±1

Tσ−Lσ−L+1Tσ−L+1σ−L+2 · · ·TσL−1σL (39)

where we have

T =
(
T++ T+−
T−+ T−−

)
=
(
eβJ e−βJ

e−βJ eβJ

)
(40)

It follows then that in terms of the transfer matrix, T ,〈(
1
1

)
, T 2L−1

(
1
1

)〉
(41)

which can be simplified further, since T is clearly a diagonalizable matrix. The
eigenvalues can clearly be seen to be:

λ+ = 2 cosh(βJ) (42)
λ− = 2 sinh(βJ) (43)

Thus,

T = S

(
λ+ 0
0 λ−

)
S−1 (44)

ZΛ(β) =
〈(

1
1

)
, S

(
λ2L−1

+ 0
0 λ2L−1

−

)(
1
1

)〉
= 2(2 cosh(βJ))2L−1 (45)
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Then by taking the thermodynamic limit Λ → Z, we obtain the free energy
density,

f(β) = − 1
β

log(2 cosh(βJ)) (46)

in a similar way, we can compute the expectation

µΛ(A[1,n])(σ1, . . . , σn) =

∑
σ−L,...,σ0=±1
σn+1,...,σL=±1

e−βH(σ)

ZΛ(β)
(47)

where we hold σ1, . . . , σn fixed. Expanding this now using the transfer matrix
method, we obtain for the numerator∑

σ−LσL=±1

(TL)σ−Lσ1Tσ1σ2Tσ2σ3 . . . Tσn−1σn(TL−n−1)σnσL

= e−βH[1,n](σ1,...,σn)

〈(
1
1

)
, TLeσ1

〉〈
eσn , T

L−n−1

(
1
1

)〉
where we use the notation

e+ =
(

1
0

)
e− =

(
0
1

)
And so the final result is

µ[−L,L](A[1,n](σ1, . . . , σn)) =
e−βH(σ1,...,σn)λL+σ

L−n−1
+

2λ2L−1
+

(48)

=
e−βH(σ1,...,σn)

2λn−1
+

(49)
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Statistical Mechanics, Math 266: Week 3 Notes

January 19 and 21, 2010

1 Phase Transitions and Spontaneous Symme-
try Breaking

Consider the d-dimensional Ising model:

Λ ⊆ Zd e.g., Λ = [1, L]d (1)

HΛ = −J
∑
|x−y|=1
x,y∈Λ

σxσy (2)

As before, we will assume that the model is ferromagnetic, so J > 0. The
Hamiltonian HΛ exhibits a spin flip symmetry which takes σx → −σx Many
fundamental models have symmetries and many interesting phase transitions
are accompanied by symmetry breaking. More precisely, let F : Ω → Ω be
defined by

F (η) = −η (3)

Clearly HΛ ◦ F = HΛ. It follows that the equilibrium state

ωΛ(f) =

∑
η f(η)e−βHΛ(η)∑
η e
−βHΛ(η)

(4)

is also F -symmetric, meaning

ωΛ(f ◦ F ) = ωΛ(f) for all f ∈ C(ΩΛ) (5)

In particular, we have for all x ∈ Λ,

ωΛ(σx) = ωΛ(σx ◦ F ) = −ωΛ(σx) (6)
and hence ωΛ(σx) = 0 for all x ∈ Λ (7)

Taking the thermodynamic limit does not change this,

lim
Λ↗Zd

ωΛ(σx) = 0 (8)
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All of the thermodynamics is contained in the function f(β), the free energy
density

−βf(β) = lim
Λ↗Zd

1
|Λ|

logZΛ(β) (9)

ZΛ(β) =
∑
η∈ΩΛ

e−βHΛ(η) (10)

It is easy to see that boundary conditions do not affect f , so in the thermody-
namic limit, we obtain the same thermodynamics.

Now define the boundary of Λ,

∂Λ = {x ∈ Λ| there exists y ∈ Zd ∪ Λc and |x− y| = 1} (11)

Then consider bΛ ∈ C(Ω∂Λ) and suppose that ‖bΛ‖sup ≤ B|∂Λ|, so that bΛ is
uniformly bounded with B some fixed constant. For some sequence of boundary
terms, we may find that

ωb = lim
Λ
ωbΛ exists (12)

ωbΛΛ (f) =
1

ZbΛΛ (β)

∑
η∈ΩΛ

f(η)e−βH
bΛ
Λ (η) (13)

where HbΛ
Λ = HΛ + bΛ (14)

Then,
e−Bβ|∂Λ|ZΛ ≤ ZbΛΛ ≤ ZΛe

Bβ|∂Λ| (15)

So that as long as we have |∂Λ|
|Λ| → 0, we will have that f b(β) = f(β). It is

therefore reasonable to assume that ωb = limΛ ω
bΛ
Λ . If this limit exists, it will

also describe the equilibrium of the thermodynamic system. (We will make this
precise and rigorous when we study characteristics of equilibrium later.) Under
quite general conditions, one can show that for some βc > 0, ωb is independent
of b for all 0 ≤ β ≤ βc. But it often happens that there is some dependence
on the boundary condition, b, if β is large enough. Before doing anything more
general, we will show that this happens for the d-dimensional Ising model.

2 The Peierls Argument

We will consider the particular boundary term leading to what is called +
boundary conditions,

bΛ = −J
∑
x∈∂Λ

y∈Λc,|x−y|=1

σx · 1 (16)

as if the spin at y ∈ Λc are all fixed to be +1. − boundary conditions are
completely analogous. Let’s assume that the following limit exists:

ω+ = lim
Λ
ω+

Λ (17)

= lim
Λ
ωbΛΛ (18)
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Note that if we were free to interchange limits, it would be rather trivial to show
that limβ→∞m(β) = 1 since limβ→∞ ω+

Λ (σx) = 1 for all finite Λ ⊆ Zd, for all
d ≥ 1.

Theorem 2.1. Let J > 0 and d = 2. Then,

1. There exists β1 > 0 such that for all β > β1,

1
|Λ|

∑
x∈Λ

ω+
Λ (σx) = mΛ(β) > 0 (19)

and limβ→∞mΛ(β) = 1 uniformly in Λ.

2. There exists β2 > 0 such that for all β > β2 and for all x ∈ Λ,

ω+
Λ (σx) = mx(β) > 0 (20)

and limβ→∞mx(β) = 1 uniformly in x.

In fact, we obtain bounds of the form

0 ≤ 1−mx(β) ≤ 216e−8Jβ (21)

0 ≤ 1−mΛ(β) ≤ 216e−8Jβ (22)

For sufficiently large β.

Remark 2.1. Onsager obtained an exact solution of the free energy density if
the 2-dimensional Ising model frem which it follows that βc = log(1+

√
2)

2J .

To prove the theorem we will use the contour description of

Ω+
Λ = {η ∈ ΩΛ∪∂(Λc)|η �Λc= +1} (23)

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+
+
+

+
+
+
+
+

-
-

-
-

Figure 1: Configuration space as described by contours.

There is a one-to-one correspondence between configurations and configura-
tions of contours.

σ ∈ Ω+
Λ ←→ {γ1, . . . , γn} = Γ(σ) (24)
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+

+ +

-

γ

Figure 2: A dual edge is in γ if the corresponding edge has a +− pair.

Here, Γ(σ) is a configuration of closed, non-intersecting paths (where we ignore
corner intersection) in the dual lattice. We define the support of a configuration,

supp Γ =
n⋃
i=1

supp γi = {(x, y) ∈ Z2|σxσy = −1} (25)

and this allows us to define the length of a configuration of contours as

`(Γ) = | supp Γ| =
n∑
i=1

`(γi) (26)

Now, we wish to rewrite the Hamiltonian of the Ising model in terms of contours.

H+
Λ (σ) = −J{#{(x, y) ∈ Z2|σxσy = +1}}+ J{#{(x, y) ∈ Z2|σxσy = −1}}

(27)

= −J |B(Λ)|+ 2J`(Γ) (28)

where |B(Λ)| is equal to the number of edges in Λ. Here, we can think of energy
as being proportional to the length of the contours. Since the configurations
Γ(σ) that we consider consist of compatible, closed, non-intersecting paths, we
define V (γ) to be the vertices enclosed by a given contour γ.

Lemma 2.1. For all γ such that `(γ) <∞,

|V (γ)| ≤ 1
16
`(γ)2 (29)

Proof. Left to reader. See homework.

Lemma 2.2. Let Λ ⊆ Z2 and ` = 4, 6, 8, . . . Define MΛ(`) = # of distinct
simple contours of length ` within Λ (with ‘+’ boundary conditions). Then

MΛ(`) ≤ 3`−1|Λ| (30)

Proof. Left to reader. See homework.
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We know what P+
Λ(σ) is, and this allows us to make sense of P(Γ). Now,

for a given contour γ, we define P+
Λ(γ) to be the probability that γ occurs.

Specifically, it is the event that contains all configurations Γ that have γ in it.
Explicitly,

P+
Λ(γ) =

∑
σ∈Ω+

Λ
γ∈Γ(σ)

e−βH
+
Λ (σ)

∑
σ∈Ω+

Λ
e−βH

+
Λ (σ)

(31)

Lemma 2.3 (Peierls Estimate).

P+
Λ (γ) ≤ e−2Jβ`(γ) (32)

Proof. For all σ such that γ ∈ Γ(σ), for some fixed γ define σ∗ as the unique
configuration such that Γ(σ∗) = Γ(σ)\{γ}. Explicitly, σ∗ is obtained by flipping
all spins located at x ∈ V (γ). Recall that H+

Λ (σ) = −JB(Λ) + 2J`(γ), and
therefore

H+
Λ (σ)−H+

Λ (σ∗) = 2J`(Γ) (33)

and

P+
Λ(γ) =

∑
σ∈Ω+

Λ
γ∈Γ(σ)

e−βH
+
Λ (σ)

∑
σ∈Ω+

Λ
e−βH

+
Λ (σ)

(34)

≤

∑
σ∈Ω+

Λ
γ∈Γ(σ)

e−βH
+
Λ (σ)

∑
σ∈Ω+

Λ
γ∈Γ(σ)

e−βH
+
Λ (σ∗)

(35)

≤ e−2βJ`(γ) (36)

Proof of Theorem 2.1. We will estimate

0 ≤ 1− ω+
Λ (σx) = ω+

Λ (1− σx) (37)

Observe that 1 − σx takes the values 0 and 2. If 1 − σx = 2, then there exists
a γ ∈ Γ(η) such that x ∈ V (γ). Denote by γ∗(σ) the first contour you meet
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starting at x. Then

1− ω+
Λ (σx) ≤

2
∑
γ,x∈V (Γ)

∑
σ,γ∗(σ)=γ e

−βH+
Λ (σ)∑

σ e
−βH+

Λ (σ)
(38)

≤ 2
∑

γ,x∈V (γ)

∑
σ,γ∈Γ(σ) e

−βH+
Λ (σ)∑

σ e
−βH+

Λ (σ)
(39)

= 2
∑

γ,x∈V (γ)

P+
Λ(γ) (40)

≤ 2
∑

γ,x∈V (γ)

e−2βJ`(γ) (41)

where (39) comes from the fact that 1−ω+
Λ vanishes if it is enclosed by an even

number of contours, and (41) follows from Lemma 2.3. From here, Parts 1 and
2 of Theorem 2.1 proceed only slightly differently, and so we only present the
proof of Part 2. We rewrite the inequality (41) in a more suggestive way.

1− ω+
Λ (σx) ≤ 2

∑
`=4,6,8,...

∑
γ,x∈V (γ)
`(γ)=`

e−2βJ` (42)

≤ 2
∑

`=4,6,8,...

`23`e−2βJ` (43)

≤ 16(3e−2βJ)2 where 3e−2βJ ≤ 1
2

(44)

Here, we have used the observation that a contour of length ` must be contained
within a square box of size ` centered at x, along with lemma 2.2 and the fact
that

∞∑
k=2

k2rk =
2r2(2− 3

2r + 1
2r

2)
(1− r)3

(45)

The lower bound on β now follows.

Remark 2.2. Clearly ω+
Λ (σx)→ 1 as β →∞, and with the same estimates for

the − boundary condition, we have that ω−Λ (σx)→ −1 as β →∞. Hence, if

ω±Λ → ω± as Λ↗ Z2 (46)

clearly, ω+ 6= ω−. A similar argument works for d ≥ 2, and these same argu-
ments (using Peierls Estimate) can be generalized to other models with somewhat
similar structure.

3 The Griffiths Inequalities

The goal for us is to show the existence of the limiting Gibbs states, but the
Griffiths inequalities have many other applications. Again, we are considering
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Ising systems on Zd. The algebra of observables for a finite volume Λ ⊂ Zd is
C(ΩΛ). Consider the special observables

σA =
∏
x∈A

σx for all A ⊆ Λ (47)

σ∅ = 1 (48)

We make the observation that the set {σA|A ⊆ Λ} is a basis for C(ΩΛ) because
δηx=ε = 1

2 (1+εσx) forms a basis upon taking products. The ferromagnetic Ising
model can be generalized to a general class of ferromagnetic models with local
Hamiltonians of the form

HΛ = −
∑
A

JAσA , JA ≥ 0 (49)

Note that
∂

∂JB
ωΛ(σA) = ωΛ(σAσB)− ωΛ(σA)ωΛ(σB) (50)

where we have set β = 1 in this equation.

Theorem 3.1 (Griffiths Inequalities). Let ωΛ be the Gibbs state at β with
ferromagnetic Hamiltonian HΛ. Then

1. ωΛ(σA) ≥ 0 for all A ⊂ Λ.

2. ωΛ(σAσB)− ωΛ(σA)ωΛ(σb) ≥ 0 for all A,B ⊂ Λ.

Proof. Proof of 1.

ωΛ(σA) =
1
ZΛ

∑
η∈ΩΛ

σA(η)e−βHΛ(η) (51)

=
1
ZΛ

∞∑
n=0

βn

n!

∑
η∈ΩΛ

σA(η)(
∑
B⊆Λ

JBσB)n (52)

Clearly σAσB = σC with C = A4B, and where A4B = (A ∪ B) \ (A ∩ B) is
the symmetric difference of A and B. Now, we group all terms with the same
C.

ωΛ(σA) =
∑
C

a(C)
∑
η∈ΩΛ

σC(η) (53)

If C 6= ∅,
∑
η∈ΩΛ

σC(η) = 0 since if x ∈ C then the sum over η with ηx = ±1
cancel each other out. In the case that C = ∅,

∑
η∈ΩΛ

σC = 2|Λ|. So ωΛ(σA) =
a(∅)2|Λ| ≥ 0.

Proof of 2.
Note that for 1, we did not really use the structure of Zd, and the argument

works on any finite set Λ. Now we will consider Λ̃ = Λ t Λ, two disjoint copies
of Λ. Equivalently, we can consider a system with two copies of the algebra

ÃΛ = C(ΩΛ)⊗ C(ΩΛ) (54)
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where each copy of C(ΩΛ) is generated by the functions σx and τx respectively.
The configuration space is Ω̃Λ = ΩΛ × ΩΛ = {(η, ξ)|ηx, ξx ∈ {−1,+1}}. Simi-
larly, we have σA and τA. Define

H̃Λ(η, ξ) = HΛ(η) +HΛ(ξ) (55)

Z̃Λ =
∑
η∈ΩΛ

∑
ξ∈ΩΛ

e−βHΛ(η)e−βHΛ(ξ) (56)

= (ZΛ)2 (57)

If f(η, ξ) = f1(η)f2(ξ), we have

ω̃Λ(f) = ωΛ(f1)ωΛ(f2) (58)

Now consider “rotated” variables

sx =
1√
2

(σx + τx) (59)

tx =
1√
2

(σx − τx) (60)

which take values −
√

2, 0,
√

2 on double configurations. Note that

σx =
1√
2

(sx + tx) (61)

τx =
1√
2

(sx − tx) (62)

and for A ⊆ Λ,

∆±A = σA ± τA =
(

1√
2

)|A|
{(s+ t)A ± (s− t)A} (63)

where σA =
∏
x∈A σx, and τA is completely analogous.

Lemma 3.1.
∆±A =

∑
B⊆A

KBsA\BtB (64)

with some KB ≥ 0

Proof. Just calculate

(s+ t)A =
∏
x∈A

(sx + tx) (65)

=
∑
B⊆A

sA\BtB (66)

and
(s− t)A =

∑
B⊆A

(−1)|B|sA\BtB (67)

The lemma follows.

8



Now, we can proceed with the proof of 2.

ωΛ(σAσB)−ωΛ(σA)ωΛ(σB) (68)
= ω̃Λ(σAσB)− ω̃Λ(σAτB) (69)
= ω̃Λ(σA(σB − τB)) (70)

=
(

1√
2

)|A|+|B|
ω̃Λ(s+ t)A{(s+ t)B + (s− t)B} (71)

= ω̃Λ(
∑
C⊆B

KC(s+ t)AsB\CtC) (72)

= ω̃Λ(
∑
D

KDsA∪B\DtD) (73)

The variables sx and tx have the following properties:

sxtx = 0 and either sx or tx = 0 for a given configuration σx, τx (74)

tx and sx are odd functions of σx and τx, so all their odd powers are odd and
all their even porwers are of course greater than or equal to 0. So∑

σx,τx

snx =
{

= 0 if n odd.
> 0 if n even. (75)

and the same result holds for
∑
tnx . The Hamiltonian can be rewritten,

H̃Λ =
∑
A⊂Λ

KAσA +KAτA (76)

=
∑
A⊂Λ

K̃A

∑
C⊂A

(1 + (−1)|C|)sA\CtC (77)

and is again a Hamiltonian with coefficients greater than or equal to 0 in the
monomial basis. Although the polynomials in s and t are not independent
variables, the same argument as in 1 applies.

H̃Λ =
∑

C,D⊂Λ

K̃C,DsCtD (78)

ω̃Λ =
1

Z̃Λ

∞∑
n=0

βn

n!

∑
{σx,τx}

sAtB(
∑

C,D⊂A
K̃C,DsCtD)n (79)

=
1

Z̃Λ

∞∑
n=0

βn

n!

∑
{σx,τx}

∑
C,D

˜̃
KABCDsAsCtBtD (80)

Indeed,

H̃Λ =
∑
A⊂Λ

JAσA + JAτA (81)

=
1√
2

∑
A⊂Λ

∑
C⊂A

JA(1 + (−1)|C|)sA\CtC (82)
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Therefore we can apply 1 to H̃Λ and finish the proof of 2.

Recall the observation

∂

∂JB
ωΛ(σA) = ωΛ(σAσB)− ωΛ(σA)ωΛ(σB) (83)

therefore the second Griffiths inequality implies that ∂
∂JB

ωΛ(σA) ≥ 0 for ferro-
magnetic Ising models.

4 The Thermodynamic Limit of Ising Equilib-
rium States

The set of states on C(ΩZd) is weak-* compact. From this we deduce that at
each fixed βJ , the set of finite volume states {ωΛ}Λ⊆Zd has at least one limit
point (extend them to states on all of Zd in more or less any way you like). And
more generally the same is true for sequences with other boundary conditions
bΛ. The Peierls argument shows that if ω+ and ω− are such limit points of {ω+

Λ }
and {ω−Λ } respectively, then for all β large enough, they will be distinct, since

ω+(σ0) = −ω−(σ0) 6= 0 (84)

Later, in a more general context, we will show that for small β the limit points
are unique independent of bΛ. It is nevertheless still an interesting question
whether the sequence ω+

Λ itself converges.

Theorem 4.1. 1. Let {ω0
Λ} be the sequence of β Gibbs states in finite volume

Λ ⊆ Zd of the Ising model with free boundary conditions. Then

ω0
Λ(σA)↗ ω0(σA) for all finite subsets A ⊂ Zd (85)

2. If {ω+
Λ } is a sequence corresponding to + boundary conditions, then

ω+
Λ (σA)↘ ω+(σA) (86)

i.e., we have weak* convergence in both cases and they are monotone in-
creasing and decreasing, respectively, on the basis functions σA.

Proof. Proof of 1.
ω0

Λ can be regarded as the Gibbs state for the ferromagnetic Ising model

HΛ = −
∑
X

JΛ
XσX (87)

with

JΛ
X =

{
J if X = (x, y), x, y ∈ Λ, |x− y| = 1
0 otherwise (88)
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with J > 0. Hence, JΛ
X is monotonic increasing by the second Griffiths inequal-

ity.
Proof of 2.
Define

JΛ
X =

 Jx if X = x, y, x, y ∈ Λ, |x− y| = 1
+∞ if X = {x}, x ∈ Λc

0 otherwise
(89)

It is not hard to see that the infinite coupling constant does not pose a problem.

Note that the Griffiths inequalities also show that a variety of other Ising
models with higher dimensionality and anisotropies also have a non-vanishing
magnetism at sufficiently low temperature by comparing with the two-dimensional
translation invariant model.
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Statistical Mechanics, Math 266: Week 4 Notes

January 26 and 28, 2010

1 Quantum Statistical Mechanics

The canonical formalism of Quantum Statistical Mechanics has the same struc-
ture as in the classical case, but the mathematical objects playing the role of the
probability measure and the Hamiltonian are of a different kind. We will first
set up the mathematical structure, then make it more explicit in the context of
Quantum Spin Systems. Later, we will also consider systems of quantum parti-
cles in the continuum. A finite quantum system, analogous to a finite number
of classical particles in a finite volume Λ ⊆ R3, or the Ising model with a finite
number of spins, is described by

• a separable Hilbert space of states H

• a densely defined self-adjoint operator, H on H, which plays the role of
the Hamiltonian

• observables described by bounded operators on H, usually a norm-closed
*-subalgebra of B(H)

Example 1.1. N non-interacting, spinless, structureless, distinguishable point
particles in a box Λ ⊆ Rd:

H = L2(ΛN , dx) (1)

H0 = − ~
2m

N∑
i=1

∆i (2)

D(H) = H2 (3)

where ∆i is the d-dimensional Laplacian with suitable boundary conditions, and
H2 is the Sobolev Space of twice weakly differentiable functions in L2.

Example 1.2. N spinless, structureless point particles interacting via a pair
potential V in Λ ⊆ Rd.

H = H0 +
∑

1≤i<j≤N

V (xi − xj) (4)

1



Example 1.3. N non-interacting spin 1
2 Fermions.

H = [L2(Λ)⊗ C2]∧N (5)
H = H0 ⊗ 1 (6)

where H0 is the Hamiltonian defined in Example 1.1.

Example 1.4. Two-state quantum spins or qubits on labelled sites x ∈ Λ ⊆ Zd

H = (C2)⊗|Λ| (7)

One typical model is the Heisenberg model with the Hamiltonian

H = −J
∑
x,y∈Λ
|x−y|=1

~Sx · ~Sy (8)

2 The Canonical Formalism for Quantum Sys-
tems

We will assume (and not encounter exceptions to this assumption) that the finite
system Hamiltonian HΛ is such that e−βHΛ is trace class for all β > 0. The
index Λ indicates that typically we will consider again sequences of systems
indexed by finite volume Λ which will be taken to Rd, Zd, or whatever. For
self-adjoint H, the condition that e−βH is equivalent to the statement that its
spectrum consists entirely of eigenvalues of finite multiplicity, which we will
often enumerate as follows:

λ0 ≤ λ1 ≤ λ2 ≤ . . . (9)

repeated according to their multiplicity, and the assumption that∑
n≥0

e−βλn < +∞ (10)

If dimHΛ < +∞, this is of course automatically satisfied. For systems of
particles in finite volume, there are general theorems about operators of the
form

H =
1

2m

N∑
i=1

∆i +
∑

1≤i<j≤N

V (xi − xj) (11)

that guarantee this property for most systems of interest. Since e−βH is assumed
to be trace class, we can define

ρβ =
1
Z
e−βH (12)

where Z = Tr e−βH =
∑
n≥0 e

−βλn . ρβ is then a positive definite operator of
trace class and with trace 1:

Tr ρβ = 1 (13)
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This is what is called a density matrix.
Density matrices in quantum mechanics play the role of probability densities

for classical systems. We illustrate their interpretation:
Denote by P[a,b], the⊥ projection onto the eigenvectors ofH with eigenvalues

λi ∈ [a, b]. Then,

Tr(ρβP[a,b]) = P( system has energy, E ∈ [a, b]) (14)

i.e., upon observation, the energy value is measured to be in the interval [a, b].
More generally, observables in quantum mechanics are represented by bounded,
and sometimes unbounded operators. We will usually assume that our observ-
ables come from B(H). This is the object that generalizes a random variable
in classical probability and functions on phase space for a system of classical
particles, or functions f ∈ C(Ω) for a classical spin system such as the Ising
model. The mean of the observable A in the canonical Gibbs state at inverse
temperature β is given by

ωβ(A) = Tr(ρβA) (15)

to be compared with

〈f〉β =
∫
fdµβ (16)

in the classical case. Similarly, the variance of A is given by

ωβ([A− ωβ(A)]2) = ωβ(A2)− ωβ(A)2 (17)

and the correlation (covariance) between A and B is given by

ωβ(AB)− ωβ(A)ωβ(B) (18)

In general, A ∈ A ⊆ B(H), a norm-closed, unital *-subalgebra of B(H), a.k.a.,
a C∗-algebra. A map ω : A → C is called a state if the system (a state on A) if
it is linear, positive, and normalized:

1. ω(A+ cB) = ω(A) + cω(B) for all c ∈ C, A,B ∈ A.

2. ω(A∗A) ≥ 0 for all A ∈ A.

3. ω(1) = 1.

Linear functionals with the positivity and normalized properties above have
further nice properties:

1. ω is continuous. i.e., ω is a bounded linear functional with

‖ω‖ = sup
‖A‖=1
A∈A

|ω(A)| = 1 (19)

2. The Cauchy-Schwarz inequality holds:

|ω(A∗B)| ≤
√
ω(A∗A)ω(B∗B) (20)

3. |ω(A∗BA) ≤ ω(A∗A)‖B‖.
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3 The Free Energy Functional and the Varia-
tional Principle

Entropy plays an essential role in Thermodynamics and Statistical Mechanics
as well as in Information Theory and in Large Deviation Theory in probability.
It was Boltzmann who realized the precise connection between thermodynamic
entropy and a mathematical formula involving physical states. Von Neumann
introduced quantum entropy,

S(ρ) = −Tr ρ log ρ (21)

for a density matrix ρ. One may observe that

0 ≤ S(ρ) ≤ +∞ (22)

There is much to say about this function, and one could devote an entire course
to its properties and applications. Here, we will use it to give another interpre-
tation of the canonical formalism. Let’s consider a finite quantum system with
Hamiltonian H and define

Fβ(ρ) = E(ρ)− 1
β
S(ρ) (23)

where E(ρ) = Tr ρH. Fβ is the free energy functional. At this point, it is not
clear what it has to do with the previously defined quantity 1

β logZβ , but here
it is:

Fβ(ρβ) = inf
ρ
Fβ(ρ) = − 1

β
log Tr e−βH (24)

with

ρβ =
1
Z
e−βH

Zβ = Tr e−βH

Minimizing the free energy functional is equivalent to maximizing the entropy
given the expectation of the energy. For a proof of (24) we need Klein’s inequal-
ity.

Lemma 3.1 (Klein’s Inequality). Let A and B be two non-negative definite
matrices satisfying 0 ≤ A,B ≤ 1 and such that kerB ⊂ kerA. Then

TrA(logA− logB) ≥ Tr(A−B) +
1
2

Tr(A−B)2 (25)

Proof. The function f(x) = −x log x, x > 0, continuously extended such that
f(0) = 0, is easily seen to be concave. In fact it is C2 ((0,∞)) with

f ′′(x) = − 1
x

(26)
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By the Taylor Remainder Theorem and the expression for f ′′, it follows that for
all x and y such that 0 ≤ x < y ≤ 1, there exists a ξ such that x ≤ ξ ≤ y and

f(y)− f(x)− (y − x)f ′(y) = −1
2

(x− y)2f ′′(ξ) ≥ 1
2

(x− y)2 (27)

As A and B are non-negative definite, they are diagonalizable. Denote their
eigenvalues by ai and bi, and the corresponding orthonormal eigenvectors by ϕi
and ψi, respectively. From the assumptions it follows that 0 ≤ ai, bi ≤ 1. Using
the spectral decompositions of A and B, i.e.,

A =
∑
i

ai|ϕi〉〈ϕi| (28)

B =
∑
i

bi|ψi〉〈ψi| (29)∑
i

|ϕi〉〈ϕi| =
∑
i

|ψi〉〈ψi| = 1 (30)

we see that

TrA(logA− logB)− Tr(A−B)− 1
2

Tr(A−B)2

=
∑
ij

Tr |ψi〉〈ψi||ϕj〉〈ϕj |
[
−f(A) + f(B) + (A−B)f ′(B)− 1

2
(A2 +B2 − 2AB)

]

=
∑
ij

Tr |ψi〉〈ψi||ϕj〉〈ϕj |
[
−f(aj) + f(bi) + (aj − bi)f ′(bi)−

1
2

(aj − bi)2

]
≥ 0

where the last inequality follows from applying (27) term by term.

Now to prove the variational principle, we can apply Lemma 3.1 with A = ρ,
where ρ is an arbitrary density matrix, and B = ρβ . Note than kerB = {0}.
This gives

β(Fβ − F (β)) = Tr ρ log ρ− Tr ρ log
(
e−βH

Z(β)

)
(31)

≥ 1
2

Tr(ρ− ρβ)2 ≥ 0 (32)

If the RHS vanishes, we have ρ = ρβ . Hence the minimum of Fβ is uniquely
attained for ρ = ρβ .

4 Quantum Spin Systems

Quantum spin systems are the simplest examples of non-trivial interacting quan-
tum systems with many degrees of freedom. They are defined on a finite set
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Λ; typically Λ ⊆ Zd. Usually we have the same kind of spin in each x ∈ Λ,
but it is sometimes useful to consider a more general situation where for all
x ∈ Λ we have a finite-dimensional Hilbert space Hx of dimension nx; and
where Hx ≡ Cnx and HΛ =

⊗
x∈ΛHx. In statistical mechanics we are typically

interested in sequences of finite systems indexed by a sequence of sets Λ. For
finite Λ, the Hamiltonian is a Hermitian matrix HΛ and the observables are rep-
resented by matrices, regarded as linear transformations of HΛ: AΛ = B(HΛ).
If Λ1 ⊂ Λ2, AΛ1 ⊂ AΛ2 by the embedding provided by

AΛ1 3 A 7→ A⊗ 1 ∈ AΛ1 ⊗AΛ2\Λ1 ≡ AΛ2 (33)

Often we consider sequences of finite Λ ⊆ Zd, or another countable set Γ. A
natural way to describe the Hamiltonian HΛ in such a case is by considering a
“potential” or “interaction” of the following form: Φ : { finite subsets of Γ} →⋃

Λ⊂ΓAΛ. where the union is defined as an inductive limit, and for all X,
Φ(X) ∈ AX , Φ(X) = Φ(X)∗, and HΛ =

∑
X⊂Λ Φ(X). Boundary terms could

also be added separately. e.g., in the Heisenberg model,

nx = 2 for all x ∈ Zd = Γ (34)
Φ(X) = 0 unless X = {x, y}, |x− y| = 1 (35)

Φ({x, y}) = −J ~σx · ~σy (36)

In this case, observe AX ≡ AX+a for all a ∈ Zd and Φ(X+a) = τa(Φ(X)) where
τa is the translation isomorphism mapping AX to AX+a. τa is an automorphism
of ∗-algebras:

τa(AλB) = τa(A) + λτa(B) (37)
τa(AB) = τa(A)τa(B) (38)
τa(A∗) = τa(A)∗ (39)
τa(1) = 1 (40)

We will encounter other important examples of automorphisms shortly. (They
describe the dynamics as well as the symmetries of the system.) As in the
classical case, the dynamics of the system, i.e., its time evolution, is determined
by the Hamiltonian H:

i
d

dt
ψt = Hψt (Schrödinger)

d

dt
At = i[H,A] for A ∈ A ⊆ B(H) (Heisenberg)

where for convenience, we have set ~ = 1.
The two equations are equivalent, in the sense that in moth cases, the so-

lutions can be expressed in the one-parameter group of unitaries Ut ∈ B(H)
generated by H as follows:

Ut = e−itH (41)

and then,
ψt = Utψ0 , At = U∗t A0Ut (42)
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Note that the map A 7→ α
(Λ)
t (A) = eitHΛAe−itHΛ where A ∈ B(HΛ) is an

automorphism of AΛ = B(H∗). For models such as the Heisenberg model it is
reasonable to ask whether it can be extended to an automorphism of

⋃
ΛAΛ,

which we will call Aloc: the algebra of local observables. The answer is no, but
almost yes. What we need to do is to complete Aloc, in the sense of metric
spaces, to obtain a C∗ algebra A, which we now call the algebra of quasi-local
observables. It contains all norm-limits of Cauchy sequences of local observables.
It can be shown that there exist a one-parameter group of automorphisms αt
on A such that for all A ∈ Aloc

lim
Λ↗Zd

α
(Λ)
t (A) = αt (43)

in the norm topology. One says that αΛ
t → αt strongly. Note that there is no

good way to define a Hamiltonian in the limit

lim
Λ↗Zd

HΛ =? (44)

On the other hand, it is straightforward to define

δ(A) = lim
Λ↗Zd

[HΛ, A] (45)

for all A ∈ Aloc. This does not automatically imply that one can define eitδ(A)
since δ is an unbounded operator. This is one reason why we need to define A
on the ∗ completion (or closure) of Aloc.

5 Symmetries and Symmetry Breaking (in the
Heisenberg Model)

In finite volume, we have a unique Gibbs state ∼ e−βHΛ ; boundary conditions
can be used to modify the ground states, i.e., limβ→∞ ρβ . Just like in the Ising
model, we will ask whether we can also obtain different limits as Λ↗ Zd. It is
instructive to look at ground states first and to look at the role of symmetries.
Since boundary conditions (bΛ) affect symmetries, they are more obvious in
infinite system objects such as Φ or δ, rather than in the local Hamiltonians
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themselves. Let’s focus on the spin 1
2 Heisenberg model:

~σ · ~σ =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

+


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

+


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (46)

=


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

 (47)

= 2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

−


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (48)

= 2t− 1 (49)

where t(u ⊗ v) = v ⊗ u. Clearly [U ⊗ U, t] = 0, and this implies that ~σ · ~σ is
SU(2) invariant. More specifically, for all U ∈ SU(2),

π
(Λ)
U =

⊗
x∈Λ

U (50)

so that π(Λ)
U is a unitary representation of SU(2) on HΛ and it commutes with

the Hamiltonian HΛ:
[HΛ, π

(Λ)
U ] = 0 (51)

for all U ∈ SU(2). The corresponding adjoint representation on AΛ = B(HΛ)
is given by

ρ
(Λ)
U (A) = π

(Λ)
U∗ Aπ

(Λ)
U (52)

for all A ∈ AΛ. ρ(Λ)
U is a representation of SU(2) by ∗-automorphisms of AΛ,

and it commutes with the dynamics:

ρ
(Λ)
U ◦ α(Λ)

t = α
(Λ)
t ◦ ρ(Λ)

U (53)

for all U ∈ SU(2) and for all t ∈ R.
As a consequence of the SU(2) invariance of the dynamics, we also get the

invariance of the finite volume Gibbs state:

ω
(Λ)
β (A) =

Tr e−βHΛA

Tr e−βHΛ
(54)

satisfies
ω

(Λ)
β ◦ ρ(Λ)

U = ω
(Λ)
β (55)

A major question in the statistical mechanics of the Heisenberg model is again
the question of spontaneous symmetry breaking. As was the case in the Ising
model, the symmetry will be broken only in sufficiently high dimension and at
sufficiently low temperatures (large β). This topic will occupy the next several
lectures.
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Statistical Mechanics, Math 266: Week 5 Notes

February 2, 2010

1 Quantum Spin Systems: Existence of the Dy-
namics and Lieb-Robinson Bounds

Consider a relatively general class of systems (to keep notations simple, not the
most general one can handle with the same arguments).

Λ ⊂ Zd, for all x ∈ Zd,Hx ≡ Cn (1)

HΛ =
⊗
x∈Λ

Hx,AΛ = B(HΛ), (2)

AΛ1 ⊂ AΛ2 , if Λ1 ⊆ Λ2 (3)

Aloc =
⋃
Λ

AΛ,A = Aloc
‖·‖

(4)

HΛ =
∑
X⊂Λ

Φ(X) (5)

For all X,Φ(X) = Φ(X)∗ ∈ AX (6)

α
(Λ)
t (A) = eitHΛAe−itHΛ (7)

Claim 1.1. Under suitable conditions on Φ, there exist αt on A, strongly con-
tinuous one-parameter group of automorphisms on A, such that for all A ∈ Aloc

lim
Λ↗Zd

α
(Λ)
t (A) = αt(A) (8)

This limit will be a problem if there are more and more terms in

Sx(Λ) = {X ⊆ Λ|x ∈ X,Φ(X) 6= 0} (9)

and these elements Φ(X) are not decreasing in size fast enough as X increases.
The limit (8) typically should not be expected to be trivial.

suppα(Λ)
t (A) = Λ (10)

Very often, Φ is of finite range. This means that Φ(X) = 0 if diamX >
R for some given range R, and where diamX = max{d(x, y)|x, y ∈ X} and
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d(x, y) = |x− y| =
∑d
i=1 |xi− yi| in Zd. (Other definitions are possible). But in

some cases pair interactions (or even higher-order interactions) that act at long
distance need to be considered. e.g., magnetic dipole-dipole interaction decays
as 1

r6 .
Define F (r) = 1

(1+r)d+1 for r ≥ 0 and define a norm on the interactions Φ by

‖Φ‖ = max
x,y∈Zd

∑
X⊆Zd

x,y∈X

‖Φ(X)‖
F (|x− y|)

(11)

In particular, ∑
X

x,y∈X

‖Φ(X)‖ (12)

has to decay at least as 1
(|x−y|+1)d+1 .

Remark 1.1. ∑
x∈Zd

F (|x|) =
∑
x

1
(|x|+ 1)d+1

≤ C (13)

∑
z∈Zd

F (|x− z|)F (|z − y|) ≤ C̃µF (|x− y|) ≤ 2d+1CF (|x− y|) (14)

where C̃µ = supx,y
∑
z∈Zd

F (|x−z|)F (|z−y|)
F (|x−y|)

The proof of the remark is left as a homework assignment.
For all µ > 0 we define

Fµ(r) = e−µrF (r) (15)

and observe that the inequalities (13) and (14) are also satisfied when we replace
F with Fµ. But ‖Φ‖µ defined with Fµ instead of F is of course a stronger norm
with increasing µ.

Theorem 1.1 (Lieb-Robinson Bound). Suppose µ > 0 such that ‖Φ‖µ < +∞.
Then there exists numbers C and v such that for all Λ, for all X,Y ⊂ Λ, and
for all A ∈ AX , B ∈ AY , and for all t ∈ R, we have

‖[α(Λ)
t (A), B]‖ ≤ 2‖A‖‖B‖

C̃µ

∑
x∈X
y∈Y

Fµ(d(x, y))ev|t| (16)

where ∑
x∈X
y∈Y

F (d(x, y)) ≤ min(|X|, |Y |)Ce−µd(X−Y ) (17)

and C = ‖Φ‖µ, v = 2C̃µ‖Φ‖µ
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Proof. Let f(t) be the quantity [α(Λ)
t , B]. Then

f ′(t) = [i[HΛ, α
(Λ)
t (A)], B] (18)

Define SΛ(X) = {Z ⊆ Λ|Z ∪X 6= ∅,Φ(Z) 6= 0} so that

f ′(t) = i[
∑

Z∈SΛ(X)

[α(Λ)
t (Φ(X)), α(Λ)

t (A)], B] (19)

= i
∑

Z∈SΛ(X)

−[[α(Λ)
t (A), B], α(Λ)

t (Φ(X))]− [[B,α(Λ)
t (Φ(Z))], α(Λ)

t (A)]

(20)

= i[

eH(t)︷ ︸︸ ︷∑
Z∈SΛ(X)

α
(Λ)
t (Φ(Z)), f(t)]− i

∑
Z∈SΛ(X)

[α(Λ)
t (A), [α(Λ)

t (Φ(Z)), B]] (21)

where (21) uses the Jacobi identity.

Lemma 1.1. For all t ∈ R, let H̃(t) = H̃(t)∗ ∈ B(HΛ) and w(t) ∈ B(HΛ).
Then the unique solution f(t) with initial condition f(0) of

f ′(t) = i[H̃(t), f(t)] + w(t) (22)

is given by

f(t) = α̃t(f(0) +
∫ t

0

α−s(w(s))ds) (23)

where α̃t is the map solving

g′(t) = i[H̃(t), g(t)] (24)

i.e., g(t) = α̃t(g(0)).

Using the lemma,

‖f(t)‖ = ‖f(0)‖+ ‖
∫ t

0

α̃−s(w(s))ds‖ ≤ ‖f(0)‖+
∫ t

0

ds‖w(s)‖ (25)

≤ ‖[A,B]‖+ 2‖A‖
∑

Z∈SΛ(X)

∫ t

0

ds‖[α(Λ)
s (Φ(Z)), B]‖ (26)

Now define

CB(X, t) = sup
A∈AX
A6=0

‖[α(Λ)
t (A), B]‖
‖A‖

(27)

It follows now that
‖f(t)‖ ≤ ‖A‖CB(X, t) (28)
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and

CB(X, t) ≤ CB(X, 0) + 2
∑

Z∈SΛ(X)

‖Φ(Z)‖
∫ t

0

dsCB(Z, s) (29)

This inequality can be iterated. Note that

CB(Z ′, 0) ≤ 2‖B‖δZ(Z ′) for B ∈ AZ (30)

where

δZ(Z ′) =
{

1 if Z ∪ Z ′ 6= ∅
0 if Z ∪ Z ′ = ∅ (31)

CB(X, t) ≤ CB(X, 0) + 2
∑

Z1∈SΛ(X)

‖Φ(Z1)‖
∫ t

0

ds1

CB(Z1, 0) + 2
∑

Z2∈SΛ(Z1)

‖Φ(Z2)‖
∫ s1

0

ds2CB(Z2, s2)


(32)

≤ 2‖B‖δY (X) + 2
∑

Z1∈SΛ(X)

2t‖B‖δY (Z1)‖Φ(Z1)‖+ (33)

+ 2‖B‖
∑

Z1∈SΛ(X)

‖Φ(Z1)‖
∑

Z2∈SΛ(Z1)

‖Φ(Z2)‖δY (Z2)
∫ t

0

ds

∫ s

0

ds2

(34)

≤ 2‖B‖
∞∑
n=0

(2t)n

n!
an (35)

where an =
∑
Z1∈SΛ(X) · · ·

∑
Zn∈SΛ(Zn−1) δY (Zn)

∏n
i=1 ‖Φ(Zi)‖. Now, we esti-

mate these coefficients:

a1 =
∑

Z∈SΛ(X)

δY (Z)‖Φ(Z)‖ (36)

≤
∑
y∈Y

∑
Z∈SΛ(X)
y∈Z

‖Φ(Z)‖ (37)

≤
∑
y∈Y

∑
x∈X

Fµ(d(x, y))
∑
Z

x,y∈Z

‖Φ(Z)‖
Fµ(d(x, y))

(38)

≤ ‖Φ‖µ
∑
y∈Y

∑
x∈X

Fµ(d(x, y)) (39)

(40)
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a2 =
∑

Z1∈SΛ(X)

∑
Z2∈SΛ(Z1)

δY (Z2)‖Φ(Z1)‖‖Φ(Z2)‖ (41)

≤
∑
y∈Y

∑
Z1∈SΛ(X)

‖Φ(Z1)‖
∑
z1∈Z1

∑
Z2

z1,y∈Z2

‖Φ(Z2)‖ (42)

≤ ‖Φ‖µ
∑
y∈Y

∑
z∈Λ

Fµ(d(z, y))
∑
x∈X

Fµ(d(x, z))
∑
Z1

x,z∈Z1

‖Φ(Z1)‖
Fµ(d(x, z))

(43)

≤ C̃µ‖Φ‖2µ
∑
y∈Y
x∈X

Fµ(d(x, y)) (44)

Proceeding in this way, one finds that for all n ≥ 1,

an ≤ ‖Φ‖nµCn−1
µ

∑
x∈X
y∈Y

Fµ(d(x, y)) (45)

and this implies that v = 2C‖Φ‖µ.
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Statistical Mechanics, Math 266: Week 6 Notes

February 9 and 11, 2010

1 The Existence of Infinite System Dynamics

Corollary 1.1. For X ⊂ Λ, define for δ > 0

X(t, δ) = {x ∈ Λ|d(x,X) ≤ v|t|+ δ}

Then there exists C such that for all A ∈ AX and for all t ∈ R, there exists
At(δ) ∈ AX(t,δ) such that

‖α(Λ)
t (A)−At(δ)‖ ≤ C‖A‖e−µδ

Proof. The proof follows from the Lieb-Robinson bound and the following lemma:

Lemma 1.1. Let X ⊂ Λ and define Xc = Λ \X. If A ∈ AΛ satisfies

‖[A,B]‖ ≤ ε‖B‖

for all B ∈ AXc . Then there exists Aε ∈ AX such that ‖A−Aε‖ ≤ ε.

Theorem 1.1 (Existence of Infinite System Dynamics). Under the conditions
described above, which imply Lieb-Robinson bounds for α

(Λ)
t uniformly in Λ,

there exists a strongly continuous one parameter group of automorphisms, αt
on A = Aloc, such that for all A ∈ Aloc,

lim
Λ↗Zd

‖α(Λ)
t (A)− αt(A)‖ = 0

The convergence is uniform on compact sets in t.

Proof. 1. The first step in the proof is to establish that for any increasing,
absorbing sequence of finite sets, Λn ↗ Zd, for fixed A and t, (α(Λn)

t )n≥1

is a Cauchy sequence in A. Let Λn ⊃ Λm, then

α
(Λn)
t (A)− α(Λm)

t (A) = α(Λn)
s α

(Λm)
t−s (A)

∣∣∣t
0

=
∫ t

0

ds
d

ds
(α(Λn)
s α

(Λm)
t−s (A)

=
∫ t

0

ds iα(Λn)
s ([HΛn , α

(Λm)
t−s (A)])− iα(Λn)

s (α(Λm)
t−s ([HΛm , A]))

1



Hence

‖α(Λn)
t (A)− α(Λm)

t (A)‖ ≤
∫ t

0

ds‖[HΛn −HΛm , α
(Λm)
t−s (A)]‖

≤
∫ t

0

ds
∑
Y⊂Λn

Y ∪(Λn\Λm) 6=∅

‖[Φ(Y ), α(Λm)
s (A)]‖

≤ C‖A‖eµv|s|
∑
Y⊂Λn

∑
x∈X
z∈Y

‖Φ(Y )‖Fµ(d(x, z))

≤ C‖A‖eµv|s|
∑

y∈Λn\Λm

∑
Y
y∈Y

∑
x∈X

∑
z∈Y
‖Φ(Y )‖Fµ(d(x, z))

≤ C‖A‖eµv|s|‖Φ‖µ
∑

y∈Λn\Λm

∑
z∈Zd

∑
x∈X

Fµ(d(x, z))Fµ(d(y, z))

≤ C‖A‖eµv|s|‖Φ‖µ
∑

y∈Λn\Λm

Fµ(d(x, y))→ 0

since Fµ is summable over Zd.

2. The limit αt(A) is independent of the chosen sequence of (Λn).

3. αt(A) defines an automorphism of A, αt satisfies the group property, and
αt(A) is continuous in t for all A.

2 Positive Semigroups on A
In this section, we will not use that the Hilbert space H is finite-dimensional.
The results, and the proofs given, are valid for arbitrary Hilbert spaces. In fact,
A can be replaced by an arbitrary C∗-algebra A, i.e., a subalgebra of A that
is closed under taking and adjoints, and closed in the operator norm topology.
It is convenient to assume that 1l ∈ A. For concreteness, you may still want to
think of A as Mn(C), but the finite-dimensionality will not be used.

Let X ∈ A. Define LX ∈ B(A), by

LX(A) = X∗AX − 1
2

(X∗XA+AX∗X) (1)

Clearly, as ‖LX(A)‖ ≤ 2‖X‖2‖A‖, LX is a bounded linear transformation on
the Banach space A. Therefore, we can define

γt(A) = etLX (A) =
[
id + LX +

1
2!

(LX)2 + · · ·
]

(A)

The family of transformations, (γt)t≥0, is a semigroup and LX is called the
generator of γt. If the semigroup is differentiable in the sense that

d

dt
γt(A)
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exists for all A ∈ A, then the generator is the linear map L defined by the
derivative of the semigroup in t = 0:

L(A) =
d

dt
γt(A)

∣∣
t=0

In fact, for semigroups of this kind one can show that continuity in t = 0 implies
differentiability. We will show that, if the generator is of the form given in (1),
then the semigroup has the following following properties: γt(1l) = 1l, and γt(A)
is positive definite if A is. A map γt with this property is called a positive map.
We will prove these properties below. From these properties it follows that, for
all states ω, and all t ≥ 0, there is a state ωt given by

ωt(A) = ω(γt(A))

Although γt is a well-defined bounded linear transformation on A for all t ∈ R,
the properties that make it useful only hold for t ≥ 0. E.g., the norm of the
transformation γt diverges as t → −∞. Even more importantly, its positivity
only holds for t ≥ 0. So, although we have curves ωt in the space of the linear
functionals defined for all t ∈ R, we will only use t ≥ 0, as ωt may cease to be
state for t < 0. In infinite-dimensional situations one often considers γt with an
unbounded generator L, in which case etL is often not defined for t < 0.

Proposition 2.1. Let X ∈ A and let L : A → A, be defined by

L(A) = X∗AX − 1
2

(X∗XA+AX∗X)

Then, the following properties hold:
(i) For all A ∈ A, L(A∗) = L(A)∗, and γt(A∗) = γt(A)∗, for all t ≥ 0.
(ii) For all A ∈ A, L(A∗A) ≥ L(A∗)A+A∗L(A).
(iii) The semigroup γt with generator L is unit preserving (also called unital),
i.e.,

γt(1l) = 1l, for all t ≥ 0,

(iv) The semigroup γt with generator L is positive, and satisfies, for all A ∈ A

γt(A∗A) ≥ γt(A∗)γt(A) = γt(A)∗γt(A) ≥ 0, for all t ≥ 0,

(v) For every t ≥ 0, γt is a contraction, i.e., for all A ∈ A

‖γt(A)‖ ≤ ‖A‖

Proof. (i) This follows directly from the definition of L and the properties of ∗.
(ii) This follows from the easy-to-verify identity

L(A∗A)− L(A∗)A−A∗L(A) = (XA−AX)∗(XA−AX)

(iii) This follows immediately form L(1l) = 0.
(iv) We will first prove that γt(A∗A) ≥ 0, for all A ∈ A, and then use that

result to get the stronger property claimed in (iv).
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We start by considering

0 ≤ (id + tL)(A∗)(id + tL)(A)

which follows form (i). After expanding the product and using (ii) one obtains

0 ≤ A∗A+ tL(A∗A) + t2L(A∗)L(A)

from which we immediately get

0 ≤ (id + tL)(A∗A) + t2‖L‖2‖A‖2

By applying the last inequality to the positive operator ‖A‖2−A∗A, and using
‖ ‖A∗A‖ −A∗A‖ ≤ ‖A∗A‖, we find

0 ≤ ‖A‖2 − (id + tL)(A∗A) + t2‖L‖2‖A‖2.

By combining the last two inequalities one sees that

−t2‖L‖2‖A‖2 ≤ (id + tL)(A∗A) ≤ (1 + t2‖L‖2)‖A‖2 (2)

and a fortiori

−(1 + t2‖L‖2)‖A‖2 ≤ (id + tL)(A∗A) ≤ (1 + t2‖L‖2)‖A‖2

from which it follows that

‖(id + tL)(A∗A)‖ ≤ (1 + t2‖L‖2)‖A‖2 (3)

To prove the positivity of γt, we start from the expression

γt(A∗A) = lim
n→∞

(id +
t

n
L)n(A∗A)

Let M(n) = 1+t2‖L‖2/n2. By using (2) n times we get the following estimates:

(id +
t

n
L)n(A∗A) ≥ −(t2/n2)‖L‖2

[
1 +M(n) +M(n)2 + · · ·+M(n)n−1

]
‖A‖2

(id +
t

n
L)n(A∗A) ≤ M(n)n‖A‖2 (4)

From (3), it follows that

‖(id+ tL)‖ ≤ 1 + t2‖L‖2 (5)

Next we will consider powers of the form (id+ sL)k. (5) gives

‖(id+ sL)k‖ ≤M(s)k

with M(s) = 1 + s2‖L‖2 and 2 gives

(id+ sL)(A∗A) ≥ −s2‖L2‖‖A‖2
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Claim 2.1. (id+sL)k(A∗A) ≥ −s2‖L‖2‖A‖2[1+M(s)+M(s)2+· · ·+M(s)k−1]

Proof. It holds for k = 1. Assume that it holds up to k − 1; then

(id+ sL)(A∗A) + s2‖L‖2‖A‖2
k−2∑
l=0

M(s)l ≥ 0

where the left hand side is equal to B∗B if you wish. Therefore,

(id+ sL)(B∗B) = (id+ sL)k(A∗A) ≥ −s2‖L‖2‖B∗B‖

and

‖B∗B‖ = ‖(id+ sL)k−1(A∗A) + s2(‖L‖2‖A‖2
k−2∑
l=0

M(s)l‖

≤M(s)k−1‖A‖2 + s2‖L‖‖A‖2
k−2∑
l=0

M(s)l

and s = t
n ; Eventually s2‖L‖2 ≤ 1, for such s

≤ s‖A‖2
k−1∑
l=0

M(s)l

and

(id+ sL)k(A∗A) ≥ −s2‖L‖2‖A‖2
k−1∑
l=0

M(s)l

Now choose an s such that, M(s) ≤ 2, so

(id+
t

n
L)n(A∗A) ≥ −2n‖L‖2‖A‖2 t

2

n2
→ 0

Where by taking the limit n→∞ we see that γt , for t ≥ 0, is a positive map.
Now, we will use the positivity to prove (iv) as follows. For any A ∈ A,

define,
f(t) = γt(A∗A)− γt(A)∗γt(A)

We need to show that f(t) ≥ 0, for t ≥ 0. As f(0) = 0, we have

f(t) = f(t)− γt(f(0)) =
∫ t

0

d

ds
(γt−s(f(s))) ds

The compute the derivative in the integrand we use

d

ds
(γt−s(f(s))) = −γt−s(L(f(s))) + γt−s

d

ds
f(s)

d

ds
f(s) = Lγs(A∗A)− L(γs(A))∗γs(A)− γs(A)∗L(γs(A)

5



By using these relations we can write the integral as follows:∫ t

0

d

ds
(γt−s(f(s))) ds =

∫ t

0

γt−s [L(γs(A)∗γs(A))− L(γs(A)∗)γs(A)− γs(A)∗L(γs(A))] ds

By (ii) we know that the argument of γt−s is positive, and we already proved
that γu is a positive map for u ≥ 0. Hence, the integrand is positive for all
s ∈ [0, t], and it follows that f(t) ≥ 0.

(v). By Lemma 2.1, proved below, we have

‖γt‖ = sup
06=A∈A

‖γt(A∗A)‖
‖A∗A‖

We can use the norm inequality (4) to estimate the RHS as follows

‖(id +
t

n
L)n‖ ≤ (1 +

t2

n2
‖L‖2)n

By taking the limit n→∞ we obtain

‖γt‖ ≤ 1

Lemma 2.1. Let T be a linear transformation on A, satisfying T (1l) = 1l,
T (A∗) = T (A)∗, and T (A∗A) ≥ T (A∗)T (A), for all A ∈ A. Then

‖T‖ = sup
06=A∈A

‖T (A∗A)‖
‖A‖2

Proof. From the definition of ‖T‖ as the supremum of ‖T (A)‖/‖A‖, it follows
that there is a sequence An ∈ A, ‖An‖ = 1, such that ‖T‖ = limn ‖T (An)‖. For
positive definite A,B ∈ A, such that B ≤ A, one has ‖B‖ ≤ ‖A‖. Using these
properties we obtain

lim sup
n
‖T (A∗nAn)‖ ≥ lim sup

n
‖T (A∗n)T (An)‖ ≥ lim sup

n
‖T (An)∗‖ ‖T (An)‖ = ‖T‖2

As T (1l) = 1l, we must have ‖T‖ ≥ 1, and therefore ‖T‖2 ≥ ‖T‖. In combination
with the previous estimate this gives, and the fact that ‖An‖ = 1,

sup
06=A∈A

‖T (A∗A)‖
‖A‖2

≥ lim sup
n
‖T (A∗nAn)‖ ≥ ‖T‖.

The opposite inequality follows from the definition of ‖T‖.
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3 Complete Positivity

This section is a brief aside on completely positive maps. A map γ : A → A is
completely positive if

γ ⊗ idn : A⊗Mn → A⊗Mn

is positive for all n. This is not a trivial definition, since there are positive maps
which are not completely positive. As a concrete example, one may show that
γ(A) = At is positive, but γ ⊗ id2 is not positive. See Nielsen and Chuang,
Quantum Computation and Quantum Information for more details.

Example 3.1. The γt defined in the previous section are all completely positive.

Example 3.2. Let αt(A) = eitHAe−itH be the reversible dynamics of a sys-
tem of the form A ⊗Mn. Fix t and define γt(A) = TrCn αt(A) = 1

n

∑n
i=1 id ⊗

ϕi(αt(A)), where ϕi(·) = 〈ϕi, ·ϕi〉 and ϕ1, . . . , ϕn form a basis for Cn. In addi-
tion to complete positivity, we also have

ω(αt(A⊗ 1)) = ω1(γt(A⊗ 1))

7



Statistical Mechanics, Math 266: Week 7 Notes

February 18, 2010

1 Energy–entropy balance (EEB) inequalities

The characterization of thermal equilibrium that we will derive in this section is
closely related to the variational principle. However, it will have the advantage
that it can be formulated for infinite systems, while the variational principle
suffers form the problem that the free energy functional diverges in the thermo-
dynamic limit, so that it cannot be used, at least not without modification.

We will use the Energy–Entropy Balance inequalities to prive the Mermin–
Wagner Theorem about absence of continuous symmetry breaking at strictly
positive temperatures in dimensions ≤ 2 under quite general conditions.

The formulation of the EEB inequalities uses the function f : [0,+∞) ×
[0,+∞)→ (−∞,+∞] defined by

f(x, y) =


x log x

y if x, y > 0
0 ifx = 0, y ≥ 0
+∞ ifx > 0, y = 0

(1)

In the following, whenever we write something of the form x log(x/y), we
mean f as defined above. We will use the following elementary properties of f .

Proposition 1.1. The function f defined in (??) has the following properties:
(i) f is lower semicontinuous.
(ii) f is jointly convex in (x, y). i.e., for

∑
i αi = 1, αi ≥ 0,

f(
∑
i

αixi,
∑
i

αiyi) =
∑
i

αif(xi, yi)

(iii) f is homogeneous of degree one. i.e.,

f(λx, λy) = λf(x, y)

(iv) For all finite sequences ti, xi, yi, i = 1, . . . , n, one has

f(
∑
i

tixi,
∑
i

tiyi) ≤
∑
i

tif(xi, yi)

1



We will formulate the EEB inequalities for a quantum system with Hilbert
space H, algebra of observables A = B(H), and Hamiltonian H. The following
theorem will be proved in the case dimH < +∞, but is valid in a considerably
more general setting.

Theorem 1.2. Let ω be a state on A. The following are equivalent conditions:
(i) ω is the Gibbs state corresponding to H and inverse temperature β.
(ii) For all X ∈ A one has

βω(X∗[H,X]) ≥ ω(X∗X) log
ω(X∗X)
ω(XX∗)

= f(ω(X∗X), ω(XX∗)) (2)

Another way of stating the theorem is to say that the Gibbs state satisfies
and is the only one that satisfies the inqualities (??) for all X ∈ A. We will
derive this property from the variational principle following a rather common
procedure: we will define suitable curves in the space of all states that pass
through the Gibbs state and compute and estimate the derivative of the free
energy functional restricted to these curves. The EEB inequalities will follow
from expressing that the state ω minimizes the free energy functional. The
converse direction will be by explcit computation.

In order to define curves in the space of all states we recall the class of
semigroups on A described in the previous lecture.

Let X ∈ B(H). Define LX : B(H)→ B(H), by

LX(A) = X∗AX − 1
2

(X∗XA+AX∗X)

Clearly, as ‖LX(A)‖ ≤ 2‖X‖2‖A‖, LX is a bounded linear transformation on
the Banach space B(H). Therefore, we can define

γt(A) = etLX (A)

(γt)t≥0 is a semigroup with the following properties: γ(t)(1l) = 1l, and γt(A) is
positive definite if A is. A map γt with this property is called a positive map.
From these properties it follows that, for all t, there is a unique density matrix
ρt such that

TrρtA = Trργt(A)

In the finite-dimensional context, γt is a well-defined bounded linear transfor-
mation on A for all t ∈ R. The norm of it, however, diverges as t → −∞.
So although we have curves ρt, in the space of density matrices defined for all
t ∈ R, we will only use t ≥ 0. In infinite-dimensional situations γt is in general
not defined for t < 0.

Proof. The proof of the EEB inequalities consists in deriving the following two
relations:

lim
t↓0

TrρtH − TrρβH
t

= ω(X∗[H,X]) (3)

lim
t↓0

S(ρt)− S(ρβ)
t

≥ ω(X∗X) log
ω(X∗X)
ω(XX∗)

(4)
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Here, ρβ = ρ0, and ω(A) = TrρA. The EEB inequalities then follow from the
VP:

Fβ(ρt)− Fβ(ρβ) ≥ 0

and therefore, for all t > 0, we must have

TrρtH − TrρβH
t

≥ 1
β

S(ρt)− S(ρβ)
t

Assuming that the limits t ↓ 0 exist, we get the EEB inequalities.
The derivative of the energy is easy to compute:

d

dt
ω(γt(H))

∣∣
t=0

= ω(LX(H)) = TrρX∗HX − 1
2

Trρ(X∗XH +HX∗X)

We are interested in the derivative in ρ = ρβ . As [ρβ , H] = 0, the last two terms
are equal and can be combined. The result is (??).

For the entropy term we will need to differentiate operator valued functions
of the type logAt. This is non-trivial. Usually the log function is defined by its
series expansion around 1l. To compute the derivative we will use the identity

log x =
∫ ∞

0

[
1

1 + t
− 1
x+ t

]
dt

for x > 0. So, for invertible At ≥ 0, we consider

d

dt
logAt =

d

dt

∫ ∞
0

[
1

1 + s
− 1
At + s

]
ds

=
∫ ∞

0

(At + s)−1

(
d

dt
At

)
(At + s)−1ds

Here, we used the operator identity A−1(B −A)B−1 = A−1 −B−1 to compute

d

dt
(At)−1 = −A−1

t

(
d

dt
At

)
A−1
t

When we apply this to −S(ρt) we get

Trρ
d

dt
log ρt

∣∣
t=0

= Trρ
∫ ∞

0

1
ρ+ t

LX∗(ρ)
1

ρ+ t
dt

= Trρρ−1LX∗(ρ)
= TrLX∗(ρ)

Now we can compute the derivative of the entropy term:

d

dt
S(ρt)

∣∣
t=0

= −Tr
d

dt
ρt
∣∣
t=0
− Trρt

d

dt
log(ρt)

∣∣
t=0

= −TrLX∗(ρ) log ρ− TrLX∗(ρ)
= −TrLX∗(ρ) log ρ

3



where we used that TrLX∗(ρ) = TrρLX(1l) = 0.
Now we have to estimate (??). We will prove that

−TrρLX(log ρ) = −TrρX∗(log ρ)X +
1
2

TrρX∗X log ρ+
1
2

Trρ(log ρ)X∗X

≥ f(TrρX∗X,TrρXX∗)

where f is the function defined in (??). To this end we use the spectral decom-
position of ρ:

ρ =
∑
i

ρi |φi〉〈φi|

Using this we can write the LHS of the inequality as follows:

−
∑
ij

ρi 〈φi | X∗φj〉 log ρj 〈φj | Xφi〉+
∑
ij

ρi log ρi 〈φi | X∗φj〉 〈φj | Xφi〉

If we let aij denote the matrix elements 〈φj | Xφi〉, this can be written as∑
ij

f(ρi, ρj)|aij |2

Property (iv) of Proposition ?? then yields

−TrρLX(log ρ) ≥ f(
∑
ij

ρi|aij |2,
∑
ij

ρj |aij |2)

= f(TrρX∗X,TrρXX∗)

This concludes the proof of (i) ⇒ (ii) in Theorem ??. The opposite direction
proceeds by solving the EEB inequalities. Suppose the Hamiltonian has eigen-
values λi and an orthonormal basis of eigenvectors φi. We will use the basis Eij
for the matrices:

Eij = |φi〉〈φj | , Eij∗ = Eji, EijEkl = δjkEil .

The spectral decomposition of the Hamiltonian can then be written as

H =
∑
i

λiEii

First, we note that if ω satisfies (??), then the corresponding density matrix
commutes with the Hamiltonian. This follows from the fact that the inequalities
imply that, for all X,

TrρX∗HX − TrρX∗XH ∈ R

and, as
Im TrρX∗HX − TrρX∗XH = TrX∗X[ρ,H]
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for arbitrary X ∈ A, this implies [ρ,H] = 0. Hence, ρ has a spectral decompo-
sition of the form

ρ =
∑
i

ρiEii

Now, take X = Eij in the EEB inequalities. Then [H,X] = (λi − λj)Eij , and
the EEB inequality becomes:

β(λi − λj)TrρEjj ≥ F (TrρEjj ,TrρEii)

By caculating the expecttations this is

β(λi − λj)ρj ≥ F (ρj , ρi)

If ρj 6= 0, divide by it, and use the defintion of F to obtain:

β(λi − λj) ≥ log
ρj
ρi

By combing this inequality with the one with the roles of i and j interchanged,
we get, for all i, j, ρi 6= 0, ρj 6= 0,

β(λi − λj) = log
ρj
ρi

or, equivalently
ρi = constant× e−βλi

This completes the proof that ρβ is the only density matrix satisfying the EEB
inequalities for a fixed H and β ≥ 0.
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Statistical Mechanics, Math 266: Week 8 (Part 1)

Notes

February 23, 2010

1 The Mermin-Wagner Theorem

We recall a few preliminaries.

Definition 1.1 (Kubo-Martin-Schwinger (KMS) condition). ω satisfies the
EEB if and only if ω(Aαiβ(B)) = ω(BA) for all A,B ∈ Aloc.

The Gelfand-Naimark-Segal (GNS) representation is given as follows. Let ω
be a state on a C∗ algebraA ( for example, an algebra of quasi-local observables).
Then there exists a representation of A, πω, on a Hilbert space Hω such that

ω(A) = 〈Ωω, πω(A)Ωω〉

where Ωω ∈ Hω is a cyclic vector for πω, i.e., πω(A)Ωω is dense inHω. Moreover,
the representation with all these properties is unique up to a unitary transfor-
mation. If ω is α invariant, then α is implementable in πω: there exists a unitary
operator on Hω, U , such that

πω(α(A)) = U∗πω(A)U

If αt is strongly continuous and ω is αt invariant, then there exists Ut which is
also strongly continuous.

Theorem 1.2 (Stone-von Neumann). If Ut is a strongly continuous group of
unitaries in a Hilbert space H, then there exists a densely defined self-adjoint
operator H with domain Dom(H) such that

Ut = eitH

and ψ ∈ Dom(H) if

lim
t↘0

Utψ − ψ
t

= Hψ

exists.

1



Let H be a densely defined self-adjoint operator on a Hilbert space H. Then
there exists a resolution of the indentity Eλ such that

H =
∫ +∞

−∞
λdEλ

This is the generalization of the eigenvector decomposition of a compact oper-
ator. We also introduce the notation

P(a,b] =
∫ b

a

dEλ

which are orthogonal projections and 1 =
∫ +∞
−∞ dEλ.

Now, we continue towards the Mermin-Wagner Theorem. Let A be a C∗

algebra such as the algebra of quasi-local observables of a quantum spin system
on Zd, and suppose {αt}t∈R is a strongly continuous one-parameter group of
automorphisms of A, which we will refer to as the dynamics of the system. The
examples we have in mind are the dynamics of a quantum spin system generated
by a not-too-long-range interaction Φ, e.g., one that satsifies, for some λ > 0,

‖Φ‖λ ≡ sup
x∈Zd

∑
x3X

eλ|X|‖Φ(X)‖ < ∞ .

A symmetry of the system is an automorphism, τ , of A, which commutes with
αt, i.e.,

αt(τ(A)) = τ(αt(A)), for all A ∈ A, t ∈ R

It is easy to see that if τ is a symmetry, than so is τ−1. In fact, the set of
all automorphisms commuting with the dynamics is a group for composition of
automorphisms.

It is easy to see that if τ is a symmetry and ω is a β−KMS state for αt, then
ω ◦ τ is also β−KMS. The Mermin-Wagner-Hohenberg Theorem gives sufficient
conditions that imply that all β−KMS states, ω, of the system are τ -invariant,
i.e., ω(τ(A)) = ω(A), for all A ∈ A. The original theorem, a special case of
what we will prove here, says that no spontaneaous breaking of any continuous
symmetry occurs at finite temperatures (β <∞) in dimensions d ≤ 2.

The general theorem involves the following two assumptions, which we will
verify for a variety of systems, including two-dimensional models with a contin-
uous symmetry.

MWH1: The symmetry τ is approximately inner in the sense that there
exist a sequence of unitaries Un ∈ A such that

lim
n→∞

‖τ(A)− U∗nAUn‖ = 0, for all A ∈ A .

We also assume that these unitaries can be taken form the domain of δ, the
generator of the dynamics αt = eitδ. Equivalently, we assume that the follwing
limits exist

lim
t→0

αt(Un)− Un
t

= iδ(Un) .
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Note that it follows from these assumptions that τ−1 is also approximately
inner, approximated by the unitaries U∗n, and that U∗ ∈ Dom(δ).

The second assumption comes in two versions.
MWH2: We assume that one of the following holds:

(i) there exists a constant M such that ‖δ(Un)‖ ≤M , for all n, or
(ii) all β−KMS states are τ2-invariant and there exists a constant M such that

‖U∗nδ(Un) + Unδ(U∗n)‖ ≤M, for all n .

Theorem 1.3. Suppose τ is a symmetry of the system (A, αt) such that con-
ditions MWH1 and MWH2 ((i) or (ii)) are satisfied. Then, all β−KMS states
are τ− invariant for all β ∈ [0,∞).

Using the assumptions and the EEB inequalities, we will prove that if ω is
β−KMS, then there exists a constant C such that

ω ◦ τ(A∗A) ≤ Cω(A∗A) (1)

The constant C will depend only on β and M . This a uniform version of
absolute continuity of ω ◦ τ with respect to ω. It is not hard to prove that
for extremal β−KMS states one has the dichotomy: either they are equal or
they are disjoint. That is, if they are quasi-equivalent states, a fortiori, if one
is absolutely continuous with respect to the other, then they are necessarily
equal. This follows from the general result that (??) implies that there exists
0 ≤ T ∈ πω(A)′ ∩ πω(A)′′ such that ω ◦ τ(A∗A) = 〈Ωω, πω(A∗A)TΩω〉. Since
extremal KMS states are factor states, such T must be a multiple of 1l and,
therefore, ω ◦ τ = ω.

So, from (??), it will follow that all extremal β−KMS states are τ−invariant
and, therefore, by taking convex combinations, all β−KMS states are τ−invariant.

The second version of MWH2 includes the assumption that we already know
that the β−KMS states are τ2−invariant. This is no restriction for compact
continuous summetry groups. For discrete groups such as finite groups or lattice
translations one needs version (i). In general, (i) implies (ii), but note that for
involutions (τ2 = 1l), (i) and (ii) are equivalent. Now, we prove Theorem ??.

Proof. Let ω be a β−KMS state. To prove (??) we will use the EEB inequalities
and the GNS reprensentation of ω. As any KMS state is time invariant, αt is
unitarily implemented by unitaries Ut in the GNS representation. As αt is
strongly continuous, Ut is a strongly continuous one-parameter group generated
by a s.a. operator H, with dense domain Dom(H), and such that HΩ = 0,
where Ω is the cyclic vector representing ω. We will need the spectral resolution
of H:

H =
∫
λ dEλ

to define a resolution of the identity by mutually orthogonal projections Pn, n ∈
Z,
∑
n Pn = 1l, as follows

Pn =
∫

(n,n+1]

dEΛ

3



It is clear that, to prove (??), it is sufficient to prove that there exists a constant
C, independent of n, such that for all A ∈ A

ω ◦ τ(A∗PnA) ≤ Cω(A∗PnA)

or more accurately, we will prove that, for all m,n, and for A ∈ A0, a norm-dense
∗−subalgebra of A, we have

〈Ω | U∗mπ(A∗)Pnπ(A)UmΩ〉 ≤ C〈Ω | π(A∗)Pnπ(A)Ω〉 (2)

By summing over n and taking the limit m→∞ one obtains (??).
To prove (??) we need the following estimates for quantities that appear in

the EEB inequalities. For convenience, we introduce the notation An = Pnπ(A).
For the first estimate, note that vectors of the form AnΩ are in the domain of
H. We will also use ω( · ) as shorthand for 〈Ω | ·Ω〉. Then we have, by using
HΩ = 0,

ω(A∗nδ(An)) = 〈Ω | A∗nPnHPnAnΩ〉
≤ (n+ 1) 〈Ω | A∗nPnHPnAnΩ〉
≤ (n+ 1)ω(A∗nAn)

For the entropy term, we first observe that, using the KMS condition, we
can relate ω(A∗nAn) and ω(AnA∗n) as follows:

ω(AnA∗n) = ω(A∗nαiβ(An))
= 〈Ω | A∗nPnE−βHPnAnΩ〉
≤ e−βnω(A∗nAn)

From this estimate we get

ω(A∗nAn) log
ω(A∗nAn)
ω(AnA∗n)

≥ ω(A∗nAn) log
ω(A∗nAn)

e−βnω(A∗nAn)
≥ βnω(A∗nAn)

The EEB inequality for the observable X = UmAn:

βω(A∗nU
∗
mδ(UmAn)) ≥ ω(A∗nAn) log

ω(A∗nAn)
ω(UmAnA∗nU∗m)

By using the derivation property on the left and adding and substracting a term
on the right, and reorganizing this can be written as (watch the stars!)

ω(A∗nAn) log
ω(A∗nAn)

ω(UmAnA∗nU∗m)
≤ βω(A∗nU

∗
mδ(Um)An)+βω(A∗nδ(An))−ω(A∗nAn) log

ω(A∗nAn)
ω(A∗nAn)

The last two terms can be bounded by the estimates we prepared. The result
gives

ω(A∗nAn) log
ω(AnA∗n)

ω(UmAnA∗nU∗m)
≤ βω(A∗nU

∗
mδ(Um)An) + βω(A∗nAn) (3)
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Now it is time to use MWH2. The two versions are treated slightly differ-
ently. With version (i), we immediately get

ω(A∗nAn) log
ω(AnA∗n)

ω(UmAnA∗nU∗m)
≤ β(M + 1)ω(A∗nAn).

After simplifying, exponentiating, and reversing the roles of An and A∗n, as well
as τ and τ−1, one gets (??) with C = eβ(M+1).

In order to use MWH2 (ii), we use (??) and the similar bound for Um and
U∗m interchanged. By adding the two bounds we get:

ω(A∗nAn) log
ω(AnA∗n)2

ω(UmAnA∗nU∗m)ω(U∗mAnA∗nUm)
≤ βω(A∗n[U∗mδ(Um) + Umδ(U∗m)]An) + 2β ω(A∗nAn)

In the same way as before, but by using (ii) instead of (i), we obtain

ω(AnA∗n)2 ≤ eβ(M+2)ω(τ(AnA∗n)ω(τ−1(AnA∗n))

As ω ◦ τ is a β−KMS state, too, we can write

ω(τ(AnA∗n))2 ≤ eβ(M+2)ω(τ2(AnA∗n)ω(AnA∗n)

Now, we have to used that β−KMS states are τ2−invariant. By taking square
roots we get (??) with C = eβ(M+2)/2.

2 Applications. The Mermin-Wagner-Hohenberg
Theorem

Recall that the assumption MWH2 of Theorem ?? came in two versions. We
assumed that one of the following holds: (i) there exists a constant M such that
‖δ(Un)‖ ≤M , for all n; (ii) all β−KMS states are τ2-invariant and there exists
a constant M such that

‖U∗nδ(Un) + Unδ(U∗n)‖ ≤M, for all n .

We still need to show how the theorem is used to prove absence of continuous
symmetry breaking in two dimensions at finite temperature. As we will show a
bit further, MWH2 (ii), but not (i), can be verified in this case. For an example
of the first version of MWH2, see the homework. The following lemma allows
us to apply the main theorem to continuous symmetries.

Lemma 2.1. Let {tauφ | φ ∈ S1} be a compact connected continuous one-
parameter group of automorphisms of A. Let K be a set of states ω such that
ω◦τ2

φ = ω implies ω◦τφ = ω, for any φ ∈ S1. Then all ω ∈ K are τφ−invariant
for all φ ∈ S1.
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Proof. As τ2
π = id, the assumptions imply that ω ◦ τπ = ω. By repeating the

argument n more times we get that ω ◦ τπ/2n . It follows immediately that ω
is invariant for all τφ with φ of the form φ =

∑N
n=0 an2−nπ, where an ∈ Z.

Clealry, such φ form a dense set in S1. Now, for every A ∈ A, the function
φ → ω(τφ(A) − A) is continous and vanishes on dense subset of S1. Hence, it
vanishes everywhere.

For symmetries representing an arbitrary compact Lie group, we can apply
this lemma for a generating set of one-dimensional compact subgroups.

Now, we will verify MWH1 and MWH2 (ii) for two-dimensional quantum
spin systems with a connected compact continuous symmetry group. For sim-
plicity we will consider pair interactions only. This means that the dynamics is
generated by local Hamiltonians of the form

HΛ =
∑
x,y∈Λ

J(x, y)Φx,y (4)

for finite subsets Λ in Z2, where Φx,y ∈ A{x,y} are assumed to be uniformly
bounded: say ‖Φx,y‖ ≤ 1, for all x, y ∈ Z2. An example of such a Hamiltonian
is the Heisenberg model. Boundary terms are irrelevant in our considerations
here. Suppose that there there are unitary representations

Ux(φ) = eiφXx , φ ∈ S1,

with generators Xx = X∗x ∈ A{x}, x ∈ Z2. E.g., for spin rotations the generators
are SU(2) spin matrices.

Consider the boxes Λm = [−m,m]2 ⊂ Z2. It is easy to satisfy MWH1 with
a sequence of unitaries of the form

Um(φ) =
⊗
x∈Λ2m

Ux(φm(x))

where φm(x) = φ, for all x ∈ Λm and, for the moment, arbitrary for x ∈
Λ2m \ Λm.

Translation invariance is not required; in fact the argument works for inho-
mogeneous systems with spins of different magnitudes at different sites. We will
assume that there is a uniform bound on the norm of the generators, say, there
is a constant G such that ‖Xx‖ ≤ G, for all x ∈ Z2.

Proposition 2.2. For a quantum spin system on Z2 with local Hamiltonians
of the form (??), with coupling constants J(x, y), satisfying

sup
x

∑
y∈Z2

|x− y|2|J(x, y)| < +∞

we can find φm(x) such that there exists a constant M such that

‖Umδ(U∗m) + U∗mδ(Um)‖ ≤M, for all m

and Theorem ?? can be applied.
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Proof. The idea behind the choice of the unitaries Un that approximate the
symmetry transformation is that, in the case of continuous symmetries such
as a rotation by an angle φ, it is possible to interpolate “smoothly” between
rotations by a fixed angle in any given finite volume, and zero rotation at infinity,
in such a way that there is a uniform bound on the energy involved in such a
perturbation.

Claim: it suffices to take φm defined as follows:

φm(x) =


φ if x ∈ Λm
(2− min{|x1|,|x2|}

m )φ if x ∈ Λ2m \ Λm
0 if x ∈ x 6∈ Λ2m

The quantity we need to bound is the following:

‖Umδ(U∗m) + U∗mδ(Um)‖ ≤
∑
x,y

|J(x, y)|‖∆x,y‖

where

∆x,y = Ux(φm(x))Uy(φm(y))Φx,yUx(φm(x))∗Uy(φm(y))∗

+Ux(φm(x))∗Uy(φm(y))∗Φx,yUx(φm(x))Uy(φm(y))− 2Φx,y

By expanding the unitaries we can rewrite this as follows:

∆x,y = 0 + i[φm(x)Xx + φm(y)Xy,Φx,y]− i[φm(x)Xx + φm(y)Xy,Φx,y]

+2
∑
n≥1

(−1)n

(2n)!
ad2n
φm(x)Xx+φm(y)Xy

(Φx,y)

The trick is to realize that ∆x,y only depends on the differences φm(x)−φm(y).
This can be seen as follows:

φm(x)Xx+φm(y)Xy =
1
2

(φm(x)+φm(y))(Xx+Xy)+
1
2

(φm(x)−φm(y))(Xx−Xy)

Let us call the first term Ax,y and the second term Bx,y. Then, it is easily
checked that Ax,y and Bx,y commute. Hence,

adφm(x)Xx+φm(y)Xy
= adAx,y

+ adBx,y

with adAx,y
and adBx,y

commuting as well. By assumption we have adAx,y
(Φx,y) =

0. Using these properties we can derive the following estimate for ‖∆x,y‖:

‖∆x,y‖ ≤ 2
∑
n≥1

1
(2n)!

(
φm(x)− φm(y)

2

)2n

‖ad2n
Bx,y

(Φx,y)‖ (5)

Since d = 2, we have |Λm| = (2m+1)2. Also not that |φm(x)−φm(y)| ≤ |φ|/m.
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Therefore, the sum over x can be estimated by

‖∆x,y‖ ≤ 2
∑

|x|≤2m,y∈Z2

|J(x, y)|
(
|x− y|

2m

)2∑
n≥1

1
(2n)!

(2|φ|‖Bx,y‖)2n‖Φx,y‖

≤ 4
∑

|x|≤2m,y∈Z2

|x− y|2|J(x, y)| ‖Bx,y‖
2

(2m)2
e4|φ|‖Bx,y‖2

≤ constant× sup
x

∑
y∈Z2

|x− y|2|J(x, y)|

One can obtain a similar condition on J(x, y) that excludes continuous sym-
metry breaking in one dimension.
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Statistical Mechanics, Math 266: Week 8 (Part 2)

Notes

February 25, 2010

1 Ideal Gases

Ideal gases are point particles, non-interacting (no forces between them), only
subject to being enclosed in a finite volume, i.e. boundary conditions. The
particles only have kinetic energy. There is an important issue, however, related
to how to compute the entropy, or in other terms, how to “count states”. The
parameters are continuous, so counting is not obvious in the classical case. To
make this more clear, let’s consider first the standard classical treatment of the
classical ideal (or free) gas of point particles of mass m. Consider N particles
in Λ ⊆ Rd. Configurations are given by (p, q) ∈ (Rd)2N where p1, . . . , pN ∈ Rd
and q1, . . . , qN ∈ Λ are the momenta and positions of particles 1, . . . , N . Recall
that

H(p,q) =
N∑
i=1

1
2m

p2
i (1)

µΛ(p,q) =
1
ZΛ

e−βH(p,q) =
1
Z

N∏
i=1

(e−
βp2i
2m ) (2)

are independent of q, and

Z(β) =
∫

Rd
e−

βp2i
2m dp = (

2mπ
β

)d/2 (3)

The free energy and free energy density functions are

F (Λ, N, β) = − 1
β

logZΛ = − 1
β
N log |Λ|Z(β) (4)

f(ρ, β) = lim
Λ↗Rd
N→∞
ρ=N/|Λ|

F (Λ, N, β)
|Λ|

= − 1
β
ρ logZ(β)− 1

β
ρ log |Λ| (5)

Note that the free energy density does not converge in the thermodynamic limit.
This is not what we expect, but why is it wrong? Before considering how to fix

1



this point, let us focus, as Gibbs originally did, on the entropy term in the free
energy. Our investigation will lead us to the Gibbs paradox.

F = E − 1
β
S (6)

We need to calculate E in order to get S from F .

E =
∫
H(p,q)µ(dp, dq) (7)

=
N

∫
Rd

1
2mp

2e−
βp2

2m ddp∫
Rd e

− βp22m ddp
(8)

=
N

β

∫
Rd x

2e−x
2
ddx∫

Rd e
−x2ddx

(9)

=
dN

2β
=
d

2
NkBT (10)

where we have made the substitution x =
√

β
2mp. Thus, we have

S(Λ, N, β) = −βF + βE (11)

= N log |Λ|Z(β) +
d

2
N (12)

The log |Λ| dependence is problematic because the “thermodynamic” entropy
should be extensive; also, if we mix two identical ideal gases, their entropies
should just add. Consider a system contained in two parts Λ = Λ1 ∪ Λ2 where
Λ1∩Λ2 = ∅ each withNi = ρ|Λi| particles and the same β. LettingN = N1+N2,

Stot =

{
N(logZ(β) + d

2 ) + ρ|Λ1| log |Λ1|+ ρ|Λ2| log |Λ2| (Same atoms)
N(logZ(β) + d

2 ) +N log(|Λ1|+ |Λ2|) (Different atoms)
(13)

where the two distinct expressions for the entropy is Gibb’s paradox. The
interesting fact is that it is correct and experimentally verified in each of the
cases indicated above. The difference between the entropy of the two cases,

∆S = N1 log
|Λ|
|Λ1|

+N2 log
|Λ|
|Λ2|

(14)

is called the entropy of mixing. Gibbs proposed to circumvent these issues by the
inclusion of a factor of 1

N ! in the integral over phase space. Then the partition
function becomes

ZΛ →
1
N !

ZΛ

and the free energy becomes

F (Λ, N, β)→ F (Λ, N, β) + log
1
N !

∼ F −N logN +N
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and with N = ρ|Λ|, the |Λ| dependent term is cancelled. As for the entropy,

S(Λ, N, β) = N log |Λ|Z(β) +
d

2
N −N logN +N (15)

= N log
|Λ|
N
Z(β) + (

d

2
+ 1)N (16)

= ρ|Λ| log ρZ(β) + (
d

2
+ 1)ρ|Λ| (17)

it becomes proportional to |Λ|.

2 Identical Particles in Quantum Mechanics

In Quantum Mechanics, the starting point of our description is the Hilbert space
of states. If you have two identical particles in the same box, the states should
be

ψ ∈ H ⊗H

whereH is the Hilbert space for one particle. “Needless to say (but disconcerting
at times), identical particles cannot be distinguished”, otherwise they would not
be truly identical.

So what is the difference between ψ = ϕ1 ⊗ ϕ2 and ψ = ϕ2 ⊗ ϕ1? Indeed,
all ψ obtained by permuting indices should be equivalent. It turns out that
to define the space of particles, we have to restrict to subspaces H+ or H− of
ψ ∈ H ⊗ H that are either symmetric or antisymmetric under permutations
implemented by the unitary operators,

Uπ : H⊗ · · · ⊗ H → H⊗ · · · ⊗ H

which permute factors according to the element π ∈ SN . We require

Uπψ =

{
ψ for ψ ∈ H+

sign(π)ψ for ψ ∈ H−

3 The Spectrum of Free N-Boson and N-Fermion
Hamiltonians

Let Λ ⊆ Rd be a nice domain, e.g., [0, L]d ⊆ Rd. The one particle Hamiltonian
is

H1 = − ~2

2m
4 (18)

with Dirichlet, Neumann, or periodic boundary conditions. The N particle
Hamiltonian, HN has to act on either the symmetric or antisymmetric subspace
of

⊗N
i=1 L

2(Λ). Suppose the eigenvalues (with repetitions in case of degen-
eracies) of H1 are labeled by k ∈ Λ∗. Concretely, with periodic boundary
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conditions, we have Λ∗ = 2π
L Zd/mod L. Then

εk =
~2

2m
|k|2 (19)

are the eigenvalues of H1, and

HN =
N∑
i=1

1⊗ · · · ⊗ H1︸︷︷︸
ith

⊗ · · · ⊗ 1 (20)

is the Hamiltonian acting on the appropriate subspace of
⊗N

i=1 L
2(Λ).

Let ϕk ∈ L2(Λ) denote the eigenvector of H1 belonging to the eigenvalue εk.
The eigenvector of HN on the full tensor product are simply the tensor products
of the ϕk:

ψk1,...,kn = ϕk1 ⊗ · · · ⊗ ϕkn (21)

where ki ∈ Λ∗, and εk1,...,kn =
∑N
i=1 εki .

The Hamiltonians that we are interested in are of the form P±NHNP
±
N , where

P±N is the orthogonal projection onto H±N , the symmetric and antisymmetric
subspaces of

⊗N
i=1 L

2(Λ). Fortunately, since HN is permutation invariant, we
can use P±N to turn the eigenvectors ψk1,...,kn into eigenvectors of P±N (or zero)
with the same eigenvalues, εk1,...,kn . I.e., the non-zero vectors of the form

P±Nψk1,...,kn

are eigenvectors of P±NHNP
±
N .
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Statistical Mechanics, Math 266: Week 9 Notes

March 2 and 4, 2010

1 Partition Functions for Ideal Fermi and Bose
Gases

Let εk for k ∈ Λ∗ be the eigenvalues, with repetitions, of the one particle
Hamiltonian in a bounded domain Λ ⊆ Rd. The eigenvalues of the N particle
Hamiltonians are

Ek1,...,kN ki ∈ Λ∗ all distinct (N Fermions)

Ek1,...,kN (k1, . . . , kN ) ∈ (Λ∗)N (N Bosons)

Defining nk = #{i|ki = k , i = 1, . . . , N}, we have that the eigenvalues will
correspond to (nk)k∈Λ∗ such that

∑
k∈Λ∗ nk = N and nk ≥ 0 and take integer

values. Corresponding eigenvectors of the N particle Hamiltonian are anti-
symmetric or symmetric with resepect to the labels i = 1, . . . , N of the tensor
factors. Recall that the N particle Hamiltonian is

H±NP
±
NHNP

±
N (1)

where HN =
∑N
i=1 1 ⊗ · · · ⊗ 1 ⊗ H1︸︷︷︸

ith

⊗1 ⊗ · · · ⊗ 1, and P±N is the orthogonal

projection onto H±.
The canonical partition function is

Z±(N, β) = TrH±N e
−βH±N (2)

We also introduce the grand-canonical partition function, in which the particle
number is not fixed:

Z±(Λ, β, µ) =
∑
N≥0

TrH±N e
−β(H±−µN) (3)

For Fermions, the grand-canonical partition function takes the specific form

Z−(Λ, β, µ) =
∑

nk=0,1

e−β
P
k(εk−µ)nk (4)

=
∏
k∈Λ∗

(1 + e−β(εk−µ)) (5)

1



and
log(Z−(Λ, β, µ) = TrH1 log(1 + e−β(H1−µ1)) (6)

For Bosons,

Z+(Λ, β, µ) =
∑

{nk}, nk≥0

e−β
P
k∈Λ∗ nk(εk−µ) (7)

=
∏
k∈Λ∗

∑
n≥0

e−βn(εk−µ) (8)

=
∏
k∈Λ∗

1
(1− e−β(εk−µ))

(9)

and
logZ+(Λ, β, µ) = −TrH1 log(1− e−β(H1−µ1)) (10)

So, to summarize:

logZ±(Λ, β, µ) = ∓TrH1 log(1∓ e−β(H1−µ1)) (11)

Similar to the free energy of an N particle system and its thermodynamic limit
where we fix ρ = N

|Λ| , one defines the pressure of a grand-canonical system

pΛ(β, µ) =
1

β|Λ|
log(Z(Λ, β, µ)) (12)

and
p(β, µ) = lim

Λ↗Rd
pΛ(β, µ) (13)

One then has ∂pΛ
∂µ = ω(N)

|Λ| , and in the limit Λ↗ Zd or Λ↗ Rd,

∂p(β, µ)
∂µ

= ρ (14)

relating the grand-canonical µ with the canonical parameter ρ.

2 The Pressure in the Thermodynamic Limit

In this section, we make the assumptions that Λ = [0, L]d ⊆ Rd with periodic
boundary conditions so that εk = ( 2π

L )2k2, and k ∈ Zd. For Fermions,

p(β, µ) = lim
L→∞

1
|Λ|β

∑
k∈Λ∗

log
[
1 + e−β(( 2π

L )2k2−µ)
]

(15)

For µ ≥ 0, this is a convergent Riemann sum. Hence,

p(β, µ) =
1

(2π)dβ

∫ +∞

−∞
ddu log(1 + e−β(u2−µ)) (16)

=
Ωd

(2π)dβ

∫ ∞
0

dr rd−1 log(1 + e−β(r2−µ)) (17)
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and so we can calculate the density function,

ρ(µ) =
∂

∂µ
p(β, µ) =

Ωd
(2π)d

∫ ∞
0

dr rd−1 e−β(r2−µ)

1 + e−β(r2−µ)
(18)

For Bosons, for convergence as Λ↗ Rd, one has to assume µ < 0 and then find
in the same way that

p(β, µ) = − Ωd
(2π)dβ

∫ ∞
0

dr rd−1 log(1− e−β(r2−µ)) (19)

and
ρ(µ) = − Ωd

(2π)d

∫ ∞
0

dr rd−1 1
eβ(r2−µ) − 1

(20)

If one is interested in the equilibrium state of the ideal Bose gas at a given β
and particle density ρ̄ ≥ 0, we look for a solution for µ of the equation

ρ(µ) = ρ̄ (21)

and then hope for an equivalence of ensembles result, as expected from the
classical case, such that NΛ

|Λ| → ρ and that the two expressions e
−β(HΛ,NΛ

)

Z(Λ,β,NΛ) and⊕
N≥0

e−β(H−µN)

Z(Λ,β,µ) converge to the same infinite volume state in the thermody-
namic limit. Here, we set Λ = ΛL and choose NL such that NL

|ΛL| = ρL → ρ̄. It
turns out that as long as we find a solution µ < 0 of (21), this approach indeed
works. (Convergence details along these lines are discussed later).

In particular for d = 1, 2 this works. For d = 1,

ρ(µ) = c

∫ ∞
0

dr
1

eβ(r2−µ) − 1
(22)

For µ = 0, by making the substitution x = r2,

ρ(µ) = c̃

∫ ∞
0

dx
1√
x

1
eβx − 1

= +∞ (23)

Similarly, for d = 2, one finds that

lim
µ→0

ρ(µ) = c

∫ ∞
0

dx
1

eβx − 1
= +∞ (24)

(but the divergence is borderline). For d = 3, and in fact, for dimensions d > 2,
we have

lim
µ↗0

ρ(µ) = ρc = c̃

∫ ∞
0

dxx
d
2−1 1

eβx − 1
< +∞ (25)

This however, does not mean that the ideal Bose gas in d = 3 does not have
equilibrium points with densities ρ̄ > ρc(β). Rather, the finiteness of the integral
at µ = 0 suggest that in finite-volume we consider µL > 0. If µL → µ > 0 as
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L→∞ because of the singularities of x
d
2−1

eβ(x−µ) at x = µ, which is not integrable.
So, we will have to work with µL → 0. Recall that

logZΛ(β, µ) =
∑
k∈Λ∗

log(1 + e−β(εk−µ)) (26)

Now, the details will depend on the chosen chosen boundary conditions. For
periodic boundary conditions, ΛL = [0, L]d, εk =

(
2π
L

)2 |k|2 with k ∈ Zd. Again,
the pressure is

pΛ(β, µ) =
1
|Λ|β

∑
k∈Λ∗

log
(

1 + e−β(εk−µ)
)

(27)

and

ρΛ(β, µ) =
∂

∂µ
pΛ(β, µ) (28)

=
1
|Λ|

∑
k∈Λ∗

1
e−β(εk−µ) − 1

(29)

=
eβµ

1− eβµ
+

1
|Λ|

∑
k∈Λ∗

1
eβεk − eβµ

(30)

This last sum converges if µ|Λ| → 0. If ρ̄ > ρc, pick µ|Λ| such that

|Λ|(ρ̄− ρc) =
1

e−βµ|Λ| − 1

or
1 +

1
|Λ|(ρ̄− ρc)

= e−βµ|Λ|

and so solving for µ|Λ| gives

µ|Λ| = − 1
β

log
(

1 +
1

|Λ|(ρ̄− ρc)

)
(31)

∼ − 1
β(ρ̄− ρc)|Λ|

↗ 0 (32)

What about the pressure?

pΛ(β, µ|Λ| =
1
|Λ|β

∑
k∈Λ∗

log
(

1 + e−β(εk−µ|Λ|)
)

(33)

and it is not hard to show that pΛ(β, µ|Λ|) → p(β, 0). It now follows that the
pressure and free energy will be constant for ρ > ρc, and will be equal to the
value for ρ = ρc.

f(β, ρ) = sup
µ≤0

(µρ− p(β, µ)) (34)
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3 Properties of the Grand Canonical Equilib-
rium State

Let N0,Λ denote the number of particles in the k = 0 state. Then

N0,Λ =

∑∞
n0=0 n0e

βµn0
∑

nk
06=k∈Λ∗

e−β
P
k∈Λ∗ nk(εk−µ)

Z+(Λ, β, µ)
(35)

=
eβµ

(1−eβµ)2

∏
0 6=k∈Λ∗(1− e−β(εk−µ))−1∏

k∈Λ∗(1− e−β(ε−µ))−1
(36)

=
eβµ

1− eβµ
(37)

which is the same equation as derived for µ|Λ|. So as expected (by design), we
have

N0,Λ = |Λ|(ρ̄− ρc) (38)

and the condensate density is

N0,Λ

|Λ|
→ ρ̄− ρc (39)

For k 6= 0, Nk ∼ L2, and so
Nk,Λ
|Λ|

→ 0 (40)

and for ε > 0,

Nε ∼
e−βε

(1− e−βε
<∞ (41)

This condensation of a finite fraction of the particles in the minimum energy
state is called Bose-Einstein condensation. Next, we shall see how this phenom-
ena is accompanied by the spontaneous breaking of a continuous symmetry.
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Statistical Mechanics, Math 266: Week 9 Notes,

Part 2

March 4, 2010

1 Second Quantization Formalism and Contin-
uous Symmetry Breaking in the Ideal Bose
Gas

Our definition of P±N can be extended to any n-fold tensor product of a Hilbert
space H

HN =
N⊗
i=1

H

H±N = P±NHN
F± =

⊕
N≥0

H±N

where F+ corresponds to Bosonic Fock space and F− corresponds to Fermionic
Fock space with one particle space H. For all A linear operators defined on H,

A(N) = A⊗ 1⊗ · · · ⊗ 1 + · · ·1⊗ · · · ⊗ 1⊗A

and
P±Nϕ1 ⊗ · · · ⊗ ϕN =

1
N !

∑
π∈SN

(±1)signπϕπ(1) ⊗ · · · ⊗ ϕπ(N)

leaveH±N invariant and thus are well-defined when restricted toH±N . The second
quantization of A is then

dΓ(A) =
⊕
N≥0

A(N) on F±

The creation and annihilation operators a+(f) : H±N → H±N+1 and a(f) :
H±N+1 → H±N are defined on F± for all N ≥ 0, where H±N and H±N+1 are

1



considered as subspaces of F±. They are defined as follows:

a+(f)P±N (ϕ1 ⊗ · · · ⊗ ϕN ) =
√
N+!P±N+1(f ⊗ ϕ1 ⊗ · · · ⊗ ϕN ) (1)

a(f)P±N (ϕ1 ⊗ · · · ⊗ ϕN ) =
1√
N

N∑
k=1

(±1)k−1〈f, ϕk〉P±N−1(ϕ1 ⊗ · · · ⊗ ϕ̂k ⊗ · · ·ϕN )

(2)

where ϕ̂k denotes that the entry ϕk is missing from the tensor product.
Important properties of the creation and annihilation operators (as proved

in the homework and in Bratelli and Robinson, Volume 2) are:

1. a+(f) = a(f)∗, when defined on their natural domains in F±

2. a+(f) depends linearly on f , and a(f) depends anti-linearly

3. for Bosons,
[a(f), a+(g)] ⊆ 〈f, g〉1 (3)

for Fermions,
{a(f), a+(g)} = 〈f, g〉1 (4)

4. Define N = dΓ(1). Then N|H±N = N1.

5. Let (ϕk) be an orthonormal basis of H. Then

N =
∑
k

a+(ϕk)a(ϕk) (5)

6. if A =
∑
k,l |ϕk〉Ak,l〈ϕl|, then

dΓ(A) =
∑
k,l

Ak,la
+(ϕk)a(ϕl) (6)

7. For Fermions,

‖a+(f)‖ = ‖a(f)‖ = ‖f‖ for all f ∈ H (7)

With HN as before, ⊕
N

HN = dΓ(H1) (8)

and so the grand canonical density matrix on F for H = L2(Λ) is defined by

ρβ,µ =
1
Z
e−β(H−µN) (9)

where H = dΓ(H). Let {ϕk} be an eigenbasis of H1 as before with eigenvalues
εk. The number operator N is a densely defined self-adjoint operator with
domain D(N) = {ψ =

⊕
N ψN ∈ F±|

∑
N N

2‖ψN‖2 < +∞} and so for all

2



α ∈ R, U(α) = eiαN is a unitary operator on Fock space. eiα 7→ U(α) is a
representation of U(1). The second quantized Hamiltonian H has the gauge
symmetry

[H, U(α)] = 0 (10)

which expresses that H conserves particle number. Its infinitesimal form is
[H,N] = 0. This is the continuous symmetry that is broken in the Bose-Einstein
condensed phase of the ideal Bose gas. Before we explain this in detail , we first
introduce the reduced density matrices. The one-particle reduced density matrix
(which is not the density matrix of the one-particle system) is defined as the
operator ρ(1) with matrix elements

〈g, ρ(1)f〉β,µ = ωβ,µ(a+(f)a(g)) (11)

and the finite volume density matrix is given by

ρβ,µ =
e−β

P
k∈Λ∗ (εk−µ)a+(ϕk)a(ϕk)

Z(β, µ)

〈ϕl, ρ(1)ϕk〉 = ωβ,µ(a+(ϕk)a(ϕl))

=
1
Z

∑
nk

∑
nl

e−β
P
k nk(εk−µ)〈nka+(ϕk)a(ϕl)nl〉δk,lnk

= ωβ,µ(Nk) =
e−β(εk−µ)

1− e−β(εk−µ)
(The Bose distribution function)

=
1

eβ(εk−µ) − 1

and thus,

ρ(1) =
∑
k

1
e−β(εk−µ) − 1

|ϕk〉〈ϕk| (12)

This operator will have a kernel ρ(1)(x, y),

ρ(1)(x, y) =
∑
k∈Λ∗

1
eβ(εk−µ) − 1

1
|Λ|

eik(x−y)

where k ∈ ( 2π
L )Zd and we have made use of the fact that ϕk = 1√

|Λ|
eikx and as

Λ↗ Rd,

ρ(1)(x, y) =
1

(2π)d

∫
Rd
dk

eik(x−y)

eβ(k2−µ) − 1

This derivation is again valid for fixed µ < 0 or µL → µ∞ < 0. If µL → 0, we
need to separate out the µ = 0 torm as we did before for the calculation of N0.
So, for ρ̄ > ρc the result becomes

ρ(1)(x, y) = (ρ̄− ρc)|1〉〈1|+
1

(2π)d

∫
Rd
dk
eik(x−y)

eβk2 − 1

3



Note that ρ(1)(x, y) = ρ̄(x− y). By Riemann-Lebesgue for ρ̄ ≤ ρc,

lim
r→∞

σ(r) = 0

but for ρ̄ > ρc,
lim
r→∞

σ(r) = ρ̄− ρc > 0

This is called off-diagonal long range order (OLRO, Yang). (Think of ρ(x, y)
as a matrix indexed by x). For comparison, consider LRO in the Ising model
where

ω =
1
2

(ω+ + ω−)

is spin-flip symmetric but does not cluster, meaning

ω(σx) = 0 for all x ∈ Zd (d ≥ 2)
ω±(σx) = ±m(β) where 0 < m(β) for β > βc

One can also show that in these states

ω±(σxσy) = σ±(x− y)

lim
r→∞

ω±(σ0σr) = m2 = ω±(σ0)ω±(σr)

so that these states exhibit clustering, but

lim
r→∞

ω(σ0σr) = m2

as well, but
lim
r→∞

ω(σ0σr) 6= ω(σ0)ω(σr) = 0

so that ω does not cluster and this has long range order. To complete the anal-
ogy we need to construct the equilibrium states with broken gauge symmetry.
Instead of boundary conditions, we will achieve this by adding an “external
field” to the Hamiltonian and then taking the limit of zero-field strength.

Let a(∗)
0 denote a(∗)(ϕ0) where ϕ0(x) = 1

|Λ|
1
2
χΛ(x).

H
(λ)
Λ = HΛ + λ|Λ| 12 a∗0 + λ̄|Λ| 12 a0 (13)

Now, we calculate the λ-dependent quantities

pΛ(β, µ, λ) =
1

β|Λ|
log Tr[e−β(H

(Λ)
λ −µN)]

Define B(f) = a∗(f) + a(f) (the operator theoretic closure of B(f) is a self-
adjoint operator with denso domain D(B(f)) ) and then W (f) = eiB(f) is uni-
tary. The W (f) are called Weyl operators. They satisfy the following important

4



identities which all follow from the CCR [a(f), a+(g)] = 〈f, g〉1:

[a(f),W (g)] = i〈f, g〉W (g) (14)

[a+(f),W (g)] = −i ¯〈f, g〉W (g) (15)
[B(f),W (g)] = −2=〈f, g〉W (g) (16)

W (−g)B(f)W (g) = B(f)− 2=〈f, g〉 (17)
W (−g)W (g) = 1 (18)

W (−g)W (f)W (g) = e−2i=〈f,g〉W (f) (19)

These last implications follow by noting

W (−g) (iB(f))nW (g) = (W (−g)(iB(f))W (g))n

for all n ≥ 0 and finally, the famous Weyl relations

W (f)W (g) = e−i=〈f,g〉W (f + g) (20)

To prove the latter, consider the following derivative with respect to a real
variable t:

d

dt
[W (tf)W (tg)W (−t(f + g))] = W (tf)iB(f)W (tg)W (−t(f + g))

+W (tf)W (tg)(iB(g))W (−t(f + g))
+W (tf)W (tg)(−i(B(f) +B(g)))W (−t(f + g))
= W (tf)[iB(f),W (tg)]W (−t(f + g))
= −2it=〈f, g〉W (tf)W (tg)W (−t(f + g))

Calling V (t) = W (tf)W (tg)W (−t(f + g)), and noting that V (0) = 1,

W (t)W (g)W (−(f + g)) = V (1) = 1− 2i
∫ 1

0

dtt=〈f, g〉V (t)

Now by iterating,

V (1) = 1 = i=〈f, g〉+ (−i=〈f, g〉)2

∫ 1

0

dt
t2

2
+ . . .

= e−i=〈f,g〉

W (−g)a∗(f)W (g) = W (−g)[a∗(f),W (g)] + a∗(f)
= a∗(f)− i〈g, f〉

Put g = −iλχΛ
ε0−µ . In the case of periodic boundary conditions, g = iλµχΛ. Then

W (−g)a∗(ϕk)W (g) = a∗(ϕk) + δk,0
λ̄|Λ| 12
ε0 − µ

5



and thus,

W (−g)(H−µN)W (g) =
∑
k∈Λ∗

(εk−µ)a∗(ϕk)a(ϕk)+λ̄|Λ| 12 a(ϕ0)+λ|Λ| 12 a∗(ϕ0)+
|λ|2|Λ|

(ε0 − µ)2

In other words, H(λ)
Λ is unitarily equivalent to H(0)

Λ − |λ|2|Λ| 1
µ2 , where we have

assumed that ε0 = 0. The constant does not affect ρβ,µ. This implies that

ρβ,µ,λ = W (−g)ρβ,µW (g)

In particular, (all in finite volume Λ),

ωβ,µ,λ(a∗(ϕk)) = ωβ,µ,0(W (g)a∗(ϕk)W (−g))

= ωβ,µ,0(a∗(ϕk))− δk,0
λ̄|Λ| 12
µ

= −δk,0
λ̄|Λ| 12
µ

Now, we need to redo the calculation of µΛ(λ) for λ 6= 0.

pΛ(µ, β, λ) =
1

β|Λ|
log Tr e−β(H

(λ)
Λ −µN)

= pΛ(µ, β) +
|λ|2

µ

Then
〈a0〉
|Λ| 12

=
∂p

∂λ
=

λ

−µ

and
〈N〉
|Λ|

=
∂p

∂µ
(µ, λ) = ρΛ(µ) +

|λ|2

µ2

Solving

ρ̄ = ρΛ(µ) +
|λ|2

µ2

if ρ̄ > ρc, then |λ|
µ(λ) →

√
ρ̄− ρc and∣∣∣∣ |〈a0〉λ,µ
|Λ| 12

∣∣∣∣→ ∣∣∣∣λµ
∣∣∣∣→ (ρ̄− ρc)

1
2

independent of Λ, which survives the limit λ ↘ 0. What we have done is
constructed a symmetry-broken phase in which

|ωβ,µ,0
(

a0

|Λ| 12

)
=
√
ρ̄− ρc

6



by λ→ eiαλ one gets a family of states parameterized by α such that

ωβ,µ,0

(
a0

|Λ| 12

)
= eiα

√
ρ̄− ρc

for all α ∈ [0, 2π). The symmetry that relates these states is eiαN. Note that
[a+

0 a0, a0] = −a0, and therefore

e−iαNa0e
iαN = e−iα[N,·]a0

= eiα[a+
0 a0,·]a0

=
∑
n≥0

−iα)n

n!
(−1)na0

= eiαa0 (gauge transformation)
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Statistical Mechanics, Math 266: Week 10 Notes

March 9 and 11, 2010

1 A Model for Superfluidity due to Bogoliubov

The method of Bogoliubov Transformations, or Canonical Transformations, is

related more generally to the Hartree-Fock and generalized Hartree-Fock model

for high density Bose gases in the regime where ρ � ρinitial, µ = 0 where in fact

most particles are assumed to be in the 0-state:

ρc =
N −N0

V
; N −N0 � N0

We also assume that the interaction potential has a positive Fourier Transform.

H =

�

k

εka
+
k ak +

1

2V

�

k,p
Q

V̂ (Q)a
+
k+Qa

+
k−Qapak (1)

with V̂ (Q) ≥ 0 and N0 = �a+
0 a0�. Bogoliubov’s insight was that in this regime,

behavior will be well described by a simplified Hamiltonian where we “only keep

interation terms with two or more factors of a0 (of order N0 or higher)”.

H1 =

�

k �=0

(εk +
V̂ (k)

|Λ| N)a
+
k ak +

V̂ (0)

2|Λ| N
2

+
1

2
N

�

k �=0

V̂ (k)(aka−k + a
+
k a

+
−k) (2)

There are a wide variety of models (Hamiltonians) of this form. We will illustrate

in this simple case and at T = 0 only that Bogoliubov Transformations can be

used to find the ground state (equilibrium state) of such models. (Also for

Fermions (BCS Theory)).

2 Bogoliubov (Canonical) Transformations

Canonical transformations that leave the commutation relations invariant (CAR

or CCR), i.e. they are automorphisms of the algebras generated by the CAR and

CCR. In analogy with classical mechanics, the name canonical transformations
is reserved for the transformation of the underlying phase space , a.k.a., the one-

particle space. In the case of the CCR, this space has a symplectic structure

1



and the canonical transformation can be viewed as the second quantized form

of symplectic transforms on that space.

Let’s proceed somewhat informally. A BCT (Bogoliubov Canonical Trans-

formation) can then be regarded as an automorphism of the CCR (or CAR) of

the following form:

b(f) = τ(a(f)) = a(Uf) + a
+
(V f) , for f ∈ H

where U is a linear operator on H and V is an antilinear operator on H. (Anti-

linear means V (f +λg) = V (f)+ λ̄V (g) for f ∈ H and λ ∈ C and its adjoint V
∗

is an antilinear operator determined by �f |V g� = �V ∗f |g�. Since τ is supposed

to be an automorphism, the b(f) satisfy the same algebraic relations as the a(f)

(the CCR in our case). For this to hold, U and V have to satisfy the following

relations:

U
∗
U = V

∗
V = = UU

∗ − V V
∗

U
∗
V − V

∗
U = 0 = UV

∗ − V U
∗ (3)

automorphisms ar invertible and using the relations in (3) one can show that

τ
−1

is given by

τ
−1

(a(f)) = a(U
∗
f)− a

+
(V

∗
f)

For example, we can check that with b(f) = τ(a(f)) and b
+
(f) = τ(a

+
(f)) =

τ(a(f))
∗

that the b(f) indeed satisfy the CCR:

[b(f), b
+
(g)] = �f, g� for all f, g ∈ H

[b(f), b(g)] = [b
+
(f), b

+
(g)] = 0

Remark 2.1. Antilinear operators V are typically given in terms of a linear
operator V1 and the complex conjugation operator:

V f = V1f̄

Since b(f), b
+
(f) satisfy the CCR we can think of them as creation and

annihilation operators of a new kind of particle, the so-called concept of a quasi-

particle. This is one way in which the quantum theory of particles is really

different from the classical theory. Another novel notion in quantum physics is

that the vacuum state is defined with respect to a particular notion of particles

(the state with no such particles). The vacuum is however, not just nothing.

In particular, the vacuum state for one kind of particles is not the same as the

vacuum as the vacuum for quasi-particles defined using a non-trivial BCT.

For simplicity we will here only discuss the application of BCTs to finding

ground states (T = 0) of quadratic Hamiltonians. More generally, BCTs are

used to carry out the Hartree-Fock approximation at both T = 0 and T > 0.

We concentrate on T = 0 here. The main idea is the following: Find τ (i.e. U ,

V ) such that in terms of the b(f) = τ(a(f)) H can be written in the form

H =

�

α

ωαb
+
(fα)b(fα) + E0

2



with ωα ≥ 0 and E0 ∈ R. Then E0 is the ground state energy of H and the
ground state is the vacuum (quasi-vacuum) for the (quasi-)particles b(f). If this
can be done, one is actually doing an exact diagonalization of H. Clearly, only
H’s that are at most quadratic in the a(f)’s will allow such a treatment (τ does
not change the order of the highest order terms).

We will apply a BCT to Bogoliubov’s Hamiltonian:

H =
�

k �=0

(εk +
V̂ (k)
|Λ| N)a+

k ak +
V̂ (0)N2

2|Λ| +
1
2
N

�

k �=0

V̂ (k)(aka−k + a
+
k a

+
−k)

with εk = k
2, V̂ (k) ≥ 0, N is the number of particles, and ρ = N

|Λ| . As before,

let Λ = [0, L]d ⊆ Rd, εk = k
2, k ∈ Λ∗, ϕk = eik·x

|Λ|
1
2

then ϕk = ϕ−k. We will

consider maps U and V that are “diagonal” in the basis ϕk:

Uϕk = ukϕk

V ϕk = −vkϕk

and assume u−k = uk and v−k = vk where uk, vk ∈ R.

bk = ukak − vka
+
−k (4)

and one can check that

U
∗
U − V

∗
V = = UU

∗ − V V
∗

holds if and only if

u
2
k − v

2
k = 1 (5)

(4) of course implies
b
+
k = uka

+
k + vka−k

and the inverse relations are easy to obtain using (5).

ak = ukbk + vkb
+
−k

a
+
k = ukb

+
k + vkb−k

Now plug this into the expression of Bogoliubov’s model Hamiltonian H1 and
simplify. One obtains:

H1 = ∆ + G0 + G1 (6)

where
∆ =

1
2
ρNV̂ (0) +

�

k �=0

{(εk + ρV̂ (k))v2
k + ρV̂ (k)ukvk} (7)

G0 =
�

k �=0

{(εk + ρV̂ (k))(u2
k + v

2
k) + 2ρV̂ (k)ukvk� �� �

≡ωk≥0

}b+
k bk (8)
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G1 =
�

k �=0

{(εk + ρV̂ (k))ukvk +
1
2
ρV̂ (k)(u2

k + v
2
k)}(b+

k b
+
−k + bkb−k) (9)

We will achieve our goal if we can choose uk, vk such that G1 vanishes, i.e.,

0 = 2(εk + ρV̂ (k))ukvk + ρV̂ (k)(u2
k + v

2
k) for all k ∈ Λ∗ (10)

The condition u
2
k−v

2
k = 1 can be satisfied by (without loss of generality) taking

uk and vk of the form:

uk = εk coshαk

vk = ηk sinh αk

where εk, ηk = ±1 and αk ≥ 0. In this parameterization,

ukvk = εkηk coshαk sinh αk =
1
2
εkηk sinh 2αk

u
2
k + v

2
k = cosh2

αk + sinh2
αk = cosh 2αk

The condition (10) then becomes

0 = (εk + ρV̂ (k))εkηk sinh 2αk + ρV̂ (k) cosh 2αk

i.e.,

tanh 2αk =
ρV̂ (k)

εk + ρV̂ (k)

where we recall our assumption that V̂ (k) ≥ 0, and pick ηk = −1 and εk = +1
for all k. Now, using the facts that

sinh 2α = tanh 2α
1�

1− (tanh 2α)2

and
cosh2 2α− sinh2 2α = 1

we obtain

sinh 2αk =
ρV̂ (k)�

(εk + ρV̂ (k))2 − ρ2V̂ (k)2
(11)

cosh 2αk =
εk + ρV̂ (k)�

(εk + ρV̂ (k))2 − ρ2V̂ (k)2
(12)

and
ωk =

�
(εk + ρV̂ (k))2 − ρ2V̂ (k)2

In other words,
H1 =

�

k �=0

ωkb
+
k bk + ∆ (13)
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and the ground state is the vacuum for the bk.
It is interesting to analyze the behavior of ωk:

εk = k2

so for large k and assuming V̂ (k) → 0 for large k, (e.g., V ∈ L1), then we also
have ω ∼ k2.

If we assume V̂ (0) > 0 and V̂ (k) is continuous near k = 0 then for small k,

ωk ∼
�

2ρV̂ (0)|k|

In particular, with the details depending on the specifics of V̂ (k) we may now
have a non-convex, non-monotone dispersion relation ωk:

We can see this behavior in an explicit example. Consider V (x) = e−γ|x|

where γ > 0.

V̂ (k) =
V̂ (0)γ

|k|2 + γ

ωk =

�
(|k|2(|k|2 + γ) + ρV̂ (0)γ)2 − ρ2V̂ (0)γ2

(|k|2 + γ)2

Then for γ not too large, ωk looks like the graph above.
An interesting consequence of this type of dispersion relation, the point of

the Bogoliubov model, is that it predicts superfluidity. The basic idea is as
follows:

A normal fluid experiences resistance and friction as it flows because per-
turbations may extract kinetic energy out of the flow. In quantum mechanics,
we expect this to happen if the “perturbation” sees an excited state it couples
to that is a state of “extra energy” with respect to the ground state. This is of
course generically the case, but with ωk as in the figure, the mere fact that an
observer (perturbating agent) sees the fluid in uniform motion, is not enough to
have negative energy perturbations of the flowing fluid, or any if the velocity is
not too high. That is, for all k, the flowing fluid still has ω̃k ≥ 0 as seen by a
moving observer. Thus, transfering momentum would mean creating a b̃k with
ω̃k > 0, i.e., adding rather than extracting energy of the fluid. Thus, there is
no dissipation.

ω̃k = ωk + k · v

where v is the velocity of the uniform motion. Transfer of momentum k to fluid
implies change in momentum −k to the environment and the change in energy
can then be estimated to be

∆E =
1

2M
(Mve − k)2 − 1

2
Mv2

e

where ve is the velocity of the environment, M � 1 is the mass of the environ-
ment.

∆E =
k2

2M
− k · ve ∼ −k · ve
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and ve = −v if v is the speed of uniform motion of the fluid described by our
model. Therefore,

ω̃k = ωk + k · v

and if v < vc, ω̃k ≥ 0 and there is no dissipation, hence there is superfluidity.
kc where ωkc = kc · vc predicts the momentum of the first instability in the
superfluid when it reaches the critical velocity vc.
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