Math 115B Homework 1

1) The following problem is open, meaning no one knows a solution: Let $\mathrm{n} \in \mathbb{Z}$ with $n>1$. If $\phi(n) \mid n-1$, then n is prime.

Prove the following weaker result: Let $n \in \mathbb{Z}$ with $n>1$. If $\phi(n) \mid n-1$, then n is a product of distinct prime numbers.
2) Find $\sigma(n)$ and $\tau(n)$ for $n=64,105,2592,4851,111111$, and 15 !.
3) a) Characterize the positive integers n for which $\tau(n)$ is odd.
b) Characterize the positive integers n for which $\sigma(n)$ is odd.
4) Let $k \in \mathbb{Z}$ with $k>1$. Prove that the equation $\tau(n)=k$ has infinitely many solutions n.
5) Let $n \in \mathbb{Z}$ with $n>0$.
a) Show that $\tau(n) \leq 2 \sqrt{n}$.
b) Show that $\tau(n) \leq \tau\left(2^{n}-1\right)$.
6) a) Let $n \in \mathbb{Z}$ with $n>0$. Show that $\sum_{d \mid n, d>0} \frac{1}{d}=\frac{\sigma(n)}{n}$.
b) Let n be a perfect number. Show that $\sum_{d \mid n, d>0} \frac{1}{d}=2$.
7) Let $n \in \mathbb{Z}$ with $n>0$. The number n is said to be superperfect if $\sigma(\sigma(n))=2 n$.
a) Prove that 16 is superperfect.
b) Prove that if $2^{p}-1$ is a Mersenna prime, then 2^{p-1} is superperfect.
c) Prove that if 2^{a} is superperfect, then $2^{a+1}-1$ is a Mersenne prime. (Note: it turns out that all even superperfect numbers are of the form 2^{p-1} where $2^{p}-1$ is a Mersenne prime. No odd superperfect numbers are known)
8) How difficult was this homework? How long did it take?

