Math 22 A: Homework 3

1. (a) Find two 3×3 matrices A and B such that $A \cdot B \neq B \cdot A$

(b) Find a 3×3 matrix A that is not the zero matrix or the identity matrix but such that

$$A \cdot B = B \cdot A$$

for all 3×3 matrices *B*.

- 2. Show that if a matrix A has an inverse A^{-1} , then in fact A^{-1} has an inverse as well.
- 3. (a) Show that if A, B, C are matrices such that A has an inverse and such that

$$A \cdot B = A \cdot C$$

then

- B = C
- (b) The situation is different if A does not have an inverse: Consider

$$A = \begin{bmatrix} 1 & 2\\ -1 & -2 \end{bmatrix}$$

Show that A has no inverse and find two matrices B and C with $A \cdot B = A \cdot C$ but with $B \neq C$.

- 4. Suppose A is an $n \times n$ matrix such that A^{2018} has no inverse. Show that A has no inverse.
- 5. Solve the system of equations

2	3	1		[1]
4	2	0	$\cdot \overline{x} =$	2
-6	1	-1		$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$

in two ways:

- (a) Use row operations to reduce the augmented matrix to an augmented matrix with upper triangular coefficient matrix.
- (b) Use our algorithm from class (using the "very augmented matrix") to calculate the inverse matrix A^{-1} of the coefficient matrix A and calculate

	1	
A^{-1} ·	2	
	3	
		1

- 6.
- (a) In class we showed that the matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

has an inverse precisely when $ad - bc \neq 0$. Suppose now that indeed $ad - bc \neq 0$. Use our algorithm to calculate A^{-1} .

(b) Suppose now that A has no inverse, meaning ad-bc = 0. Show that this implies that one of the following two vectors is a multiple of the other: $\begin{bmatrix} a \\ c \end{bmatrix}, \begin{bmatrix} b \\ d \end{bmatrix}$

7. Consider

$$B = \begin{bmatrix} 1 & b & 0 \\ -1 & 1 & 2 \\ -1 & 2 & 3 \end{bmatrix}$$

Find all values of b such that B is has no inverse.