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1 The Isomorphism Theorems

1.1 Quotient Groups

Definition 1.1. A subgroup H of a group G is called normal provided for all g ∈ G, gHg−1 = H.

Definition 1.2. Suppose G a group, and H is a normal subgroup of G. Then we can define the quotient group
of equivalence classes

G/H := {gH : g ∈ G}

equipped with the binary operation:

gH · g′H = gHg′H = gg′(g′)−1Hg′H = gg′HH = gg′H

Example 1.3. A classic example is

Z/5Z = {g + 5Z : g ∈ Z}

What are the equivalence classes, and or the elements of this quotient group? We see that all integers with
remainder gmod5 upon division by 5 represent their own class. So:

Z/5Z = {[1], [2], [3], [4], [5]} =⇒ |Z/5Z| = 5

Example 1.4. Let GLn(R) be the n × n invertible matrices with entries in R with non-zero deter-
minant, while SLn(R) is the subgroup such that the determinant is exactly 1. Then we notice that
SLn(R) E GLn(R).

So what are the cosets of SLn(R) in GLn(R)?

AH = BH ⇐⇒ A−1B ∈ H ⇐⇒ det(A) = det(B)

That is, there is one coset per each r ∈ R×. Therefore, we see

GLn(R)/SLn(R) ∼= R×

1.2 The First Isomorphism Theorem

Theorem 1.5. First Isomorphism Theorem If φ : G→ G′ is a group homomorphism, then H := ker(φ) E
G and G/H ∼= Im(φ).
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Example 1.6. Define φ : GLn(R)→ R× such that

φ(A) = det(A)

Then φ is a group homomorphism and ker(φ) = SLn(R) and Im(φ) = R×. Therefore, by the First
Isomorphism Theorem,

GLn(R)/SLn(R) ∼= R×

Proof. (Of the First Isomorphism Theorem)

• To show the normality of H:
Suppose h ∈ ker(φ) = H ⇐⇒ phi(h) = 1. Then

φ(ghg−1) = φ(g) · 1 · φ(g−1) = φ(gg−1) = φ(e) = 1 =⇒ H E G

• Now to show G/H ∼= Im(φ)
Consider

f : G/H → Im(φ)

gH → φ(g)

To check that f is well defined, we see:

gH = g′H =⇒ g = g′h =⇒ φ(g) = φ(g′h) = φ(g′)φ(h) = φ(g′)

To show that its a homomorphism, we need to show three things:

1. f is a homomorphism
Exercise

2. ker(f) = {[1]}

f(gH) = φ(g) = 1 ⇐⇒ g ∈ ker(φ) ⇐⇒ gH = eH =⇒ g ∈ [e] =⇒ ker(f) = {[1]}

3. f is onto.
Exercise

Since f is an isomorphism, we conclude G/H ∼= Im(φ)

�

Definition 1.7. A sequence of group homomorphisms

G1
φ1−→ G2

φ2−→ G3
φ3−→ . . .

φk−1−−−→ Gk

is exact if and only if Im(φi) = ker(φi+1) for all 1 ≤ i ≤ k − 2.

Consider the following diagram:

1 H G Im(φ) 1

1 H G G/H 1

trivial inclusion φ trivial

trivial inclusion canonical morphism trivial

This diagram is commutes.
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1.3 The Second Isomorphism Theorem

Definition 1.8. Given a subgroup K ⊂ G, the normalizer NK is the set:

NK := {g ∈ H : gKg−1 = K}

Theorem 1.9. The Second Isomorphism Theorem Let G be a group, H,K are subgroups where H ⊂ NK ,
then

1. The set HK := {hk : h ∈ H, k ∈ K} is a group.

2. H ∩K E H

3. K E HK, and

4. H/H ∩K ∼= HK/K

Proof. 1. Since H ⊂ NK , then
hkh′k′ = hh′ (h′)−1kh′︸ ︷︷ ︸

∈K

k′

︸ ︷︷ ︸
∈K

∈ HK

Also, given hk ∈ HK, we have
k−1h−1 = h−1 hk−1h−1︸ ︷︷ ︸

∈K

∈ HK

Therefore, HK is a subgroup. In fact, since H ⊂ NK , then HK = KH. Notice, we heavily relied on
the fact that H resides within the normalizer of K.

2. If follows immediately H ∩K E H since H normalizes K.

3. To see K E HK, we write
h kKk−1︸ ︷︷ ︸

∈K

h−1 = K

since H ⊂ NK .

4. Let φ : H → HK/K be defined as

h
φ−→ (he)K

We need to check that φ is a surjective group homomorphism. We see:

ker(φ) = H ∩K since hK = K ⇐⇒ h ∈ K

So by the first isomorphism theorem, we see:

H/H ∩K ∼= H/ker(φ) ∼= Im(φ) ∼= HK/K

�

Example 1.10. Consider the map φ : Z→ 2Z defined by

a
φ−→ 2a

Since ker(φ) = {0}, by the First Isomorphism Theorem, we see:

Z ∼= Z/{0} ∼= 2Z
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1.4 The Third Isomorphism Theorem (Dr. Fuch’s Favorite)

Theorem 1.11. The Third Isomorphism Theorem Let G be a group, H E G,K E G,K ⊂ H. Then
K E H and

(G/K)/(H/K) ∼= G/H

Example 1.12.
(Z/12Z)/(6Z/12Z)

Notice, the cosets of 6Z/12Z are {[0], [6]} while Z/12Z has twelve cosets. So we’d expect the end up with
6 cosets as a result of this theorem.

Proof. (Of Third Isomorphism Theorem)

• We’ll leave the proof of K E H as an exercise.

• Now define

φ : G/K → G/H

gK → gH

We should check that φ is well-defined, a homomorphism, and surjective, which will also be left as
an exercise. Now,

ker(φ) = {cosets gK : g ∈ H} = H/K

Therefore, by the first isomorphism theorem, we know

(G/K)/(H/K) ∼= (G/K)/ker(φ) ∼= Im(φ) ∼= G/H

�

1.5 The Correspondence Theorem

Theorem 1.13. Correspondence Theorem Let G be a group, and N E G. There is a bijection of subgroups
A 6 G containing N and G/N. Further,

• Every subgroup of G/N is of the form A/N for some A 6 G containing N .

• A 6 B ⇐⇒ A/N 6 B/N

• A 6 B =⇒ [B : A] = [B/N : A/N ]

• A E G ⇐⇒ A/N E G/N.
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2 Composition Series

This technique allows us to build interesting groups from what we call simple groups.

Definition 2.1. Recall, a group is simple provided it has no nontrivial normal subgroups.

Definition 2.2. A group G has a composition series if and only if it has a series of subgroups

G = G0 E G1 E G2 E . . . E Gr = {e}

such that for each quotient Gi/Gi+1 is simple for all 0 ≤ i ≤ r−1. Such a series is called a subnormal series
and the quotient groups Gi/Gi+1 are referred to as composition factors.

Example 2.3. Consider S5. We recall that A5 E S5 and A5 is simple. So

S5 E A5 E 1

is a composition series with composition factors:

S5/A5
∼= Z/2Z

A5/1 ∼= A5

Example 2.4. Does Z have a composition series? If so, then we want

Z E G1 E . . . E Gr−1 E {0}

Notice, Gr−1 must be abelian since Z is abelian as well as being nontrivial. Further, all Gr−1’s subgroups
are normal. In particular, if we consider 2Gr−1, it is a normal subgroup. However, this shows Gr−1 is not
simple! Therefore, there cannot exist a composition series for Z.

2.1 Existence of Composition Series for Finite Groups

Theorem 2.5. Every finite group G has a composition series.

Proof. Applying induction over the order of G.
Basis of Induction: G = {e} E {e}.
Inductive Step: Suppose |G| < n =⇒ G has a composition series. Now consider a group G of order n.

• G is simple, then G has the composition series:

G E {e}

• G is not simple, then let H E G be a maximal, normal subgroup. So H 6= G and G/H is simple.

Note 2.6. Such an H exists because G is finite, and we can apply the correspondence theorem.
Specifically, for any N E G, we assume we can identify N ′ such that G E N ′ E N . Clearly, we must
terminate at some point due to the finiteness of G.

Now, since |H| < n, we know H has a composition series,

H E H1 E H2 E . . . E Hr = {e}

Then we arrive at the subnormal series:

G E H E H1 E H2 E . . . E Hr = {e}

Further, since H is a maximal subgroup of G, we know G/H is simple. Therefore, this series also
serves as a composition series!

�
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2.2 Interesting Examples

Example 2.7.
Z/pqZ E qZ/pgZ ∼= Z/pZ E {0}

is a composition series with composition factors:

Z/pZ and Z/qZ
Question 2.8. Can we say no infinite group has a composition series? =⇒ No!

Example 2.9. Claim: SL2(R) E {±I} E {e} is a composition series.
Checking the composition factors:

{±I} ∼= Z/2Z is simple

SL2(R)/{±I} ∼= PSL2(R) is simple (Proof on course website)

Notice that the subgroup of SL2(R) generated by〈(
1 1
0 1

)〉
∼= Z

which does not have a composition series!

Remark 2.10. Two different groups can have composition series with the same composition factors.

Example 2.11. Dq := 〈x, y〉 where x4 = y2 = 1 and yx = x3y. Since it’s finite, it should have a composition
series, specifically,

Dq E 〈x〉 E 〈x2〉 E {1}
with composition factors:

Dq/〈x〉 ∼= Z/2Z
〈x2〉/〈x〉 ∼= Z/2Z

This isn’t unique! There are a total of 6 ways to write this composition series.

Example 2.12.
Z/8Z E 2Z/8Z E 4Z/8Z E {0}

with composition factors all congruent to Z/2Z
Remark 2.13. Groups in a composition series of G need not be normal in G.

Example 2.14.
S4 D A4 D Z/2Z× Z/2Z︸ ︷︷ ︸

〈(1,2),(3,4),(1,3),(2,4)〉

D Z/2Z︸ ︷︷ ︸
〈(1,2),(3,4)〉

D 1

However,
〈(1, 2), (3, 4)〉 6E S4

Remark 2.15. You can get groups where all permutations of composition factors are possible!

Example 2.16. Let Simp1, . . . , Simpk be k simple groups. Then

Simp1 × . . .× Simpk D (product of any k − 1 simple groups) D . . . D {e}
Remark 2.17. You can also have groups that lack the ability to permute normal groups.

Example 2.18. Consider D12 = 〈x, y|x6 = y2 = 1, yx = x5y〉. Then

D12 D 〈x〉 D 〈x2〉 D 1

with composition series Z/2Z,Z/2Z, and Z/3Z. As an exercise, show there are no normal order 4 subgroups
of D12, which can be done easily using the Sylow Theorems. Notice, another series must start with

D12 D 〈x〉 D 〈x3〉 D 1

We also leave as an exercise to find the other two composition series.
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2.3 Jordan-Holder Program

Theorem 2.19. Let G be a group with a composition series and let N E G. Then N also has a composition
series.

Proof. We consider the series
G = G0 E G1 E . . . E Gr = 1

Define Ni = N ∩ Gi. We shall leave it as an exercise to prove the claim that Gi+1/Gi =⇒ Ni+1 E Ni.
Now consider,

Ni/Ni+1 = N ∩Gi/Ni+1 ∩Gi+1
∼= (N ∩Gi)Gi+1/Gi+1

Now, we consider the canonical projection

π : Gi → Gi/Gi+1

which has the interesting property

(N ∩Gi)Gi+1/Gi+1 = π(N ∩Gi) E π(Gi)

since N ∩Gi E Gi. Further,

(N ∩Gi)Gi+1/Gi+1
∼= Ni/Ni+1 E Gi/Gi+1 = π(Gi) which is simple

Therefore, Ni/Ni+1 = Gi/Gi+1 =⇒ Ni/Ni+1 is simple or Ni = Ni+1 =⇒ trivial. Therefore, we can
finally write the subnormal series:

N = N0 E N1 E . . . E Nr = 1

Further, we can reduce this chain by crossing out Ni = Ni+1, leaving us with a composition series for
N ! �

Theorem 2.20. Jordan-Hölder Let G be a group with a composition series. Then any two composition
series of G of the same length are equivalent

G = G0 E G1 E . . . E Gr E 1

G = H0 E H1 E . . . E Hr E 1

under the relation
{Gi/Gi+1 : 0 ≤ i ≤ r − 1} = {Hi/Hi+1 : 0 ≤ i ≤ r − 1}

That is, they are equivalent in their composition factors! (Notice, the order at which these factors appear
are not the same).

Proof. We can assume G has at least two composition series:

G = G0 E G1 E . . . E Gr E 1

G = H0 E H1 E . . . E Hs E 1

We can assume without loss of generality that r ≤ s. We shall prove this via induction on r.
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• Basis of Induction: When r = 1, we see have the composition series:

G = G0 E G1 = {e} =⇒ G ∼= G0/G1 is simple

Therefore, G has only one proper normal subgroup, and therefore s = 1 with an equivalent compo-
sition series.

• Inductive Step: Now suppose that the theorem is true for every group with a composition series of
length less than r.

– Case: Suppose G1 = H1. Then we have

G0 E G1 E G2 E . . . E Gr

G0 E G1 E H2 E . . . E Hr

But we see,
G1 E G2 E . . . E Gr

G1 E H2 E . . . E Hr

are two composition series of length r− 1. Therefore, by our inductive hypothesis, we see r = s
and the series are equivalent. Further, the composition factors

G0/G ∼= H0/H1

and the remaining composition factors are equivalent by the inductive hypothesis.

– Case: G1 6= H1. Note that G1 E G,H1 E G =⇒ G1H1 E G. So

G1H1/G1
∼= G/G1︸ ︷︷ ︸

simple

by the correspondence theorem. On the other hand, by the second isomorphism theorem,

G1H1/G1
∼= H1/H1 ∩G1

Also,
G1H1/H1

∼= G/H1︸ ︷︷ ︸
simple

Claim: G1 66 H
We know G1 6= H1. If G1 < H1, then

H1/G1 ∩H1 = H1/G1 E G/G1

since H1 E G. But we found a proper, nontrivial normal subgroup of a simple group, which is
a contradiction. So we can’t have G1 66 H.

In particular, we must see that H1 E G1H1. So

G1/H1 ∩G1
∼= G1H1/H1 E G/H1

We must have G1H1/H1 = G/H1, which can only happen if G = G1H1. Now let K = G1∩H1 E
G.
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Note 2.21. G/G1
∼= H1/K by the second isomorphism theorem. Further, this group is simple.

Also, G/H1
∼= G1/K which is also simple.

Since K E G, then by the previous theorem K has a composition series.

K = K0 E K1 E K2 E . . . E Kt = {e}

Then have three composition series:

G0 E G1 E G2 E . . . E Gr

G0 E G1 E K E K1 E . . . E Gt

G0 E H1 E H2 E . . . E Hr

G0 E H1 E K E K1 E . . . E Gt

By the induction hypothesis, we see:

G1 E G2 E . . . E Gr

G1 E K0 E K1 E . . . E Gt

are equivalent by the induction hypothesis with t = r − 2. Also,

{G1/G2. . . . , Gr−1/Gr} = {G1/K0, K0/K1, . . . , Kr−3/Kr−2}

Further, the same can be said about the series

H1 E K E K1 E . . . E Gt

Therefore,
{H1/H2. . . . , Hs−1/Hs} = {H1/K0, K0/K1, . . . , Kr−3/Kr−2}

Lastly, we already know by the previous note that G/H1
∼= G1/K0. So

{G/H1, H1/H2, . . . , Hr−1/Hr} = {G/K,H1/K0, . . . , Kr−3/Kr−2}
= {G1/K,G/G1, K0/K1, . . . , Kr−3/Kr−2}
= {G/G1, G1/G2, . . . , Gr−1/Gr}

�

Remark 2.22. As a special case of Jordan-Holder is unique factorization in Z.

Example 2.23. Let n > 1 and n ∈ Z, such that

n = pr11 . . . p
rk
k

Then
(Zp1)r1 × (Zp2)r2 × (Zpk)

rk D (Zp1)r1−1 × (Zp2)r2 × (Zpk)
rk D . . .

Now in order to ensure the simplicity of the composition factors, we do need to show care when it comes
to the order of the normal groups.
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3 Solvable Groups

3.1 Other Interesting Series

• We already know where a subnormal series is:

G = G0 D G1 D . . . D Gm

• A abelian series is:
G = G0 D G1 D . . . D Gm

such that
Gi+1/Gi is abelian

• A cyclic series is:
G = G0 D G1 D . . . D Gm

such that
Gi+1/Gi is cyclic

We notice, that each of the series can be ”transformed” or ”refined” into eachother.

Definition 3.1. A refinement of a series

G0 > G1 > . . . > Gm

is a series obtained by inserting finitely many subgroups into the series.

Definition 3.2. A group which admits an abelian series ending with 1 is called solvable.

Example 3.3.
S4 D A4 D 1

which has an abelian refinement
S4 D A4 D Z/2Z× Z/2Z D 1

as well as a cyclic refinement

S4 D A4 D Z/2Z× Z/2Z D Z/2Z D 1

Theorem 3.4. Every abelian series of a finite group G0 admits a cyclic series.

In order to prove this theorem, we need to rely on a useful lemma.

Lemma 3.5. Let f : G→ G1 be a homomorphism, and let

G′ = G′0 D . . . D G′m

be a subnormal series. Let Gi = f−1(G′i). Then

G0 D G1 D G2 D . . . D Gm

is a subnormal series. If the G′i’s form an abelian (or cyclic) series, then the Gi’s form an abelian (or
cyclic) series.
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Proof. Check G0 D . . . D Gm is a subnormal series. Note that the map

φ : Gi/Gi+1 → G′i/G
′
i+1

gGi+1 → f(g)G′i+1

is a well defined, injective homomorphism. This tells us

Gi/Gi+1
∼= H 6 G′i/G

′
i+1

Since a subgroup of an abelian is abelian (or a subgroup of a cyclic group is cyclic), then it follows H is
abelian (cyclic). Therefore,

Gi/Gi+1 is abelian (or cyclic)

�

Proof. (Of Theorem)
Basis of Induction: Let |G0| = 1 =⇒ trivial!
Inductive Step: Suppose this theorem is true for all groups G or order less than n. Now, let |G0| = n and
consider an abelian series:

G0 D G1 D . . . D Gm

By the inductive hypothesis, G1 D . . . D Gm must have a cyclic refinement since |G1| < n. That is,

G1 D H1 D . . . D Hk

is a cyclic refinement. Now consider the canonical map:

f : G0 → G0/G1

g → gG1

We have
G0 D G1 (abelian series)
↓f ↓f

G0/G1 D 1 (abelian series)

Case: If G1 6= 1, then |G0/G1| < n, and so by the inductive hypothesis, the bottom abelian series admits
a cyclic refinement, and the lemma says its preimage is also a cyclic series. Therefore,

G0 D K1 D . . . D G1 D H1 D . . . D Hk

Case: If G1 = 1, we have
G0
∼= G0/G1 is abelian

Let x0 ∈ G0, x 6= 1, let K = 〈x〉 6= 1.

• If K = G0, we are done!

• If K 6= G0, then let

π : G0 → G0/K

which is well defined since every subgroup of an abelian group is normal. Then

G0 D 1 (abelian series)
↓π ↓π

G0/K D 1 (abelian series)

By the induction hypothesis, the bottom series admits a cyclic refinement since |G0/K| < n. By the
lemma, we know this refinement lifts its cyclic refinement to a cyclic refinement of the top series!

G0 D L1 D . . . D K D 1
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Corollary 3.5.1. A finite solvable group admits a cyclic series ending with 1.

Example 3.6. Recall the group S4 is solvable by:

S4 D A4 D Z2 × Z2 D Z2 D 1

S3 is also solvable with
S3 D A4 D 1

So one might be tempted to ask is this is true for any n? Turns out, Sn is not solvable for n ≥ 5. This is
because An is simple for n ≥ 5 and not abelian. (Proof available on course website)

3.2 The Derived Series

Recall, the commutator subgroup of G is given by

[G,G] := {ghg−1h−1 : g, h ∈ G}

Lemma 3.7. G/[G,G] is abelian.

Proof.

h[G,G] · h′[G,G] = hh′[G,G] = hh′(h′)−1h−1h′h[G,G] = h′h[G,G] = h′[G,G] · h[G,G]

�

Lemma 3.8. Also, if G/N is abelian, then [G,G] 6 N.

Proof.
hh′N = h′hN =⇒ hh′h−1h′−1 ∈ N =⇒ [G,G] =⇒ [G,G] 6 N

�

Definition 3.9. Let

G(0) = G,G(1) = [G,G], G(2) = [G(1), G(1)], . . . , G(i) = [G(i−1), G(i−1)]

Then the series
G = G(0) D G(1) D G(1) D . . . D Gn

is the derived series of G.

Theorem 3.10. G is solvable if and only if G(n) = 1 for some n ≥ 0.

Proof. (⇐). Let G(n) = 1. Then

G = G(0) D G(1) D G(1) D . . . D Gn

is an abelian series ending with 1.
(⇒) Suppose G is solvable. Then G possesses an abelian series

G = G0 D G1 D . . . D Gm = 1

Claim: G(i) 6 Gi for all i.
Basis: G(0) = G0.
Inductive Step: Suppose G(i) 6 Gi for all i < k. Now,

G(k) =[G(k−1), G(k−1)] 6 [Gk−1, Gk−1] 6 Gk

since Gk−1/Gk is abelian. So
G(m) 6 Gm = 1 =⇒ G(m) = 1

�
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Now we can prove a pretty major theorem,

Theorem 3.11. Let G be a group, let H D G. then G is solvable if and only if H and G/H is solvable.

Proof. (⇒) Suppose G is solvable. Then

G(0) D G(1) D . . . D G(m) = 1

Note that H(i) 6 G(i) for all i. So we get

H(0) D . . . D H(m) = 1 =⇒ H is solvable

Now consider our favorite map, the canonical map

G
f−→ G/H = K

g → gH

Exercise 3.12. f(G(i) = K(i).

As a result of this exercise, we have

K = K(0) D K(1) D . . . D K(m) = 1

Therefore, K = G/H is solvable. (⇐) If K = G/H and H are solvable, we have

G
f−→ G/H = K

g → gH

Now we can pull back from K,
K = K(0) D K(1) E . . . D K(n) = 1

Then the series
G(0) D G(1) D . . . D G(n)︸︷︷︸

6H

Since H is solvable, we can chain abelian series of H to complete the series of G(0) �

Corollary 3.12.1. Sn is not solvable for n ≥ 5.

Example 3.13.
D2n D [D2n, D2n] = 〈r2〉︸ ︷︷ ︸

D
(1)
2n

D 1︸︷︷︸
D

(2)
2n

Example 3.14.
Sn D [Sn, Sn] = An

This is because g ∈ Sn can be written g = (a, b, c) = (a, c, b)2 = ((a, b), (a, c))2 and since 3-cycles generate
An for n ≥ 3 and [Sn, Sn] 6 An. Therefore we reach equality. If n ≥ 5, then An is simple =⇒ [An, An] is
1 or An. So we see:

Sn D An D An D . . . D An D . . .

Notice we don’t get termination.

Example 3.15. [GL2(Q), GL2(Q)] = SL2(Q) and [SL2(Q), SL2(Q)] = SL2(Q).
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4 Group Actions

4.1 A Toolbox of Theoretic Techniques (aka Review)

Definition 4.1. A group action of G on a set S is a map

G× S → S

(g, s)→ gs

such that

• es = s for all s ∈ S,

• (gh)s = g(hs) for all g, h ∈ H and s ∈ S

Definition 4.2. We define Gs := {g ∈ G : gs = s} as the stabilizer of s in G. This is a subgroup of G.

Definition 4.3. We define Os := {gs : g ∈ G} as the orbit of s in G.

Theorem 4.4. The orbits Os partition S, so for some indexing set I,

S =
⊔
i=I

Osi

Theorem 4.5 (Orbit Stabilizer). If [G : Gs] is finite, then |Os| = [G : Gs]. Otherwise, Os has infinitely
many elements.

Example 4.6. Let H E G. Then G acts on H by conjugation:

g(h) = ghg−1

Example 4.7. Let H 6 G. Then G/H is the set of left cosets of H in G. G acts on G/H by

g(g′H) = (gg′)H

Corollary 4.7.1 (For Conjugation Actions). If H 6 G. Then the number of subgroups of G conjugate to
H is the index [G : NH ] of the normalizer of H in G.

Theorem 4.8 (Orbit Decomposition Formula). If S is finite, then

|S| =
∑
i∈I

[G : Gsi ]

Theorem 4.9 (The Class Equation). Let G be a finite group, then

|G| =
∑
x∈C

[G : Gx] = |Z(G)|+
∑

x∈C,x6∈Z(G)

[G : CG(x)]

where C is a set of representatives for distinct conjugacy classes {gxg−1 : g ∈ G}, and

CG(x) := {g ∈ G : gx = xg}
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Proof. The first equals sign is the result of the orbit decomposition formula, where G acts on G by
conjugation. x is alone in a conjugacy class if and only if x ∈ Z(G). So∑

x∈C

[G : Gx] = |Z(G)|+
∑

x∈C,x6∈Z(G)

[G : Gx]

where Gx = {g ∈ G : gxg−1 = x}. But we see:

Gx = {g ∈ G : gxg−1 = x} = CG(x) = {g ∈ G : gx = xg}

�

Definition 4.10. If X, Y are G-sets, then φ : X → Y is a G-set homomorphism if

φ(gx) = gφ(x)

for all g ∈ G, x ∈ X. If φ is bijective, then φ is a G-set isomorphism.

Note 4.11. To prove the Orbit-Stabilizer Theorem, one shows that X is a transitive G-set, then

X ∼= G/Gx

for any x ∈ X.

Theorem 4.12. If H,K 6 G, then the G-sets G/H and G/K are isomorphic if and only if H and K are
conjugate in G.

Remark 4.13. x = H ∈ G/H =⇒ Gx = G

Remark 4.14. Every element x′ = H ∈ G/H is of the form gx for some g ∈ G. So u inGx if and only if

ux = ugx; = gxx′

if and only if
g−1ug ∈ Gx = H.

Also, every group of the form gHg−1 stabilizes some element in G/H

{set of stabilities of x′ ∈ G/H} = {gHg−1 : g ∈ H}

Proof. (⇒) If G/H ∼= G/K as G-sets, then the set of stabilizers of elements in G/H are the same as the
set of stabilizers of element in G/K. This is because, for every x ∈ G/H and suppose g ∈ Gx. Then

φ(x) = φ(gx) = φ(g)φ(x) =⇒ Gx 6 Gφ(x)∀x ∈ G/H

By the same argument,
Gφ(x) 6 Gφ−1φ(x) = Gx

Therefore, Gx = Gφ(x) for all x ∈ G/H. Moreover, this shows that H and K are conjugate. (⇐) Now
suppose H and K are conjugate. Then

H = gKg−1

for some g ∈ G. Moreover, H is the stabilizer of gK ∈ G/K. We now define the map

φ : G/H → G/K

g′H → g′gK

Checking that φ is a G-set homomorphism:

15



• Claim: φ is well-defined
Check

• Claim: φ is one-to-one
Suppose φ(g′1H) = φ(g′2H). Then

g′1gK = g′2gK

=⇒ (g′1g)−1g′2g = g−1(g′1)
−1g′2g ∈ K

=⇒ (g′1)
−1g′2 ∈ gKg−1 = H

Therefore, g′1H = g′2H

• Claim: φ is onto
Check

�

A useful theorem to have as a tool:

Theorem 4.15. Let G be finite, and p divides |G| is the smallest prime dividing |G|. Then if [G : H] = p
then

H E G

4.2 Automorphism Groups

Definition 4.16. Let G be a group. An automorphism of G is an isomorphism from G to G. The set of
all automorphisms of G is called Aut(G).

Remark 4.17. One should check that Aut(G) is a group under composition of morphisms and a subgroup
of S|G|

Theorem 4.18. Let H E G. Then for every g ∈ G, then conjugation h → ghg−1 is an automorphism of
H. This provides a homomorphism G→ Aut(H) with kernel CG(H). This implies

G/CG(H) ∼= subgroup of Aut(G)

Note 4.19. If K 6 G, g ∈ G, then K ∼= gKg−1.

Definition 4.20. For g ∈ G, conjugation by g is called an inner automorphism of G. Further, the group
of all inner automorphism is called Inn(G).

Remark 4.21. Inn(G) E Aut(G).

Remark 4.22. By the previous theorem, Inn(G) ∼= G/Z(G).

Question 4.23. You might ask, since there are inner automorphisms, is there such a thing as outer
automorphisms?

Turns out there is some notion, by endowing the algebraic structure:

Out(G) = Aut(G)/Inn(G)

Example 4.24. Inn(D8) ∼= D8/Z(D8) = D8/〈r2〉 ∼= Z2 × Z2

Example 4.25. For n ≥ 3, Inn(Sn) ∼= Sn/Z(Sn) ∼= Sn since Z(Sn) is trivial for n ≥ 3.
In fact, for n ≥ 3, n 6= 6, Aut(Sn) ∼= Sn too! (Homework)
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Example 4.26. Let’s consider Aut(Z). That is,

φ : Z→ Z

Then φ(1) = 1 or φ(1) = −1. That is, when thinking of automorphisms, we have to think of where the
generators are being sent. Specifically, generators map to generators.

Exercise 4.27. Aut(Z/nZ) ∼= (Z/nZ)×

Exercise 4.28. Aut(Z/pZ) ∼= (Z/pZ)× ∼= Z/(p− 1)Z

4.3 Semi-Direct Products

We recall direct products written as H ×K. A generalization of this is the semi-direct product

H oK

Definition 4.29. Let H 6 G,N E G,G = NH with N∩H = 1. We call G the internal semi-direct product
of N by H,

G = N oH

If also H E G, then G ∼= N ×H.

Observations:

• H ∼= H/N ∩H ∼= NH/N = G/N . Further, if G is finite, then

|G| = |N | · [G : N ] = |N ||H|

• G = NH =⇒ x ∈ G then x = nh for some n ∈ N, h ∈ H uniquely

• If x, y ∈ G, x = n1h1, y = n2h2, then

xy = (n1h1)(n2h2)

= (n1h1)(n2︸ ︷︷ ︸
∈N

h−11 h1h2)︸ ︷︷ ︸
∈H

• Let h ∈ H,N E G =⇒ hNh−1 = N . Now let

φh : N → N

n→ hnh−1

Therefore, φh ∈ Aut(N). So
φh ◦ φh′ = φhh′

So I have a homomorphism

φ : H → Aut(N)

h→ φh

This is the ”conjugation homomorphism” for semi-direct projects G.

Note 4.30. (n1h1)(n2h2) = n1φh1(n2)h1h2 for all n1, n2 ∈ N, h1, h2 ∈ H. This gives a way to express
the group operation in G in terms of φ and the group operations separately in N and H.

17



• What if φ : H → Aut(N) were trivial? Then

nhn−1 = nφh(n
−1)h = nn−1h = h =⇒ H E G =⇒ G ∼= N ×H

Conversely, if G = N × H, then the elements of H must commute with the elements of N , which
implies φ is trivial!

• If φ : H → Aut(N) is nontrivial, then G is nonabelian.

Definition 4.31. Let H,N be groups, and let

φ : H → Aut(N)

h→ φh

be a homomorphism. Let
G := {(n, h) : n ∈ N, h ∈ H}

with operation
(n1, h1)(n2, h2) = (n1φh1(n2), h1h2)

This is a group, denoted
N oφ H,

called the external semidirect product of N and H.

Note 4.32. If φ is trivial, then G ∼= N ×H.

Theorem 4.33. Let N ∼= {(n, 1) : n ∈ N} = N̄ and let H ∼= {(1, h) : h ∈ H} = H̄. Then

• N̄ E N oφ H

• N̄ ∩ H̄ = 1

• for all n̄ ∈ N̄ , h̄ ∈ H̄, we have h̄n̄h̄−1 = (φh(n), 1)

• N̄H̄ = N oφ H

Example 4.34. Consider H = 〈h〉, and let n ∈ N where the order of n divides |H|. Define

φ : H → Aut(N)

h→ n−1(·)n

Now, letting G = N oφ N . We consider 〈(n, h)〉 6 G. Then

〈(n, h)〉 ∼= H

Also, 〈(n, h)〉 ∩ N̄ = 1, therefore G ∼= N oH.

Example 4.35. Let N = Z/nZ and H = Z/2Z. Then

φ : H → Aut(N)

0→ e

1→ inversion map x→ −x

18



Then we see that N oφ H is generated by (1, 0) and (1, 1). Also,

(1, 1)2 = (1 + φ1(1), 1 + 1)

= (1− 1, 1 + 1)

= (0, 0)

and
(1, 0)n = (0, 0)

(1, 0)(1, 1) = (1 + φ0(1), 0 + 1) = (2, 1) = (1, 1)(1, 0)−1

This is in fact D2n!

Theorem 4.36. The following are equivalent:

1. N oφ H ∼= N ×H with an injective map φ

2. φ : H → Aut(N) is trivial

Proof.

(1) ⇐⇒ (n1φh1(n2), h1h2) = (n1n2, h1, h2) ⇐⇒ φh(n) = n∀n ∈ N, h ∈ H ⇐⇒ (2)

�

Exercise 4.37. If N oφ H is abelian, then N,H are abelian and φ must be trivial.

Theorem 4.38 (Recognition). Suppose G is a group, H,N 6 G with

• N E G

• N ∩H = 1

Let φ be a homomorphism

φ : H → Aut(N)

h→ h−1(·)h

Then NH ∼= N oφ H. If G = NH, then G ∼= N oφ H.

Theorem 4.39. Let p, q be primes such that p 6 |q − 1, p ≤ q. Then any group G of order pq is abelian.

Proof. |Z(G)| divides pq. So |Z(G)| = 1, p, q or pq

• Case: Suppose Z(G) 6= 1. Then |Z(G)| = p, q, or pq

– Subcase: |Z(G)| = pq =⇒ G is abelian.

– Subcase: |Z(G)| = p or |Z(G)| = q, then G/Z(G) is cyclic =⇒ G is abelian.

• Case: Suppose Z(G) = 1.
Claim: G has a subgroup of order p and and subgroup of order q.
Suppose G only has a subgroup of order p. Then by the class equation,

|G| = pq = |Z(G)|+
∑

g∈G,g 6∈Z(G)

[G : CG(g)] = 1 + kq
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But pq 6≡ 1modq =⇒ contradiction.

Now, let |H| = p and |N | = q, with H,N 6 G. Then

[G : N ] = p =⇒ N E G

And N ∩H = 1. Finally NH 6 G and |NH| = pq =⇒ NH = G. Further,

G = N oφ H

with
φ : H︸︷︷︸

orderp

→ Aut(N)︸ ︷︷ ︸
orderq−1

Either φ is trivial =⇒ G ∼= N ×H ∼= Z/qZ× Z/pZ or p|q − 1 =⇒ contradiction!

�
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5 Sylow Theorems

Definition 5.1. G is a p-group, with p prime, provided |G| = pn.

Definition 5.2. Let G be a finite group with H 6 G. Then H is a p-subgroup, with p prime, provided
|H| = pn. If n is the highest power of p dividing |G|, then H is called a p-Sylow subgroup.

Example 5.3. S6 has a 3-Sylow Subgroup

〈(1, 2, 3), (4, 5, 6)〉 with order 9

as well as a 2-Sylow Subgroup

〈(1, 2, 3, 4), (3, 4), (5, 6)〉 with order 16

Question 5.4. Is it true in general that if p divides the order of G, can it be said that G has a p-Sylow
Subgroup?

Theorem 5.5 (Sylow’s First Theorem). Let p divide the order of G, with p prime. Then there exists a
p-Sylow subgroup of G.

In order to prove this theorem, we need the following Lemma:

Lemma 5.6. Let G be finite and abelian, and let p be prime and p divides the order of G. The G has an
element of order p.

Proof. Homework �

Proof. (Of Sylow’s First Theorem)
We will induce on the order of G.

• Basis: When |G| = 1, then conclusion is immediate,

• Inductive Hypothesis: Suppose the theorem is proven for all G with |G| < n

• Inductive Step: Let |G| = n.

– Case: If n is prime, then G is its own p-Sylow subgroup

– Case: If there exists H 6 G with p 6 |[G : H], then the highest power of p dividing |H| is the
same as the highest power of p dividing |G|. Therefore, any p-Sylow subgroup of H is a p-Sylow
subgroup of G. Further, since H is a proper subgroup of G, it follow |H| < n. Therefore, by
the inductive hypothesis, there exists a p-Sylow subgroup!

– Case: Now if there exists H 6 G with p|[G : H], we an consider conjugation action of G on G.
By the class equation

|G| = |Z(G)|+
∑

x∈C,x6∈Z(G)

[G : CG(x)]

By our assumption, we know p divides [G : CG(x)] and p divides |G|. Therefore,

|Z(G)| = |G| −
∑

x∈C,x6∈Z(G)

[G : CG(x)]

must also be divisible by p =⇒ G has a nontrivial center. Now since Z(G) is abelian, then
Z(G) contains an element of order p by the lemma mentioned. So

〈a〉 E Z(G) 〈a〉 E G
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Now, consider the canonical projection

π : G→ G/〈a〉g → g〈a〉

And let pn be the highest power of p dividing |G|. Then we see:

pn−1 divides G/〈a〉

and, by the inductive hypothesis, must have a p-Sylow subgroup K. Let H = π−1(K). We
notice, 〈a〉 6 H and π(H) = K, then

H/〈a〉 ∼= K

with |H| = p · pn−1 = pn. But this is a contradiction!

�

To prove the remaining theorems, we would like to leverage the following lemma:

Lemma 5.7. Let P be a p-Sylow subgroup of G. Let S be the set of all conjugates of P in G. Let H 6 G
be a p-subgroup, and therefore acts on S by conjugation. Then

1. p does not divide |S|

2. if k := #{ fixed points of H acting on S }, then

k ≡ |S|(modp)

3. If k = 1, then |S| ≡ 1(modp)

Proof. 1. Consider the action of G on all subgroups of G by conjugation. Then |S| = [G : Gp] = [G : NP ]
where we have P 6 NP =⇒ |NP | is divisible by the highest power of p dividing G. Therefore, p
cannot divide [G : NP ] = |S|.

2. If x ∈ S is a fixed point of H, the Hx = H. On the other hand, if x ∈ S is not a fixed point of H,
then p|[H : Hx] since H is a p-subgroup. Then by the Orbit-Decomposition formula,

|S| =
∑

orbit repsx

[H : Hx] = #{fixed points}+ pm

=⇒ |S| ≡ k (modp)!
�

Theorem 5.8 (The Second Sylow Theorem). Let H be a p-subgroup of G. Then H is contained in some
p-Sylow subgroup of G.

Proof. Let H be a p-subgroup of G. Let P 6 G be a p-Sylow subgroup of G. Write |P | = pn.

• Case: H 6 NG(P ). Then HP 6 G and P E HP and [HP : P ] = [H : H ∩ P ] as a result of the
second isomorphism theorem. If HP 6= P, then p divides [HP : P ] and [HP : P ] = pk for some k.
Now,

|HP | = pm where m > n

But this is a contradiction since P is p-Sylow and must be the highest power p-Group in G. Therefore,
HP = P =⇒ H = H ∩ P =⇒ H 6 P.
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• Case: H 66 NG(P ).
Let S be as in the previous lemma, noting that H acts on S via conjugation. So p does not divide
|S| by the first part of the lemma, and the number of fixed points of H 6= 0.

Letting Q ∈ S be a fixed point of G, then

H 6 NQ =⇒ H 6 Q

since Q is a p-Sylow subgroup (because it is the conjugate of a p-Sylow subgroup).

�

Theorem 5.9 (The Third Sylow Theorem). All p-Sylow subgroup of G are conjugate.

Proof. Let H from above by p-Sylow. Then since |H| = |Q| for any p-Sylow subgroup Q. Let P be
a p-Sylow subgroup, say H 66 NP . So for any p-Sylow subgroup P and H, they are conjugate to one
another. �

Theorem 5.10 (The Fourth Sylow Theorem). The number of p-Sylow subgroup of G is congruent to
1 (mod p) and this number must divide |G|.

Note 5.11. Let S be as in the previous lemma. Then a p-Sylow subgroup H fixes only itself in S =⇒
one fixed point. Otherwise, we would have H 6 NG(Q) =⇒ H 6 Q =⇒ H = Q.

Proof. Now, by the second part of the previous lemma, we know that |S| = the number of p-Sylow
subgroups which is congrent to 1 (mod p). Also, the number of groups conjugate to P is [G : NG(P )]||G|. �

Corollary 5.11.1. A p-Sylow subgroup P 6 G is normal in G if and only if the only it is the only p-Sylow
subgroup.

Corollary 5.11.2 (Cauchy’s Theorem). If G is a finite group and p divides |G|, then G contains an
element (and hence a subgroup) of order p.

Proof. If H is a p-Sylow subgroup of G, then we can take any element h ∈ H. If |h| = pi, then hp
i−1

is of
order p. �

5.1 Classifying Finite Groups

Theorem 5.12. Let G be a finite p-group. If |G| > 1, then G has nontrivial center and it is solvable.

Proof. Nontrivial Center: By the class formula, we know:

|G| = |Z(G)|+
∑

x∈C,x6∈Z(G)

[G : Gx]︸ ︷︷ ︸
divide |G|

=⇒ |Z(G)| = |G| −
∑

x∈C,x6∈Z(G)

[G : Gx]︸ ︷︷ ︸
divide |G|

=⇒ p||Z(G)| =⇒ Z(G) 6= 1

Solvable: Inducting on |G|.

• Base Case: Let |G| = 2 =⇒ solvable.

• Inductive Hypothesis: Suppose all p-groups with |G| < n are solvable.
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• Inductive Step: Let |G| = n. Now

|G/Z(G)| < n =⇒ G/Z(G) is solvable by inductive hypothesis

Now write an abelian series for G/Z(G):

G/Z(G) = H0 D H1 D . . . D Hm = 1

Letting π be the canonical projection of G to G/Z(G), we know G = π−1(H0). Therefore, we see:

G = π−1(H0) D π−1(H1) D . . . D π−1(Hm) = Z(G)

Now, tacking on the trivial group at the end, we see:

G = π−1(H0) D π−1(H1) D . . . D π−1(Hm) = Z(G) D 1

is an abelian series. Therefore, G is solvable.

�

5.2 Consequences of Sylow Theorems

Example 5.13. Any group of order pqn where p, q are prime and q ≥ p is solvable.

Proof. Assume p 6= q. Let |G| = pqn. Let Q be a q-Sylow subgroup of order qn. Notice that Q E G since

[G : Q] = p

which is the smallest prime dividing |G|. Therefore, Q is a q-group and therefore solvable. Now, we arrive
at the abelian series.

G D Q D Q1 D . . . D Qm = 1

Also, G/Q ∼= Zp which is abelian. Therefore G is solvable. �

Example 5.14. If p, q are prime with p|q−1, then there is a unique (upto isomorphism) non-abelian group
of order pq.

Proof. Let |G| = pq and p < q such that p|q − 1. Notice, G has subgroups P,Q such that |P | = p and
|Q| = q. Now Q E G since it’s index p in G is the smallest dividing the order of G. Further, Q∩P = 1 by
order considerations. In fact,

G = QP ∼= Qoφ P

for some φ : P → Aut(Q). Since P has prime order, P = 〈x〉. Now Aut(Q) is a cyclic group of order
q − 1. So it contains a unique subgroup of order p, say 〈y〉. So φ(P ) 6 〈y〉 and so φ(x) = yk for some
k. Further, there are exactly p such homomorphisms that map φi(x) = yi with 0 ≤ i < p. Clearly, φ0 is
trivial, and therefore shows G is abelian. Therefore, every other φi gives a non-abelian group Gi of order
pq. Moreover, all of these Gi’s are isomorphic because φi(x

′) = y for some other available generator x′ of
P . So there is a unique nonabelian group up to isomorphism! �

Also, just a useful theorem that might be proven later:

Theorem 5.15. Any finite abelian group A is isomorphic to a product of cyclic groups:

A ∼= Zpr11 × Zpr22 × . . .× Zprnn × Z× . . .× Z

where pi are prime. This is unique up to reordering the factors.
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6 Review of Field Theory

6.1 Motivational Examples

Example 6.1. Consider the number

a =
3
√
−27 + 3

√
−11 + 3

√
−27− 3

√
−11

2

As it turns out, a3 − 4a+ 2 = 0

Example 6.2.
S3 D A3 D 1

an Abelian series.

As it turns out, these two problems are connected. That is, the equation above has a solution if and only
if S3 is solvable!
Consider a =

√
−1. Then C = R plus

√
−1. But we recall there are 2 choices for

√
−1. Turns out,

interchanging these two roots results in a symmetry of C, fixing only the real numbers.
Say we adjoint the roots of x168−161x123+28x28−7 to Q, which is an irreducible polynomial by Eisenstein’s
criterion.
Further, what can we say about the symmetries of the resulting field?

6.2 Some Reminders about Fields

Definition 6.3. A ring is a group 〈R,+〉 equipped with a second operation · that is both associative and
closed.

Definition 6.4. An ideal is an additive subgroup of 〈R,+〉 such that rI ⊂ I for all r ∈ R

Proposition 6.5. Given a subring J , I ∩ J is an ideal.

Proposition 6.6. IJ := {x1y1 + . . . xnyn : xi ∈ I, yj ∈ J} is an ideal.

Proposition 6.7. I + J := {x+ y : x ∈ I, y ∈ J} is an ideal.

Proposition 6.8. A field only contains two ideals, F, {0}.

In any field, we can consider any Transcendental and algebraic elements in F.

Definition 6.9. An element α is algebraic of a given field F provided α satisfies some polynomial equation

anα
n + . . .+ a1α + a0 = 0

where ai ∈ F. If no such polynomial equation exists, we say that element is transcendental.

Definition 6.10. Let α be algebraic over F. Then

F (α) = {anαn + . . .+ a1α + a0 : ak ∈ F}

Proposition 6.11. Let τ be transcendental over F. Then

F (τ) ∼= F [x]

is not a field.
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Theorem 6.12. If G is a finite subgroup of F×, where F is a field, then G is cyclic.

Proof. Say G is a finite group with n elements.

Claim: If for every d dividing n, {x ∈ G : xd = 1} ≤ d, then G is cyclic.
Notice, if x ∈ F, then you are looking at most d roots of xd− 1. To prove the claim, we have d is a divisor
of n. Define Gd be the in G of order d. Suppose Gd 6= ∅. Then there exists y ∈ Gd, 〈y〉 ⊂ {x ∈ G : xd = 1}.
Also, since y is of order d, then |〈y〉|. We hypothesis, we want to show

〈y〉 = {x ∈ G : xd = 1}

So Gd is the set of generators of 〈y〉. So
|Gd| = ϕ(d)

where ϕ is the Euler-Totient Function. So

|G| = n =
∑
d|n

|Gd| ≤
∑
d|n

ϕ(d) = n

The chain must be equalities. Therefore, for all d dividing n

|Gd| = φ(d)

Moreover, this is demonstrates Gn is nonempty. Moreover, there is an element in Gn of order n in G.
Therefore, G is cyclic.

�

6.3 Structure Theorems on Fields

Theorem 6.13. Let p(x) ∈ F[x] be the minimal polynomial of α ∈ K = F (α) where α is algebraic over F
and let deg(p) = n. Then

K ∼= F [x]/〈p(x)〉 := {g(x) + p(x) : g(x) ∈ F [x]}
α← x

k ← k ∈ F

Remark 6.14. Also, S = {1, α, α2, . . . , αn−1} is a basis for K over F . We say

dimF (K) = n

Or the degree of K over F .

Note 6.15. There are similar theorems for transcendental elements, called transcendent bases.

Theorem 6.16. Let K/F , where K is a (possibly finite) field extension of F . The set of elements of K
which are algebraic over F is a field.

Proof. Let S be the set of elements in K algebraic over F . So we want for all x, y ∈ S, we have x+ y, x−
y, xy ∈ S and y 6= 0 =⇒ xy−1 ∈ S. Notice, F ⊂ S ⊂ K. Observe, we can have the tower:

F (x, y)
|

F (x)
|
F
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we want to show that each of these connections are in fact algebraic extensions. Specifically, these exten-
sions must be finite. To prove the F (x, y) is an algebraic extension, we can leverage the Tower Theorem
to show the extension from F to F (x, y) is finite. Notice, if F (α) is finite with degree n, then

1, α, α2, . . . , αn

so some linear combination of these is 0.
So F (x, y) is an algebraic extension over F. Therefore, F (x, y) ⊂ S. �

Theorem 6.17. Suppose φ : F
∼−→ F ′. Let p(x) ∈ F [x] be irreducible and let q(x) = φ(p(x)). Let α be a

root of p(x), β be a root of q(x). Then there exists an isomorphism σ : F (α)
∼−→ F ′(β) such that

F (α) = β and σ|F = φ

Proof. Notice,
F (α) ∼= F [x]/〈p(x)〉 ∼= F ′[x]/〈q(x)〉 ∼= F ′(β)

α→ x→ x→ β

where the restriction on F is just φ. �

6.4 Composite Fields

Definition 6.18. Let K1, K2 be subfields of K. The composite field of K1 and K2 is denoted by K1K2 and
is defined as the smallest field of K containing K1, K2.

Example 6.19. Let ω3 = e
2πi
3 and K = C. Define

K1 = Q(
3
√

2) K2 = Q(ω3
3
√

2)

Then
K1K2 = Q(

3
√

2, ω3) = Q(
3
√

2 + ω3)

To see this, let α = 3
√

2 +ω3 and look at powers of αi with 0 ≤ i ≤ 5. Then we can write all of these powers
as linear combinations of 3

√
2, ω3,

3
√

2ω3.

Theorem 6.20. Let K1/F and K2/F be finite and

[K1K2 : F ] ≤ [K1 : F ][K2 : F ]

with equality if and only the F -basis of one of the Ki’s remains linearly independent over the other Ki.

Proof. Let {αi} be a basis of K1 over F , and let {βj} be a basis for K2 over F . Then

K1K1 = the smallest subfield of K containing F ({αi}, {βj})
= F ({αi}, {βj})

Claim: {αiβj}i,j spans K1K2 over F .

αni β
m
k = αni

∑
r

brβr

=
∑
s

asαs
∑
r

brβr

=
∑
`,j

a`bjα`βj
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Therefore,
[K1K2 : F ] ≤ [K1 : F ][K2 : F ]

To see when equality holds, we notice that since αiβj spans K1K2 over F , we must have that {βj} spans
K1K2 over K1. Therefore,

[K1K2 : K1] ≤ [K2 : F ]

with equality if and only if {βj} are linearly independent over K1. Consider,

K1K2

|
K1

|
F

By the Tower Rule,
[K1K2 : F ] = [K1K2 : K1][K1 : F ] = [K2 : F ][K1 : F ]

if and only if {βj} are linearly independent over K1. The same can be said for K2 as the intermediary
field. Therefore, the claim holds. �

Example 6.21. [Q( 3
√

7)Q( 2020
√

11) : Q]
Observe,

Q

Q( 3
√

7) Q( 2020
√

11)

Q( 3
√

7)Q( 2020
√

11)

deg 3 deg 2020

We see that the degree of the extension is divisible by both 3 and 2020 and hence

3 · 2020 = 6060

Also, the degree is at most the product of the our two degrees. Therefore, we conclude the degree of the
field extension is exactly 6060.

Example 6.22. Q( 4
√

2,
√

3) : Q) = d. Obviously by the same argument before, we see that 4 must divide
d. Also, 2 must divide d. Therefore, 4 ≤ d ≤ 8. Now,

• If d = 4, then
√

3 ∈ Q( 4
√

2), which cannot occur.

Therefore, d = 8.

Example 6.23. α = 4
√

2, β = 4
√

18, with

[Q(α)Q(β) : Q] = 8

since
√

18 = 3
√

2

Remark 6.24. If need note be true that [K1K2 : F ] divides [K1 : F ][K2 : F ]
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Example 6.25. Let F = Q and K1 = Q( 3
√

2) and K2 = Q(ω3
3
√

2). Then

K1K2 = Q(
3
√

2, ω3)

But

[K1K2 : Q] = 6 6 | 9

The fundamental issue comes from the fact that both K1 and K2 are missing roots of the same polynomial
x3 − 2.
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7 Field Extensions

7.1 Splitting Fields

Definition 7.1. Let F be a field, and let p(x) ∈ F [x]. An extension K/F is called a splitting field over F
if p(x) factors into linear factors in K[x] but not so over any proper subfield of K containing F .

Example 7.2. C is a splitting field over R of x2 + 1 ∈ R[x]. Clearly this extension is of degree 2.

Example 7.3. What is the splitting field of x2 − 2 ∈ Q[x] over Q? The first question you should ask
yourself is ”What are the roots of this polynomial?” Here, the roots are:

3
√

2, ξ3
3
√

2, and ξ23
3
√

2

So the splitting field is contained in Q( 3
√

2, ξ3). In fact, we can show that the splitting field contains
Q( 3
√

2, ξ3) and there the splitting field must be exactly Q( 3
√

2, ξ3). Next, what is the degree of extension?
Observe,

[Q(
3
√

2, ξ3) : Q] = [Q(
3
√

2, ξ3) : Q(ξ3)][Q(ξ3) : Q] = 3 · 2 = 6

Example 7.4. Given x6 − 1 over Q. Observe, this polynomial is reducible:

x6 − 1 = (x+ 1)(x2 − x+ 1)(x− 1)(x2 + x+ 1)

However, we see that the quadratic factors cannot be reduced in Q. The roots of this polynomial are:

1,−1,
1±
√
−3

2
,
−1±

√
−3

2

Therefore, the splitting field needs to include
√
−3. Therefore, the splitting field is Q(

√
3).

Question 7.5. Given any polynomial over a field, can we always find a splitting field for such a polynomial?

Theorem 7.6. Let F be a field, let p(x) ∈ F [x]. Then there exists a splitting field for p(x) over F .

Proof. Induct on the degree of p(x), and then use the fact that if α is a root of p(x), then p(α) = (x−α)q(x)
where q must have degree less than p. Then we can define the field:

F (α) = F [x]/〈p(x)〉

Therefore, by the induction hypothesis, we get a field L in which p(x) splits. To get the minimal one, we
can take the intersection of all subfields of L in which p(x) splits. �

Definition 7.7. An algebraic extension K/F is a normal extension if it is the splitting field of a collection
of polynomials in F [x].

Example 7.8. Any degree 2 extension K/F is normal. This is because, if α ∈ K \ F, then α is the root
of a quadratic polynomial over F . That means this quadratic polynomial facts into linear factors in K.
Since K is a degree 2 extension, it is the smallest such extension. Therefore, K is the splitting field for
this particular polynomial.

Example 7.9. Is Q( 4
√

2)? Is it normal over Q?

Lemma 7.10. If K is a splitting field for some polynomial g over F . Say f(x) ∈ F [x] which is irreducible
over F and has a zero in K. Then f(x) splits in K.
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Clearly by this lemma, its not possible for Q( 4
√

2) to be normal over Q since it fails to possess all of the
roots of x4 − 2 ∈ Q[x].

Proof. If α1, α2, . . . are the roots of f(x), then [K(αi) : K] is independent of i. Moreover, by the tower rule

[K(αi) : K][K : F ] = [K(αi) : F ] = [K(αi) : F (α)] [F (αi) : F ]︸ ︷︷ ︸
deg(f)

Since K is a splitting field of g(x) over F , then we must have that K(αi) is a splitting field of g(x) over
F (αi). Now,

F (αi) ∼=φ F (αj)

for any i, j. Therefore,
K(αi) ∼=µ K(αj)

with µ|F (αi) = φ for all i, j including αj ∈ K. But that means, K(αj) = K for any j. Therefore, K contains
all of the roots of f . �

Theorem 7.11. Let φ : F
∼−→ F ′ be an isomorphism. Let f(x) ∈ F [x], let φ(f(x)) = g(x) ∈ F ′[x]. Let

E be a splitting field of f(x) over F . Let E ′ be a splitting field for g(x) over F ′. Then there exists an
isomorphism µ : E

∼−→ E ′ such that
µ|F = φ

Proof. We shall prove by inducting on the degree of f .

• Basis: If deg(f) ≤ 1, then E = F and E ′ = F ′.

• Inductive Step: Now suppose the theorem is true for polynomials of degree less than n. Consider a
polynomial f of deg(f) = n+ 1. Considering an irreducible factor of p(x) of f(x), let

φ(p(x)) = q(x)

Let α be a root of p(x). Let β be a root of q(x). By theorem 6.14, there exists a map µ1 : F (α)→ F (β)
where µ1|F = φ. Now write

f(x) = (x− α)h(x) ∈ F (α)

g(x) = (x− β)k(x) ∈ F ′(β)

h(x) must split in E. If it were to split over a smaller field containing F (α), then this would contradict
the fact that E is a splitting field of f over F . Therefore, E is a splitting field of h(x) over F (α) and
E ′ is a splitting field for k(x) over F ′(β). So we have

µ1 : F (α)
∼−→ F ′(β)

↓ ↓
E E ′

By induction, there exists µ : E
∼−→ E ′ with µ|F (α) = µ1 and µ|F = µ1|F = φ.

�

Corollary 7.11.1. Any two splitting fields of p(x) ∈ F [x] over F are isomorphic.

31



7.2 Algebraically Closed Fields

Definition 7.12. A field K is algebraically closed if every p(x) ∈ K[x] has a root in K.

Example 7.13. C is an algebraically closed field.

Definition 7.14. Let F be a field. A field F̄ is called an algebraic closure of F if F̄ is algebraic over F

and every p(x) ∈ F [x] splits completely in F̄ .

Note 7.15. The definition for algebraic closure of a field does not necessarily guarantee algebraically closed.

Theorem 7.16. If F is a field, then F̄ is algebraically closed.

Proof. Consider α0 + α1x+ . . .+ αnx
n ∈ F̄ [x]. Let α be a root. Then

F (α, α0, α1, . . . , αn)

is algebraic over F (α0, . . . , αn). Therefore, α ∈ F̄ . �

Theorem 7.17. Let F be a field. Then there exists an algebraic closure of F , called F̄ . Any two algebraic
closures of F are isomorphic.

Before we start the proof, let’s recall a couple of set theoretic facts:

• If S, T are sets, then |S| = |T | =⇒ there exists a bijection between S and T

• If |S| ≤ |T | =⇒ there exist an injection S → T or a surjection T → S

As well as the following lemmas:

Lemma 7.18. Let F be a field, let K/F be algebraic. Then |K| ≤ max{|F |, |N|}.

Proof. Let Mon be the set of monic polynomials in F [x], and for every n ≥ 1, let

Mn
on ⊂Mon

be the subset of degree n monic polynomials. For every α ∈ K, consider the minimal polynomial mα ∈Mon,
with ordered roots of mα in K

α1, α2, . . .

We can construct the injective map

K →Mon × N
α→ (mα, i)

Therefore, by the second fact recalled from set theory:

|K| ≤ |Mon × N| = |Mon|

So what is |Mon|? Consider Mn
on := {xn + an−1x

n−1 + . . . : ai ∈ F}. So we have a bijection with F n via
the coefficients. So for finite F ,

|F n| = |F |n

On the other hand, for infinite F , |F |n = |F |. Therefore,

|Mon| =

∣∣∣∣∣⋃
n

Mn
on

∣∣∣∣∣ = max{|F |, |N|}

�
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Lemma 7.19. Let K be a field. Then the following are equivalent:

• If L/K is algebraic, then L = K.

• Every polynomial f(x) ∈ K[x] splits completely over K.

Lemma 7.20 (Zorn). If A is a nonempty, partially ordered set in which every chain has an upper bound,
then A has a maximal element.

Proof. (Of Theorem)
(Existence) Suppose S is a ”giant set” containing F . Specifically, |S| > max{|F |, |N|}. Such a set exists
via taking the power set of either F or N. So then there exists an injection F → S, but not a bijection.

Consider A := { all fields L ⊂ S such that F ⊂ L and L is algebraic over F}. A is nonempty since F ∈ A.
Now, define the partial order, denoted by ≤, by

L1 ≤ L2 ⇐⇒ L1 ⊂ L2

Then any chain L1, L2, L3, . . . has an upper bound
⋃
i Li, which is a field since the union of fields is still

a field. Now, applying Zorn’s Lemma, it must follow that A has a maximal element, say M . We want to
show that M is our candidate for our algebraic closure.

Let L be an algebraic extension of M . We want to show that L = M , which by one of the above lemmas
would show that M is an algebraic closure. By Lemma 6.40, we know

|L| ≤ max{|M |, |N|} ≤ max{|F |, |N|} < |S|

So there exists an injective map f : L→ S such that f |M = identity map since |L \M | < |S|. Now make
f(L) ⊂ S into a field by defining

f(a) + f(b) = f(a+ b)

f(a)f(b) = f(ab)

So f(L) is algebraic over F . So f(L) ∈ A with M ⊂ f(L). Since M is maximal, then L = M.

Therefore, by Lemma 6.41, we know that M is an algebraic extension.

(Uniqueness) Suppose K,K ′ are algebraic closures of F .
Claim: There exists τ : K

∼−→ K ′ with τ |F = identity map.
Let S := {(L, φ) : L ⊂ K,φ : L → K ′ is an injective homomorphism with φ|F = id}. Note, S 6= ∅ since
(F, id) ∈ S. We now define a partial order on S by

(L, φ) ≤ (L′, φ′) ⇐⇒ L ⊂ L′ and φ′|L = φ

Notice that for a chain {(Li, φi)}, we have if L =
⋃
i Li,

φ : L→ K ′

a→ φi(a) if a ∈ Li

Then (L, φ) is an upper bound for this chain. Therefore, we may apply Zorn’s Lemma, there exists a
maximal element (M, τ) in S.

Claim: M = K and τ(M) = K ′

If M 6= K, then there exists f ∈ F [x] that does not yet split over M . Let α be a root of f not in M . Let
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α′ ∈ K ′ be a root of τ(f(x)) = f(x) Note that τ is an isomorphism from M to τ(M). By Theorem 6.14,
there exists

µ : M(α)→ τ(M)(α′) such that µ|M = τ

So (M(α), µ) ∈ S. But this contradicts the maximality of (M, τ). Therefore, M = K.
Clearly τ(K) ⊂ K ′ is an algebraic closure of F . Therefore K ′ = τ(K) by Lemma 6.41. �

7.3 Separability and Positive Characteristic

Question 7.21. Consider the polynomial

f(x) = xp−1 + xp−2 + . . .+ x+ 1 ∈ Z[x]

where p is prime. Is this polynomial irreducible over Q?

Answer: Yes! Set g(x) = f(x+ 1) which has a leading term xp−1. Then

g(x) =
(x+ 1)p − 1

(x+ 1)− 1
=

p∑
i=1

p!

i!(p− i)!
xi−1

By Eisenstein’s Criterion, we know g(x) is irreducible. Therefore, f(x) is also irreducible. So the roots of
f(x) are the roots of unity

ξp, ξ
2
p , . . . , ξ

p−1
p

Definition 7.22. Let f(x) ∈ F [x]. We say f(x) is separable if all of its roots (in some splitting field) are
distinct.

Question 7.23. So how do we detect separability?

Theorem 7.24. Let f(x) ∈ F [x]. Then f(x) has a multiple root α if and only if α is a root of f ′(x). Also,
f has no multiple roots if and only if gcd(f, f ′) = 1.

Proof. Left as an exercise. �

Theorem 7.25. Let f(x) ∈ F [x] be nonzero, irreducible. Then if char(F ) = 0, then f(x) is separable.

Proof. f(x) is not separable if and only if it has a multiple root if and only if it has a nontrivial common
factor with f ′(x) if and only if f(x) divides f ′(x). This can be seen since for any

g(x)|f(x) and g(x)|f ′(x)

Then f(x) shares a zero α with f ′(x). Also, f(x) divides h(x) whenever h(α) = 0. But since f is irreducible,
this implies f(x) divides f ′(x). But since deg(f) > deg(f ′) ⇐⇒ f ′(x) = 0 which, within characteristic 0,
means f(x) is constant. Constradiction! Therefore, f is separable. �

Question 7.26. What about for positive characteristic p?

Lemma 7.27. Let F be a field where char(F ) = p > 0. Then the Frobenius endomorphism φ : F → F
given by

x→ xp

is an injective field homomorphism.

Proof. • We can check this mapping is injective. To do so, we know the ker(φ) is an ideal of our field.
Since a field only possesses two ideals, F and 0, then we see

Ker(φ) = {0}
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• To check that it’s a homomorphism:

φ(xy) = (xy)p = xpyp = φ(x)φ(y)

φ(x+ y) = (x+ y)p = xp + yp = φ(x) + φ(y)

• To check surjectivity, we note that an injective endomorphism of a finite field is automatically sur-
jective. Since char(F ) = p, then F is finite. Therefore, φ is surjective.

�

Corollary 7.27.1. Let F be a finite field of char(F ) = p > 0. Then every element is F is a pth power.
That is,

F = F p

Definition 7.28. A field F is called perfect if either:

• char(F ) = 0, or

• char(F ) = p > 0 and every element of F is a pth power.

Theorem 7.29. Let F be a perfect field. Then every irreducible polynomial f(x) ∈ F [x] is separable.

Proof. • Case: When char(F ) = 0, this has already been proven in theorem 6.47.

• Case: When char(F ) = p > 0, and from the proof of char(F ) = 0 case, we know that the only
chance for f(x) to be inseparable is if f ′(x) = 0. This happens if

f(x) =
∑
i

aix
i

where ai 6= 0 only if p divides i. Now we’re going to leverage our definition for perfect fields. Write

f(x) =
∑
j

apjx
pj =

∑
j

bpjx
bj

for some bj ∈ F. Hence,

f(x) =
∑
j

(b)jxj)p =

(∑
j

bjx
j

)p

But this contradicts the irreducibility of f(x). Therefore, f is separable.
�

Note 7.30. The converse is also true! If t is not a pth power,

f(x) = xp − t = (x− t1/p)p

is irreducible but inseparable.

Definition 7.31. An algebraic extension K/F is called separable of every x ∈ K is the root of a separable
polynomial F [x]. Otherwise, the extension is inseparable.

Theorem 7.32. Let F be a perfect field. Let K/F be an algebraic extension. Then K/F is separable.

Question 7.33. Can we think of an inseparable extension?

Example 7.34. Let p be prime. Looking at the extension:

Fp(t)/Fp(tp)

where

Fp(t) :=

{
f(x)

g(x)
: f(x), g(x) ∈ Fp[x], g(x) 6= 0

}
Then t is a root of f(x) = xt − tp = (x− t)p.
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7.4 Classifying Finite Fields

Example 7.35. A finite field that we are all familiar with is

Fp ∼= Z/pZ

with characteristic p.

Question 7.36. What are all the other finite fields of characteristic p?

Lemma 7.37. Every field F of characteristic p contains a subfield isomorphic to Fp

Proof. Consider the field generated by 〈1〉. Then 〈1〉 ∼= Fp �

Therefore, every field of characteristic p is an extension of Fp. Therefore, we can ask?

[F : Fp] = n <∞

For what values of n is this true? Does degree determine F? When is F1 ⊂ F2. This leads us to the
following theorem:

Theorem 7.38. Let p be prime. Then

1. For all n ≥ 1, ∃ a field field F with [F : Fp] = n

2. Such an F (as in 1.) is unique up to isomorphism.

3. Two finite fields of characteristic p must satisfy

F1 ⊂ F2

if and only if
[F1 : Fp]|[F2 : Fp]

Proof. 1. For n ≥ 1, consider a splitting field of f(x) = xp
n − x ∈ Fp[x]. To see if this polynomial is

separable, we often would look at the derivative. Observe,

f ′(x) = −1

Therefore, f(x) has no common factors with f ′(x), and therefore f(x) is separable. So f(x) has pn

distinct roots in its splitting field. The set of these roots are closed under addition since for any α, β
roots of f(x), then by Freshman’s Dream:

(α + β)p
n − (α + β) = (αp

n − α) + (βp
n − β) = 0 + 0 = 0

The set of these roots are also closed under multiplication, since for any α, β roots of f(x), then

(αβ)p
n − αβ = αp

n

βp
n − αβ = αβ − αβ = 0

Clearly, 0 and 1 are both roots of f(x) and the nonzero roots are invertible. Therefore, the roots
form a field of size pn containing Fp. Moreover, this field has degree:

[F : Fp] = n ⇐⇒ {α, . . . , αn} is a basis ⇐⇒ pn elements in F over Fp
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2. Suppose [F : Fp] = n. Then
|F×| = pn − 1

So every α ∈ F× satisfies αp
n−1 = 1 =⇒ αp

n−α = 0. So F is contained in a splitting field of xp
n−x

and |F | = pn is a splitting field of xp
n − x. Splitting fields are unique up to isomorphism. Therefore,

we have uniqueness of finite fields.

Note 7.39. These fields are denoted Fq where q = pn. But WARNING, F 6∼= ZZ/qZ!

3. Let n1 = [F1 : Fp] and n2 = [F2 : Fp]
(⇒) Suppose F1 ⊂ F2. Then by the tower theorem, says n1 divides n2.
(⇐) Suppose n1 divides n2. Let α ∈ F1. Then αp

n1 − α = 0 by (2). Now,

αpin1 = α

for all i ≥ 1. Also, n1|n2 =⇒ n2 = in1 for some i. So

αp
n2 = α =⇒ α ∈ F2

�

37



8 Galois Theory

8.1 Motivating Problems

• If you take a general polynomial of degree 5, there is no analogue of the quadratic formula.

• C = R(
√
−1) is algebraically closed.

• The regular 65537-gon can be constructed with rule and compass. Notice, this number is equal to
216 + 1, which is a prime number.

8.2 A little history ...

• Evariste Galois lived from 1811-1833

• His father committed suicide, after being involved in political riots as well as serving time in prison.

• He challenged someone to a duel over a girl. Obviously he lost ...

• He refused to prove obvious facts, which cost him entrance to the Ecole Polytechnique

• His work, though impressive to Cauchy, failed to garner the attention of the French mathematical
community

• Galois completed his manuscript on the solutions of polynomial equations the evening before the
duel.

8.3 Automorphisms on Fields

Definition 8.1. Let K be a field. A field isomorphism σ : K
∼−→ K is called an automorphism of K.

Definition 8.2. Recall that the set of automorphisms forms a group under composition, denoted Aut(K).

Let K/F be an extension. The subset Aut(K/F ) of Aut(K) consists of σ ∈ Aut(K) such that σ(x) = x
for all x ∈ F. Moreover,

Aut(K/F ) 6 Aut(K)

Definition 8.3. We typically refer to any σ ∈ Aut(K/F ) as an F -automorphism of K.

Lemma 8.4. Let K/F be a field extension and let α ∈ K be algebraic over F . For every σ ∈ Aut(K/F ),
then element σ(α) is the root of the minimal polynomial mα,F (x) of α over F . Moreover, the minimum
polynomial of σ(α) over F is mα,F (x).

Proof. Left as an exercise. �

Question 8.5. How many symmetries can be identified in Aut(K/F )?

Example 8.6. Take K = Q(
√

5) over F = Q. If σ ∈ Aut(K/F ), then for any a+ b
√

5 ∈ K :

σ(a+ b
√

5) = σ(a) + σ(b
√

5) = a+ bσ(
√

5)

Therefore, we can simply carry
√

5 only to another root of the minimum polynomial. In this case, there
are only two options: ±

√
5. Therefore,

σ1 :
√

5→
√

5

σ2 :
√

5→ −
√

5

And therefore,
Aut(K/F ) = Z/2Z
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Example 8.7. The minimum polynomial of Q( 3
√

2), is x3 − 2. However, there are no other roots in this
field. Therefore, we only have the option to let

σ :
3
√

2→ 3
√

2

And therefore, Aut(Q( 3
√

2)/Q) = {1}

Example 8.8. Take p prime and consider

Aut(Fp(t)/Fp(tp))

In order to classify this automorphism group, we need to know how this extension acts on t. Here, t is a
root of

f(x) = xp − tp ∈ F(tp)[x]

which splits over Fp(t) by Freshman’s Dream. That is,

f(x) = xp − tp = (x− t)p ∈ Fp(t)

and therefore only one root. So the group is trivial.

Question 8.9. In general, what can be said about the size of the Automorphism group?

Lemma 8.10. Let K/F be a finite extension. Then |Aut(K/F )| <∞.

Proof. Suppose there exists α1 ∈ K \ F. If no such α exists, then the extension is clearly trivial. Now,

[K : F (α1)] < [K : F ]

Suppose K 6= F (α1). Then take α2 ∈ K \ F (α1)

=⇒ [K : F (α1, α2)] < [K : F (α1)]

Since the extension K/F is of finite degree, identifying these elements will eventually halt. Suppose these
elements are listed

α1, . . . , αr ∈ K

such that K = F (α1, . . . , αr). Let σ ∈ Aut(K/F ). For all 1 ≤ i ≤ r, we know σ(αi) is a root of
mαi,F (x) =⇒ finitely many options. Also, once you know σ(αi) is for all i, we have determined σ. Sp

|Aut(K/F )| <∞

�

Question 8.11. What can be understood about this extension K/F by studying this group Aut(K/F ).

Clearly, there are situations where this automorphism group isn’t very revealing. For example, when the
set of automorphisms is trivial. In the previous examples, it turns out,

Q(
3
√

2)/Q is not normal

Fp(t)/Fp(tp) is not separable

So it could be there is some connection between these two extensions and the trivialness of their automor-
phism groups.
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8.4 L-Valued Characters

Definition 8.12. Let G be a group and let L be a field. An L-valued character is a group homomorphism
G→ L×.

Example 8.13. Let σ ∈ Aut(L). Then σ|L×L× → L× is an L-valued character.

Definition 8.14. Let G be a group and L be a field. Then the set {x1, . . . , xm} be L-valued characters of
G are called linearly independent over L if whenever there are `1, . . . , `m ∈ L, with

`1x1(g) + . . .+ `mxm(g) = 0

for all g ∈ G, then `i = 0 for all i.

Theorem 8.15 (Dedekind). Let G be a group and let L be a field. Let x1, . . . , xm be distinct L-valued
characters of G. Then these characters are linearly independent over L.

Proof. Suppose they are linearly dependent. Let, without loss of generality,

a1x1 + . . .+ asxs = 0

with ai 6= 0. Let s be the smallest possible number less than or equal to m that is obtained in this way.
Clearly, s ≥ 2 since α1x1(id) = ai 6= 0. So x1 6= xs =⇒ there exists g0 ∈ G with xi(g0) 6= xs(g0). Now for
all g ∈ G, we have

1.
∑s

i=1 aixi(g0g) =
∑s

i=1 aixi(g0)xi(g) = 0

2. xs(g0)
∑s

i=0 aixi(s) =
∑s

i=1 aixi(g)xs(g0) = 0

Subtracting (2) from (1), we get

s−1∑
i=1

ai(−xs(g0) + xi(g0))︸ ︷︷ ︸
not all zero since xs(g0)6=x1(g0)

xi(g) = 0

But we assume that s were the smallest for this relationship to occur. Contradiction! Therefore, they are
linearly independent! �

Theorem 8.16. Let K/F be finite. Then

|Aut(K/F )| ≤ [K : F ]

Proof. Let [K : F ] = m and |Aut(K/F )| = n. Suppose n > m. Write

Aut(K/F ) = {σ1, . . . , σn}

with F -basis of K
{α1, . . . , αm}

Consider the n ×m matrix A := {aij}n×m where aij = σi(αj). Notice A ∈ Mn×m(K). Since n > m, the
rows of A must be linearly dependent over K and so there exists λ1, . . . , λn ∈ K, not all of which are zero,
such that

λ1Ae1 + λ2Ae2 + . . .+ λnAen ∈ 0 ∈ Km

Looking at each coordinate in this equation:

n∑
i=1

λiσi(αr) = 0 for every 1 ≤ r ≤ m
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Now, for every i, we look at the K-valued character of K×

σi|K× : K× → K×

These are all distinct. Let g ∈ K×. Then there exist fj ∈ F for all 1 ≤ j ≤ m, such that

g =
m∑
j=1

fjαj

since {αj} makes a basis. So

n∑
i=1

λiσi(g) =
n∑
i=1

λiσi

(
m∑
j=1

fjαj

)

=
n∑
i=1

λi

n∑
j=1

fjσi(αj)

=
m∑
j=1

fj

n∑
i=1

λiσi(αj) = 0

Therefore, the characters σi|K× are linearly dependent. But this contradicts Dedekind’s Lemma! �

8.5 Galois Extensions

Definition 8.17. Let K/F be finite. We call K/F a Galois Extension if

|Aut(K/F )| = [K : F ]

In this case, Aut(K/F ) is called the Galois Group of K/F, and denoted by Gal(K/F ).

Definition 8.18. Let K be a field and H 6 Aut(K). The set F(H) := {k ∈ K : σ(k) = k, for all σ ∈ H}
is a subfield of K and is called the fixed field of H.

Theorem 8.19 (Artin). Let K be a field, and let H 6 Aut(K) be a finite subgroup. Let F(H) be the field
field of H. Then

|H| = [K : F(H)]

and so K/F(H) is Galois with
Gal(K/F(H)) = H

Proof. We know that H 6 Aut(K/F(H)) since H fixes F(H).

=⇒ |H| ≤ |Aut(K/F(H))| ≤ [K : F(H)]

Now, for contradiction, suppose |H| < [K : F(H)]. Let

H = {σ1, . . . , σn}

and for some m > n, let {α1, . . . , αm} be a set of elements in K that a linearly independent over the
fixed field F(H). Let A = {ai,j} ∈ Mn×m(K) given by aij = σi(αj). Since n < m, we have the columns
are linearly dependent vectors in Kn. After reordering the columns, then there exists λ1, . . . , λr ∈ K all
nonzero where 2 ≤ r ≤ m such that for all 1 ≤ j ≤ n we have

r∑
k=1

λkσj(αk) = 0
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Notice r 6 1 since λ1︸︷︷︸
6=0

σj( α1︸︷︷︸
6=0

) and an automorphism can’t take a nonzero element to zero. Further, assume

r is the smallest such number for which we achieve this linear dependence relationship. Observe,

1

λ1

r∑
k=1

λkσj(αk) =
r∑

k=1

λk
λ1
σj(αk) =

r∑
k=1

λ′kσj(αk) = 0

where λ′1 = 1. Note that not all λ′i are in F(H). If they were, we can take σ ∈ H, then

σ

(
r∑

k=1

λ′kαk

)
=

r∑
k=1

λ′kσj(αk) = 0

Since σ ∈ Aut(K), then
r∑

k=1

λ′kαk = 0

But this contradicts the linear independence of αj ∈ F(H). Let σ ∈ H, then

{σσ1, . . . , σσn} = {σ1, . . . , σn}

So

σ

(
r∑

k=1

λ′kσj(αk)

)
=

r∑
k=1

σ(λ′k)σ`(αk) = 0

Notice, λ′1 = 1 =⇒ σ(λ′1) = 1. Observe, if we subtract:

0 =
r∑

k=1

λ′kσ`(αk)−
r∑

k=1

σ(λ′k)σ`(αk) =
r∑

k=2

(λ′k − σ(λ′k))σ`(αk)

But by reordering, this contradicts the minimality of r. Therefore,

|H| = [K : F(H)]

Now, since H 6 Aut(K/F(H)) which has order

|H| = [K : F(H)]

Then it must follow that
H = Aut(K/F(H))

�

Corollary 8.19.1. Let H1 6= H2 be finite subgroups of Aut(K). Then F(H1) 6= F(H2).

Example 8.20. Let K = Q(
√

2,
√

3), which is an extension for both the fields Q(
√

2) and Q(
√

3). Now,
consider

H1 := {id,
√

2→ −
√

2}

H2 := {id,
√

3→ −
√

3}

Then we see
F(H1) = Q(

√
3) 6= Q(

√
2) = F(H2)

even though the groups H1
∼= H2.
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Example 8.21. Gal(Q(
√

5)/Q) = Z2 =⇒ fixed field is Q.

Example 8.22. On the other hand, Aut(Q( 4
√

2)/Q) = {id} =⇒ fixed field is Q( 4
√

2).

Corollary 8.22.1. A finite extension K/F is Galois if and only if F(Aut(K/F )) = F .

Proof. (⇒) Suppose K/F is Galois. Then

[K : F ] = |Gal(K/F )|

So Gal(K/F ) = Aut(K/F ), which is a finite subgroup of Aut(K). By Artin’s Theorem,

F(Gal(K/F )) = F(H)

=⇒ K/F(H) is Galois

=⇒ [K : F(Gal(K/F ))] = |H| = |Gal(K/F )|

That is,
[K : F ] = |Gal(K/F )| = [K : F(Gal(K/F ))]

=⇒ F(Gal(K/F )) = F

(⇐) Suppose F(Gal(K/F )) = F .
Then

[K : F ] = [K : F(Gal(K/F )︸ ︷︷ ︸
6Aut(K)

)] = |Aut(K/F )|

By Artin’s Theorem since Gal(K/F ) is a finite subgroup of Aut(K). Therefore, K/F is Galois. �

Corollary 8.22.2. Let K/F be finite. Then |Aut(K/F )| divides [K : F ].

Proof. By Tower Theorem and Artin,

[K : F ] = [K : F(Aut(K/F ))][F(Aut(K/F )) : F ]

�

Theorem 8.23 (Equivalent Definitions of Galois). Let K/F be a finite extension. Then the following are
equivalent:

1. K/F is Galois.

2. K/F is normal and separable.

3. K is the splitting field of a set of separable polynomials in F [x].

Proof. • (1) =⇒ (2) : Let α ∈ K, and we want the minimal polynomial of α over F mα,F (x) to be
separable and split completely in K. If this is true, then K is the splitting field of

{mα,F (x) ∈ F [x] : α ∈ K}

Let Gal(K/F ) = {σ1, . . . , σn}. Consider

σ1(α), . . . , σn(α)
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which are elements of K but not necessarily distinct. Instead, we say the ”distinct set” of β1, . . . , βr
where every α = βi for some i. We now hope to show :

mα,F = m(x) =
r∏
i=1

(x− βi)

Now, Gal(K/F ) acts on K[x] by acting on the coefficients. Given τ ∈ Gal(K/F ), then

τ(m(x)) = τ

(
r∏
i=1

(x− βi)

)
=

r∏
i=1

(x− τ(βi)) =
r∏
i=1

(x− βσ(i)) =
r∏
i=1

(x− βi)

So m(x) ∈ F [x] and is separable by construction. Therefore mα,F (x) must divide but also m(x)
divides mα,F (x). So m(x) = mα,F (x) =⇒ all roots are in K. Therefore, K/F is separable and
normal!

• (2) =⇒ (3) Normal implies its the splitting field of a family of polynomials. If we replace that
family with the set of irreducible factor polynomials, then we get (3).

• (3) =⇒ (1) We can induct on [K : F ]

– Basis: If [K : F ] = 1 =⇒ K = F =⇒ clearly Galois

– Inductive Hypothesis: Suppose [K : F ] = n and we know (3) =⇒ (1) for extensions of degree
less than n. Say K is the splitting field of a set {fi(x)} of separable polynomials in F [x]. We
can assume the degree of fi is greater than 1 since linear factors already split in F . Take f(x)
in this set, and let α ∈ K be a root. Let’s look at the following tower:

K
|

F (α)
|
F

where H = Aut(K/F (α)) 6 Aut(K/F ). Since K is the splitting field of {fi(x)} over F (α),
then we know |H| = [K : F (α)] < n and therefore, we can apply the inductive hypothesis to
see K/F (α) is Galois.

What is r = [F (α) : F ]? We want r := [Aut(K/F ) : H]! We know f(x) is separable =⇒ the
minimum polynomial m(x) = mα,F (x) is separable. m(x) has exactly the same number of roots
in K as the degree of the minimal polynomial. We denote the roots

α1, . . . , αr

Choosing α = αi for some i, we know there exists an isomorphism:

τi : F (α)
∼−→ F (αi)

τi(α) = αi

τi|F = id

Moreover, by the uniqueness of splitting fields, ∃σi : K
∼−→ K with σi|F (α) = τi. Notice

σi ∈ Aut(K/F ).
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Looking at the cosets σ1H, . . . , σrH in Aut(K/F ). Observe these cosets are distinct because
otherwise, if σiH = σjH

=⇒ σ−1j σi︸ ︷︷ ︸
∈H

(α) = α

=⇒ σ−1j (αi) = α

=⇒ αi = αj

=⇒ i = j

Therefore, [Aut(K/F ) : H] ≥ r. If [Aut(K/F ) : H] > r, then |Aut(K/F )| > |H| · r = [K :
F (α)] · [F (α) : F ] = n which contradicts Theorem 7.16. Therefore

[Aut(K/F ) : H] = r

=⇒ [Aut(K/F )] = |H|[Aut(K/F ) : H] = [K : F (α)] · [F (α) : F ] = n = [K : F ]

So K/F is Galois!

�

So all these definitions of Galois will come in handy for identifying Galois Groups.

Example 8.24. Consider Q( 3
√

2, ζ3), which is the splitting field of x3−2 over Q. Since x3−2 is separable,
we know by the previous theorem that Q( 3

√
2, ζ3) is Galois over Q. Also,

[Q(
3
√

2, ζ3) : Q] = 6

=⇒ |Gal(Q(
3
√

2, ζ3)/Q)| = 6

Let σ ∈ Gal(Q( 3
√

2, ζ3). Then we can for α = 3
√

2,

id : α→ α ζ3 → ζ3

order2 : α→ α ζ3 → ζ23
order3 : α→ ζ3α ζ3 → ζ3

order6 : α→ ζ3α ζ3 → ζ23
order3 : α→ ζ23α ζ3 → ζ3

order6 : α→ ζ23α ζ3 → ζ23

Since there are 6 of these and |Gal(Q( 3
√

2, ζ3)/Q)| = 6, then we have completely enumerated the group.

8.6 The Fundamental Theorem of Galois Correspondence

Theorem 8.25 (Galois Correspondence). Let K/F be finite and Galois. Let G be the set of subgroups of
Gal(K/F ). Let F be the set of intermediate fields L with F ⊂ L ⊂ K. Then there exists an inclusion-
reversing bijection

G ↔ F
H → F(H) ∀H ∈ G

Aut(K/L)← L ∀L ∈ F

Proof. If H1︸︷︷︸
∈G

6= H2︸︷︷︸
∈G

, then F(H1) 6= F(H2).
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• So we have an injection of sets

G → F
H → F(H)

• To see that it’s a surjection, we let L ∈ F . We recall K/F is Galois =⇒ K is normal, separable
over F . So K is normal and separable over L. So K/L is Galois with

L = F(Gal(K/L)︸ ︷︷ ︸
∈G

)

Therefore, we have a bijection.

• Now to see its inverse sends L → Aut(L), let L ∈ F =⇒ F(Aut(K/L)) = L. Also, if H ∈ G, then
Aut(K/F(H)) = H by Artin’s Theorem.

G→ F
H → F(H)→ Aut(K/F(H)) = H

• Lastly, for this map to be inclusion reversing, suppose H1︸︷︷︸
∈G

⊂ H2︸︷︷︸
∈G

. Clearly,

F(H1) ⊃ F(H2)

Conversely, let L1︸︷︷︸
∈F

⊂ L2︸︷︷︸
∈F

. Then Aut(K/L1) ⊃ Aut(K/L2).

�

Note 8.26. Suppose K/F is not Galois. =⇒ F(Aut(K/F )) ⊃ F. So there doesn’t exist H ∈ G with
F = F(H).

Theorem 8.27. Let K/F be Galois and finite. The Galois Correspondence has the following properties:
If L ∈ F corresponds to H ∈ G, then

1. |H| = [K : L] and [L : F ] = [Aut(K/F ) : H]

2. H is a normal subgroup of Aut(K/F ) if and only if L is Galois over F and, in this case, Gal(L/F ) ∼=
Aut(K/F )/H

Note 8.28. K/F Galois does not imply L/F is Galois. Consider Q( 4
√

2, i), which has a the Galois group
of D8. Define the generators in the Galois Group:

r(
4
√

2) = i
4
√

2 r(i) = i

s(
4
√

2) =
4
√

2 r(i) = −i

Q( 4
√

2, i)
|

Q( 4
√

2)
|
Q

But notice, Aut(Q( 4
√

2)/Q) = 〈id, s〉, which is not a normal subgroup of D8.
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Proof. (Of Theorem)

1. Let L = F(H). K/L is Galois so |H| = [K : L]. Since K/F is Galois, we have

[Aut(K/F ) : H] · [H] = |Aut(K/F )| = [K : F ] = [K : L][L : F ] = |H|[L : F ]

=⇒ [Aut(K/F ) : H] = [L : F ]

2. (⇐) Suppose L/F is Galois. Let H = Aut(K/L) and let σ ∈ Aut(K/F ), then consider σ|L. Since
L/F is Galois, we know it is a normal extension. So there exists a collection S of polynomials in
F [x] such that L is the splitting field of S over F .

So what is σ(L)? It is a splitting field of

{σ(f) : f ∈ S} = S

Since L and σ(L) are both contained in K, they are both obtained by adjoining to F the roots (in
K) of polynomials in S. Therefore,

L = σ(L)

=⇒ σ|L ∈ Aut(L/F )

Therefore, we have identified the restriction map:

Res : Aut(K/F )→ Aut(L/F )

σ → σ|F ∀σ ∈ Aut(K/F )

which is a homomorphism. Observe,

Ker(Res) = Aut(K/L) = H =⇒ H E Aut(K/F )

By the first isomorphism theorem,

Aut(K/F )/H ∼= Im(Res)

Investigating Im(Res), we know by the uniqueness of splitting field, for all τ ∈ Aut(: /F ), there
exists σ ∈ Aut(K/F ) with σ|L = τ. Notice that K is a splitting field of some polynomial over K with
coefficients in F . So

τ : L→ L

{f} → {f}

then there exists σ : K → K with σ|L = τ. Then every element of Aut(L/F ) can be reached by Res.
Therefore,

Im(Res) = Aut(L/F )

Therefore,
Aut(K/F )/H ∼= Aut(L/F )

(⇒) Suppose H E Aut(K/F ). Let L = F(H) and let α ∈ L, β ∈ K be roots of the mimimal
polynomial m(x) of α over F . Notice, there exists σ ∈ Aut(K/F ) with

σ(α) = β
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because ∃φ : F (α)→ F (β) such that φ|F = id with φ(α) = β. So K is a splitting field of polynomials
in F [x] over F =⇒ also a splitting field of this set of F (α). So ∃σ : K → K with σ|F (α) = φ.
Consider τ ∈ H

τ(β) = σ σ−1τσ︸ ︷︷ ︸
HEAut(K/F )

(α)

= σ(α) since L = F(H), α ∈ L
= β

So τ(β) = β =⇒ β ∈ F(H) = L =⇒ all roots of m(x) are in L =⇒ m(x) splits in L =⇒ L is
the splitting field of

{mα,F (x) : α ∈ L}
So L/F is separable because K/F is. Therefore L/F is Galois which we have shown implies
Gal(L/F ) ∼= Aut(K/F )/H.

�

Example 8.29. Let K = Q( 3
√

2, ζ3), which we already demonstrated earlier is Galois over Q. Moreover,
we said

|Gal(K/Q| = 6 = 2 · 3
Therefore, it is either isomorphic to Z6 or D6. Notice, Z6 is abelian which implies all subgroups are normal.
Now we actually have a theorem which demonstrates a correspondence between the normal subgroups of
the Galois group and the Intermediate Fields being Galois. Since K here is Galois, it must follow that all
intermediate fields Q ⊂ L ⊂ K are Galois over Q. But Q( 3

√
2) is not normal and hence not Galois over

Q. Therefore,
Gal(K/Q) ∼= S3 = D6

Moreover, the generators of Gal(K/Q)

σ :=
3
√

2→ ζ3
3
√

2 ζ3 → ζ23

τ :=
3
√

2→ 3
√

2 ζ3 → ζ23

Then we see:
σ−1τ = σ2τ

=⇒ σ2τ(
3
√

2) = ζ23
3
√

2

=⇒ σ2τ(ζ3) = ζ23

On the other hand,
τσ(

3
√

2) = ζ23
3
√

2

τσ(ζ3) = ζ23

So we see σ2τ = τσ. Therefore,

Gal(K/Q) = 〈σ, τ : τ 2 = σ2 = e, σ2τ = τσ〉 ∼= D6

Now, the subgroups of D6 and the corresponding intermediate fields are:

H1 = {id} ⇐⇒ K

H2 = {id, σ, σ2} ⇐⇒ Q(ζ3)

H3 = {id, τ} ⇐⇒ Q(
3
√

2)

H4 = {id, στ} ⇐⇒ Q(ζ23
3
√

2)

H5 = {id, σ2τ} ⇐⇒ Q(ζ3
3
√

2)

H6 = D6 ⇐⇒ Q
Then the subfield diagram is given by:
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Q

Q(ζ3)

Q(ζ3
3
√

2)Q(ζ23
3
√

2)Q( 3
√

2)

Q( 3
√

2, ζ3)

3
3

2
2

3

2

3

2

with corresponding subgroup lattice:

{id}

〈σ〉

〈σ2τ〉〈στ〉〈τ〉

Gal(K/F )

2
2

3
3

2

3

2

3

Example 8.30. Let K be the splitting field of (x2 − 5)(x2 − 7) over Q. Observe,

K = Q(
√

5,
√

7) [K : Q] = 4

We have σ, τ ∈ Gal(K/Q) where
σ :
√

5→ −
√

5
√

7→
√

7

τ :
√

5→
√

5
√

7→ −
√

7

Then Gal(K/Q) = {id, σ, τ, στ} ∼= Z2 × Z2. The subgroups are:

{id} ⇐⇒ K

{σ} ⇐⇒ Q(
√

7)

{τ} ⇐⇒ Q(
√

5)

Gal(K/Q) ⇐⇒ Q
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9 Application of Galois Theory - Solving Polynomial Equations

Solving linear polynomials was developed significantly long ago. Quadratic polynomials are suspected to
have been solved around 1600 BC during the rule of the Babylonians. Cubic equations were found to be
solvable with a general formula in 1545 AD by Cardono, and his student Ferrari found the solution for
quartic polynomials shortly after. Abel showed in 1827 demonstrated that quintic equations can’t always
have a nice formula. Galois’s theory demonstrated that solving general polynomial equations relies on a
strict group criterion in 1830.
While exploring applications for solving Polynomial Equations, we shall go about this in the following
roadmap of topics:

• Describe ”cyclic” field extensions

• Describe ”radical” field extensions

• Prove the Galois Criterion.

9.1 Cyclic Field Extensions

Definition 9.1. A finite Galois extension K/F is cyclic if Gal(K/F ) is cyclic.

Lemma 9.2. Let K/F be a finite, cyclic (Galois) extension. Suppose F contains a primitive n-th root of
unity ζn, with n = [K : F ]. Write

Gal(K/F ) = 〈σ〉
Then

1. There exists 0 6= α ∈ K with ζn = σ(α)
α

2. K = F (α) and αn = a ∈ F =⇒ K = F ( n
√
a).

Proof. 1. We want to show that σ(α) = ζnα. We can interpret this from a linear algebra perspective as
σ has an eigenvector α with eigenvalue ζn. Notice, σ is an endomorphism K → K of the F -vector
space K, and we want to show ζn is an eigenvalue. Since n = [F/F ], we can interpret σ as an n× n
matrix with coefficients in F . Further, we know σn = id since |Gal(K/F )| = n. So σ satisfies the
matrix polynomial equation:

Xn − I = 0

In fact, id, σ, σ2, . . . , σn−1 are all distinct K-valued characters. Now, trying to recall Dedekind’s
Lemma, we know the distinct K-valued characters are linearly independent, and therefore there does
not exist a smaller degree polynomial equation that Xn − I = 0 that σ satisfies.

Now, consider the characteristic polynomial

Pσ(λ) = 0

of σn×n. By Cayley-Hamilton, we have Pσ(σ) = 0 and it is degree n.

=⇒ Pσ(σ) = σn + an−1σ
n−1 + . . .+ a0I = 0

Subtracting σn − I = 0 from both sides, we get:

an−1σ
n−1 + . . .+ (a0 − 1)I = 0

But σ cannot satisfy any smaller degree polynomial equation with coefficients in F . Therefore,

an−1 = an−1 = . . . = a1 = (a0 − 1) = 0
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Therefore,
Pσ(λ) = λn − 1

and ζn ∈ F is a root. So there exists an eigenvector in K with eigenvalue ζn. Now consider σ − ζnI,
which has determinant 0. Then σ− ζnI has a nontrivial kernel in K. Taking α ∈ Ker(σ− ζnI)\{0},
then we get

σ(α)− ζnα = 0 =⇒ ζn =
σ(α)

α

2. σi(α) = ζ inα from (1). Now,
Gal(K/F ) = {id, σ, σ2, . . . , σn−1}

Notice, the only element of Gal(K/F ) fixing α is the identify. So

Gal(K/F (α)) = {id}
By Galois Correspondence, F (α) = K.Moreover, σ(αn) = (σ(α))n = (ζnα)n = αn ∈ F(Gal(K/F )) =
F So there exists an a ∈ F with α = n

√
a.

�

Lemma 9.3. Let F be a field and let ζn ∈ F be a primitive n-th root of unity. Suppose K = F ( n
√
a) for

some a ∈ F. Then K/F is a cyclic (Galois) extension of F.

Proof. Consider the homomorphism

Aut(K/F )→ Zn
σ → i (mod n)

where σ(α) = ζ inα. The proof entails showing this is in fact an isomorphism, which is relatively easy to do
on your own. �

9.2 Radical Field Extensions

We usually call quantities such a
√

2 and 1
2

3
√

3 + 10
√

7 as radicals.

Definition 9.4. A finite extension K/F is radical if K = F (α1, . . . , αr) and there exists integers n1, . . . , nr
with αnii ∈ F (α1, . . . , αi−1) for all i ≥ 2.
If n1 = n2 = . . . = nr = n, then K/F is an n-radical extension.

In essence, we can raise every element in the field extension K/F to some power in order to return the
element to the original field F .

Example 9.5. Consider Q( 4
√

2). This is clearly a 4-radical extension of Q, but it’s also 2-radical since

Q(
4
√

2) = Q(
√

2,
4
√

2) because (
4
√

2)2 ∈ Q(
√

2)

Definition 9.6. Let K/F be a finite extension. The normal closure of K/F is the splitting field over F of

{minimal polynomial of α over F : α ∈ K}
Lemma 9.7. Let K/F be a finite, n-radical extension of F . Then the normal closure N/F of K/F is also
n-radical.

Lemma 9.8. Let K/F be a finite Galois extension. Let L/F be a finite extension. Then

KL/L

is Galois and Gal(KL/L) ∼= Gal(K/K ∩ L).

Note 9.9. Clearly this lemma is analogous to the Second Isomorphism from Group Theory. In particular,

Gal(KL/L) ∼= subgroup of Gal(K/F )

Lemma 9.10. Let K/F be a finite extension, and let ζ ∈ K be a root of unity (not assuming it’s primitive).
Then F (ζ)/F is Galois with an abelian Galois group.
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9.3 Galois Criterion for Polynomial Solvability

Definition 9.11. Let F be a field, and let f(x) ∈ F [x]. Then f is solvable by radicals if there exists a
radical extension L of F such that f(x) splits over L.

Theorem 9.12 (Galois Solvability). Let F be a field of characteristic 0. Let f(x) ∈ F [x]. Let K be a
splitting field of f(x) over F . Then f(x) is solvable by radicals if and only if Gal(K/F ) is solvable.

Note 9.13. This is why we defined certain groups as solvable.

Proof. (⇒) Suppose for some n, there exists an n-radical extension M of F such that the polynomial f
splits over M . Let ζ be a primitive n-th root of unity in some extension of M . You should check that there
is some extension of M that will possess this root, which comes as the result of M being characteristic 0
as well as the separability of the polynomial xn − 1. Then M(ζ) is an n-radical extension of F , since M is
an n-radical extension of F and ζn = 1 ∈ F.

Let L be the normal closure of M(ζ)/F. That is L is the splitting field of the collection of minimal
polynomials

{mα,F : α ∈M(ζ)}
Notice, as a result from the homework, that L/F is a finite extension. By Lemma 9.7, we know L/F is an
n-radical extension since M(ζ)/F is n-radical. Now consider the chain:

Fr = L
|

Fr−1
|
...
|

F1 = F (ζ)
|

F0 = F

where Fi+1 = Fi(αi) for i ≥ 1 and some αi with αni ∈ Fi. Now, using Lemma 9.10, we know that each
extension

Fi+1/Fi is cyclic and Galois

for i ≥ 1. Moreover, F1/F0 is abelian and Galois.

Now, because char(F ) = 0 =⇒ L/F is Galois since we get separability from char(F ) = 0. Now define

Hi = Gal(L/Fi)

So {id} = Hr ⊂ Hr−1 ⊂ . . . ⊂ H1 ⊂ H0 = Gal(L/F ). Since Fi+1/Fi is Galois for all i, then we must have

Hi+1 E Hi and Hi/Hi+1
∼= Gal(Fi+1/Fi)︸ ︷︷ ︸

abelian

So Gal(L/F ) = H0 D H1 D . . . D Hr = {id} is an abelian series. Therefore Gal(L/F ) is solvable! Observe,
Gal(K/F ) ∼= Gal(L/F )/Gal(L/K). Since Gal(K/F ) is the quotient of solvable groups, it must also be
solvable!

(⇐) Suppose Gal(K/F ) is solvable. Then there exists

Gal(K/F ) = H0 D H1 D . . . D Hr = {id}
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where Hi/Hi+1 is cyclic (since every abelian series admits a cyclic refinement). Now let Ki = F(Hi) and
let n = lcm([Ki+1 : Ki]). Let ζ be a prime n-th root of unity. For each 0 ≤ i ≤ r, let

Li = Ki(ζ)

We can depict the subfield lattice as:

F(H0) = K0

F(H1) = K1

...

F(Hr−1) = Kr−1

K = Kr = Kr

K0(ζ) = L0

K1(ζ) = L1

...

Kr−1(ζ) = Lr−1

Kr = Lr

Trying to interpret this diagram, from Galois correspondence, we have Ki+1/Ki is a Galois extension since
Hi+1 E Hi. Also,

Li+1 = LiKi+1

Now we can leverage Lemma 9.8 to conclude

Li+1/Li = LiKi+1/Li

is a Galois extension with Gal(Li+1/Li) ∼= a subgroup of Gal(Ki+1/Ki) ∼= Hi/Hi+1 which is abelian /
cyclic. So

di := [Li+1 : Li] divides [Ki+1 : Ki] divides n

So a suitable power of ζ, specifically ζn/d, is a primitive di-th root of unity and Li contains it. So Li+1/Li
is radical. Notice L0/F is also radical. So Lr is a radical extension of F . So the splitting field K of f(x)
is contained in a radical extension of F . Therefore, f(x) = 0 is solvable by radicals. �
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Example 9.14. x5 − 1 is solvable by radicals with solutions: 1, −1
4
− 1

4

√
5 ± 1

4

√
−10 + 2

√
5, −1

4
+ 1

4

√
5 ±

1
4

√
−10− 2

√
5

Example 9.15. x5 − 2x+ 1 is NOT solvable by radicals.

9.4 Implications of Galois’ Criterion

Definition 9.16. Let F be of characteristic 0 and f(x) ∈ F [x]. The Galois group of f(x), denoted Gal(f),
is the Galois group of a splitting field of f(x) over F .

Lemma 9.17. Let f(x) ∈ F [x] be a separable polynomial of degree n. Then there exists an injection

Gal(f)→ Sn

Moreover, if f is irreducible, then the image is a transitive subgroup of Sn.

Definition 9.18. A transitive subgroup H 6 Sn is a group such that given 1 ≤ i, j ≤ n, there exists σ ∈ H
such that σ(i) = j.

Proof. Let σ ∈ G. Then σ takes any of the n roots of f in K to another unique root fo f . That is,
it gives rise to a permutation in Sn. It’s easy to check that the corresponding map G → Sn is a group
homomorphism with trivial kernel, and therefore an injection.

To demonstrate the transitivity of this subgroup, if f(x) is irreducible, we have for all roots α, β of f(x),
there exists σ ∈ G with σ(α) = β. �

Question 9.19. When is it a Galois group actual becomes the Symmetric Group Sn?

There is, in a sense, a ”typical” degree n polynomial that has a Galois group Sn.

Theorem 9.20. Let F be of characteristic 0. Then every polynomial of degree less than 4 is solvable by
radicals, and a ”typical” polynomial of degree greater than or equal to 5 is not solvable by radicals.

Example 9.21. x5− 4x+ 2 ∈ Q[x] is not solvable by radicals. By Eisenstein’s Criterion for p = 2, we see
this polynomial is irreducible. Graphing this polynomial, you would see this has 3 roots in R. Clearly there
must then be 2 roots in C/R. More over, these complex roots are complex conjugates of each other.

Let K/Q be a splitting field of f over Q. Let α ∈ K be a root of f . Then

[Q(α) : Q] = 5 =⇒ 5|[K : Q] = |Gal(K/Q)|

by the Tower Theorem. By Cauchy’s Theorem, Gal(K/Q) has an element of order 5. Viewing Gal(K/Q) 6
S5 =⇒ σ is a 5-cycle. But by complex conjugation is an element of Aut(C/Q), and restricting it to K,
we get τ ∈ Gal(K/Q), which is a transposition.
But we know a subgroup of S5 containing a 5-cycle and a 2-cycle is all of S5. Therefore,

Gal(K/Q) ∼= S5

which is not solvable. Therefore f(x) is not solvable by radicals.
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9.4.1 Solving Cubics and Quartics

Definition 9.22. Let F be a field, f(x) ∈ F [x] of degree n, and let α1, . . . , αn be the roots of f in some
splitting field. Let

∆ =
∏

1≤i<j≤n

(αi − αj)

Then the discriminant of f(x) is D = ∆2.

Lemma 9.23. Let F be of characteristic 6= 2, let f(x) ∈ F [x] be separable, and let K be a splitting field of
f(x) over F . Then D ∈ F and if σ ∈ Gal(K/F ) then σ is an even permutation if and only if σ(∆) = ∆
and odd if and only if σ(∆) = −∆.

Corollary 9.23.1. Gal(K/F ) 6 An if and only if D is a square in F =⇒ ∃y ∈ F such that D = y2.

Proof. Gal(K/F ) 6 An ⇐⇒ σ(∆) = ∆∀σ ∈ Gal(K/F ) ⇐⇒ ∆ ∈ F. �

Remark 9.24. So Gal(K/F ) = {id} if D is a square and order 2 if D is not.

Theorem 9.25. Let F be a field of characteristic 0, and let f(x) ∈ F [x] be irreducible and degree 3. Let
G = Gal(f). Then

• G ∼= A3
∼= Z3 if and only if D is a square in F .

• G ∼= S3 if and only if D is not a square in F .

Proof. We only need to check is that the transitive subgroups of S3 are S3 and A3. �

Lemma 9.26. Let f(x) = x3+ax+b ∈ F [x]. Then D = −4a3−27b2. Then the solutions of this polynomial
are given by

3

√√√√− b
2

+

√(
b

2

)2

+
(a

3

)3
+

3

√√√√− b
2
−

√
−
(
b

2

)2

+
(a

3

)3
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