Bott vanishing using GIT and quantization

Sebastián Torres

University of Massachusetts, Amherst

May 11, 2021
1 Introduction
How to prove Bott vanishing for $Y = \mathbb{P}^1 \times \mathbb{P}^2$ / $\mathbb{P}^1 \times \mathbb{P}^2$
Outline

1. Introduction

2. GIT

3. Quantization

4. How to prove Bott vanishing for $Y = (\mathbb{P}^1)^n \sslash L PGL_2$
1. Introduction

2. GIT

3. Quantization

4. How to prove Bott vanishing for $Y = (\mathbb{P}^1)^n \sslash_{\mathcal{L}} \text{PGL}_2$

5. The toric case
A smooth projective variety $Y$ is said to satisfy Bott vanishing if

$$H^i(Y, \Omega^j_Y \otimes L) = 0$$

for every $i > 0$, $j \geq 0$ and $L$ ample.

Stronger than Kodaira-Akizuki-Nakano vanishing.

Very restrictive property.

Example

Suppose $Y$ is Fano and satisfies Bott vanishing. Then $H^1(Y, T_Y) = H^1(Y, \Omega^{n-1}_Y \otimes K_Y) = 0$.

In particular, $Y$ must be rigid.
A smooth projective variety $Y$ is said to satisfy Bott vanishing if

$$H^i(Y, \Omega^j_Y \otimes L) = 0$$

for every $i > 0$, $j \geq 0$ and $L$ ample.

- Stronger than Kodaira-Akizuki-Nakano vanishing.
A smooth projective variety $Y$ is said to satisfy Bott vanishing if

$$H^i(Y, \Omega^j_Y \otimes L) = 0$$

for every $i > 0$, $j \geq 0$ and $L$ ample.

- Stronger than Kodaira-Akizuki-Nakano vanishing.
- Very restrictive property.
A smooth projective variety $Y$ is said to satisfy Bott vanishing if

$$H^i(Y, \Omega^j_Y \otimes L) = 0$$

for every $i > 0$, $j \geq 0$ and $L$ ample.

- Stronger than Kodaira-Akizuki-Nakano vanishing.
- Very restrictive property.
- Not clear geometric meaning.

Example: Suppose $Y$ is Fano and satisfies Bott vanishing. Then $H^1(Y, T_Y) = H^1(Y, \Omega^{n-1}_Y \otimes K^*_Y) = 0$. In particular, $Y$ must be rigid.
A smooth projective variety $Y$ is said to satisfy Bott vanishing if

$$H^i(Y, \Omega^j_Y \otimes L) = 0$$

for every $i > 0$, $j \geq 0$ and $L$ ample.

- Stronger than Kodaira-Akizuki-Nakano vanishing.
- Very restrictive property.
- Not clear geometric meaning.

Suppose $Y$ is Fano and satisfies Bott vanishing. Then

$$H^1(Y, T_Y) = H^1(Y, \Omega^{n-1}_Y \otimes K^*_Y) = 0.$$

In particular, $Y$ must be rigid.
Introduction

What is known

- $P^n$ satisfies Bott vanishing (Bott, 1957).
- Quintic del Pezzo surface (Totaro 2019).
- Bott vanishing holds for K3 surfaces of degree $\geq 24$, fails for K3 surfaces of degree $< 20$ (Totaro 2019).
Introduction

**What is known**

- $\mathbb{P}^n$ satisfies Bott vanishing (Bott, 1957).
What is known

- $\mathbb{P}^n$ satisfies Bott vanishing (Bott, 1957).

Quintic del Pezzo surface (Totaro 2019).

Bott vanishing holds for K3 surfaces of degree $\geq 24$, fails for K3 surfaces of degree $< 20$ (Totaro 2019).
**What is known**

- $\mathbb{P}^n$ satisfies Bott vanishing (Bott, 1957).


- Quintic del Pezzo surface (Totaro 2019).
What is known

- $\mathbb{P}^n$ satisfies Bott vanishing (Bott, 1957).
- Quintic del Pezzo surface (Totaro 2019).
- Bott vanishing holds for K3 surfaces of degree $= 20$ or $\geq 24$, fails for K3 surfaces of degree $< 20$ (Totaro 2019).
The quintic del Pezzo is isomorphic to $\tilde{M}_{0,5}$ can be obtained as a GIT quotient $(\mathbb{P}^1)^5 \sslash \mathcal{O}(2,2,2,2) PGL_2$. It parametrizes 5-tuples of points on $\mathbb{P}^1$ where no three of them coincide.
The quintic del Pezzo is isomorphic to $\tilde{M}_{0,5}$ can be obtained as a GIT quotient $(\mathbb{P}^1)^5 \sslash \mathcal{O}(2,2,2,2) \ PGL_2$. It parametrizes 5-tuples of points on $\mathbb{P}^1$ where no three of them coincide.

From now on, we will work over $\mathbb{C}$. 
Theorem (T)

Let $Y$ be a GIT quotient $(\mathbb{P}^1)^n \sslash_L PGL_2$ given by a linearization with no strictly semi-stable locus. Then $Y$ satisfies Bott vanishing.
In order to prove that theorem, we use:

1. **Quantization.** This allows us to compute cohomology on $Y$ as cohomology on $X$ of a suitable object $F$.
2. **Geometric syzygies.** The cohomologies of $F$ correspond to the Koszul resolution of certain locus in $X \times P(g)$.
3. **Gelfand-MacPherson correspondence.** This allows us to see global invariant sections as polynomials in the Plücker minors, and we characterize these as directed graphs.
In order to prove that theorem, we use:

- **Quantization.** This allows us to compute cohomology on $Y$ as cohomology on $X$ of a suitable object $\mathcal{F}$. 

- **Geometric syzygies.** The cohomologies of $\mathcal{F}$ correspond to the Koszul resolution of certain locus in $X \times \mathbb{P}(g)$. 

- **Gelfand-MacPherson correspondence.** This allows us to see global invariant sections as polynomials in the Plücker minors, and we characterize these as directed graphs.
In order to prove that theorem, we use:

- **Quantization.** This allows us to compute cohomology on $Y$ as cohomology on $X$ of a suitable object $\mathcal{F}$.
- **Geometric syzygies.** The cohomologies of $\mathcal{F}$ correspond to the Koszul resolution of certain locus in $X \times \mathbb{P}(g)$. 

Sebastián Torres (UMass)
In order to prove that theorem, we use:

- Quantization. This allows us to compute cohomology on $Y$ as cohomology on $X$ of a suitable object $\mathcal{F}$.
- Geometric syzygies. The cohomologies of $\mathcal{F}$ correspond to the Koszul resolution of certain locus in $X \times \mathbb{P}(g)$.
- Gelfand-MacPherson correspondence. This allows us to see global invariant sections as polynomials in the Plücker minors, and we characterize these as directed graphs.
Definition (GIT quotient)

Let $X = \text{Proj } R$ be a variety with an action by a group $G$. Extend the action of $G$ to $R$. Then the GIT quotient $X//G$ is defined as $\text{Proj } R^G$. 

There are two choices involved:

- The coordinate ring $R$. This amounts to specifying an ample line bundle $L$, so that $R = \bigoplus_{k \geq 0} H^0(X, L \otimes k)$.

- The action of $G$ on $R$. This amounts to extending the action of $G$ on $X$ to the total space of $L$. 
Definition (GIT quotient)

Let $X = \text{Proj } R$ be a variety with an action by a group $G$. Extend the action of $G$ to $R$. Then the GIT quotient $X \sslash G$ is defined as $\text{Proj } R^G$.

There are two choices involved:

- The coordinate ring $R$. This amounts to specifying an ample line bundle $\mathcal{L}$, so that $R = \bigoplus_{k \geq 0} H^0(X, \mathcal{L} \otimes^k)$.
- The action of $G$ on $R$. This amounts to extending the action of $G$ on $X$ to the total space of $\mathcal{L}$. 

Example

Let $G$ act on a ring $R$. If we extend the action trivially to the trivial line bundle, then we get $\text{Spec } R \sslash G = \text{Spec } R^G$. 
Example

Let $G$ act on a ring $R$. If we extend the action trivially to the trivial line bundle, then we get $\text{Spec } R \sslash G = \text{Spec } R^G$.

Example

Let $\mathbb{C}^*$ act on $\mathbb{A}^{n+1}$ by multiplication. Extend this action to $\mathcal{O}$ and twist it by the character $t \mapsto t$, that is: $t \cdot p(x_0, \ldots, x_n) = tp(t^{-1}x_0, \ldots, t^{-1}x_n)$. Then one obtains the GIT quotient $\mathbb{A}^{n+1} \sslash \mathbb{C}^* = \mathbb{P}^n$. 
Definition

Given an action of $G$ on $X$ and a $G$-linearized ample line bundle $\mathcal{L}$, the \textit{semi-stable} locus is defined as

$$X^{ss} = \{ x \in X \mid \exists \sigma \in H^0(X, \mathcal{L}^k)^G, \sigma(x) \neq 0 \}$$

and then we have a quotient map

$$\pi : X^{ss} \to X \sslash \mathcal{L} \ G.$$
Definition

Given an action of $G$ on $X$ and a $G$-linearized ample line bundle $\mathcal{L}$, the \textit{semi-stable} locus is defined as

$$X^{ss} = \{ x \in X | \exists \sigma \in H^0(X, \mathcal{L}^\otimes k)^G, \sigma(x) \neq 0 \}$$

and then we have a quotient map

$$\pi : X^{ss} \rightarrow X \sslash G.$$ 

The \textit{stable} locus is

$$X^s = \{ x \in X^{ss} | G_x \text{ is finite and } G \cdot x \text{ is closed in } X^{ss} \}.$$
Definition

Given an action of $G$ on $X$ and a $G$-linearized ample line bundle $\mathcal{L}$, the \textit{semi-stable} locus is defined as

$$X^{ss} = \{ x \in X \mid \exists \sigma \in H^0(X, \mathcal{L}^\otimes k)^G, \sigma(x) \neq 0 \}$$

and then we have a quotient map

$$\pi : X^{ss} \to X \sslash \mathcal{L} G.$$

The \textit{stable} locus is

$$X^s = \{ x \in X^{ss} \mid G_x \text{ is finite and } G \cdot x \text{ is closed in } X^{ss} \}.$$  

We are interested in the cases when $X^{ss} = X^s$. 
Example

Let $\mathcal{L} = \mathcal{O}(d_1, \ldots, d_n)$ be a $\text{PGL}_2$-linearized ample line bundle in $X = (\mathbb{P}^1)^n$. The semi-stable (resp. stable) locus consists of tuples $(z_1, \ldots, z_n) \in (\mathbb{P}^1)^n$ such that whenever $\sum_{i \in I} d_i > \sum_{i \in I^c} d_i$ (resp. $\geq$) for some $I \subset \{1, \ldots, n\}$, the coordinates $\{z_i, i \in I\}$ do not all coincide.

The GIT quotient $Y = (\mathbb{P}^1)^n / \mathcal{L} \text{PGL}_2$ parametrizes such configurations of $n$ points up to projective equivalence.
We are interested in computing cohomologies $H^i(Y, F)$, for certain vector bundles $F$. Under certain circumstances, this can be computed as $H^i(X, \mathcal{F})^G$ for some suitable object $\mathcal{F}$.
We are interested in computing cohomologies \( H^i(Y, F) \), for certain vector bundles \( F \). Under certain circumstances, this can be computed as \( H^i(X, F)^G \) for some suitable object \( F \).

**Definition**

We say that a \( G \)-linearized chain complex \( F \) of vector bundles on \( X \) descends to \( F \) if \( F|_{X^{ss}} \cong \pi^* F \).
We are interested in computing cohomologies $H^i(Y, F)$, for certain vector bundles $F$. Under certain circumstances, this can be computed as $H^i(X, F)^G$ for some suitable object $F$.

**Definition**

We say that a $G$-linearized chain complex $F$ of vector bundles on $X$ descends to $F$ if $F|_{X^{ss}} \cong \pi^*F$.

**Quantization Theorem (Teleman, Halpern-Leistner)**

Suppose $F$ descends to $F$. Take a Kempf-Ness stratification of the unstable locus $X \setminus X^{ss} = \bigsqcup S_\alpha$. If all the weights of $F$ on $S_\alpha$ are $< \eta_\alpha$, then

$$H^i(Y, F) = H^i(X, F)^G.$$
How to prove Bott vanishing for $Y = (\mathbb{P}^1)^n \sslash L PGL_2$

In our case, we have $X = (\mathbb{P}^1)^n$, $G = PGL_2$ and let $g = \mathfrak{sl}_2$ be the Lie algebra. The action of $G$ induces a map of sheaves $\Omega_X \rightarrow g^\vee$. 

---

Sebastián Torres (UMass)  
Bott vanishing using GIT and quantization  
May 11, 2021
How to prove Bott vanishing for $Y = (\mathbb{P}^1)^n \sslash L \text{PGL}_2$

In our case, we have $X = (\mathbb{P}^1)^n$, $G = \text{PGL}_2$ and let $\mathfrak{g} = \mathfrak{sl}_2$ be the Lie algebra. The action of $G$ induces a map of sheaves $\Omega_X \to \mathfrak{g}^\vee$.

**Definition**

We denote by $L_X$ the $\text{PGL}_2$-linearized two-step chain complex $[\Omega_X \to \mathfrak{g}^\vee]$. 

Remark $L_X$ descends to $\Omega_Y$. This is because of the following short exact sequence $0 \to \pi^* \Omega_Y \to \Omega_X^{ss} \to \mathfrak{g}^\vee \to 0$.

Similarly, $Λ^j L_X$ descends to $\Omega^j_Y$, where $Λ^j L_X$ is the chain complex $0 \to \Omega^j_X \to \Omega^{j-1}_X \otimes \mathfrak{g}^\vee \to \cdots \to S^j \mathfrak{g}^\vee \to 0$. 

Sebastián Torres (UMass) Bott vanishing using GIT and quantization May 11, 2021 16 / 25
How to prove Bott vanishing for $Y = (\mathbb{P}^1)^n \sslash_L \text{PGL}_2$

In our case, we have $X = (\mathbb{P}^1)^n$, $G = \text{PGL}_2$ and let $\mathfrak{g} = \mathfrak{sl}_2$ be the Lie algebra. The action of $G$ induces a map of sheaves $\Omega_X \to \mathfrak{g}^\vee$.

**Definition**

We denote by $L_X$ the $\text{PGL}_2$-linearized two-step chain complex $[\Omega_X \to \mathfrak{g}^\vee]$.

**Remark**

$L_X$ descends to $\Omega_Y$. This is because of the following short exact sequence

$$0 \to \pi^*\Omega_Y \to \Omega_X^{ss} \to \mathfrak{g}^\vee \to 0.$$
How to prove Bott vanishing for $Y = (\mathbb{P}^1)^n \sslash L PGL_2$

In our case, we have $X = (\mathbb{P}^1)^n$, $G = PGL_2$ and let $\mathfrak{g} = \mathfrak{sl}_2$ be the Lie algebra. The action of $G$ induces a map of sheaves $\Omega_X \to \mathfrak{g}^\vee$.

**Definition**

We denote by $L_X$ the $PGL_2$-linearized two-step chain complex $[\Omega_X \to \mathfrak{g}^\vee]$.

**Remark**

$L_X$ descends to $\Omega_Y$. This is because of the following short exact sequence

$$0 \to \pi^*\Omega_Y \to \Omega_X^{ss} \to \mathfrak{g}^\vee \to 0.$$ 

Similarly, $\Lambda^j L_X$ descends to $\Omega^j_Y$, where $\Lambda^j L_X$ is the chain complex

$$0 \to \Omega_X^j \to \Omega_X^{j-1} \otimes \mathfrak{g}^\vee \to \cdots \to S^j \mathfrak{g}^\vee \to 0.$$
Lemma

Let $X = (\mathbb{P}^1)^n$, $G = \text{PGL}_2$ and $L = \mathcal{O}(d_1, \ldots, d_n)$ a $\text{PGL}_2$-linearized ample line bundle such that $X^{\text{ss}} = X^s$. Then $\mathcal{N}^i \mathcal{L}_\mathcal{X} \otimes L$ satisfies the hypotheses of the Quantization theorem, and so

$$H^i(Y, \Omega^i_Y \otimes L) = H^i(X, \mathcal{N}^i \mathcal{L}_\mathcal{X} \otimes L)^{\text{PGL}_2}$$

where $Y = (\mathbb{P}^1)^n \sslash L \text{ PGL}_2$ and $L$ is the descent of $\mathcal{L}$.
How to prove Bott vanishing for $Y = (\mathbb{P}^1)^n \sslash \mathcal{L} \text{PGL}_2$

**Lemma**

Let $X = (\mathbb{P}^1)^n$, $G = \text{PGL}_2$ and $\mathcal{L} = \mathcal{O}(d_1, \ldots, d_n)$ a $\text{PGL}_2$-linearized ample line bundle such that $X^{ss} = X^s$. Then $\wedge^i L_X \otimes \mathcal{L}$ satisfies the hypotheses of the Quantization theorem, and so

$$H^i(Y, \Omega_Y^i \otimes \mathcal{L}) = H^i(X, \wedge^i L_X \otimes \mathcal{L})^{\text{PGL}_2}$$

where $Y = (\mathbb{P}^1)^n \sslash \mathcal{L} \text{PGL}_2$ and $\mathcal{L}$ is the descent of $\mathcal{L}$.

In fact, to show Bott vanishing on $Y$, it suffices to check that

$$H^i(X, \wedge^i L_X \otimes \mathcal{L})^{\text{PGL}_2} = 0$$

for $i > 0$. 
Recall $\Lambda^j L_x \otimes \mathcal{L}$ is the complex

$$0 \to \Omega^j_x \otimes \mathcal{L} \to \Omega^{j-1}_x \otimes 
abla \otimes \mathcal{L} \to \cdots \to S^j \nabla \otimes \mathcal{L} \to 0.$$
Recall $\wedge^j L_X \otimes \mathcal{L}$ is the complex

$$0 \to \Omega^j_X \otimes \mathcal{L} \to \Omega^{j-1}_X \otimes g^\vee \otimes \mathcal{L} \to \cdots \to S^j g^\vee \otimes \mathcal{L} \to 0.$$

**Lemma**

$$H^i(X, \wedge^j L_X \otimes \mathcal{L})$$ can be computed as the cohomology of the complex of global sections

$$0 \to H^0(\Omega^j_X \otimes \mathcal{L}) \to H^0(\Omega^{j-1}_X \otimes \mathcal{L}) \otimes g^\vee \to \cdots \to H^0(\mathcal{L}) \otimes S^j g^\vee \to 0.$$
How to prove Bott vanishing for $Y = (\mathbb{P}^1)^n \sslash L PGL_2$

Recall $\Lambda^j L_X \otimes L$ is the complex

$$0 \rightarrow \Omega_X^j \otimes L \rightarrow \Omega_X^{j-1} \otimes \mathfrak{g}^\vee \otimes L \rightarrow \cdots \rightarrow S^j \mathfrak{g}^\vee \otimes L \rightarrow 0.$$

**Lemma**

$H^i(X, \Lambda^j L_X \otimes L)$ can be computed as the cohomology of the complex of global sections

$$0 \rightarrow H^0(\Omega_X^j \otimes L) \rightarrow H^0(\Omega_X^{j-1} \otimes L) \otimes \mathfrak{g}^\vee \rightarrow \cdots \rightarrow H^0(L) \otimes S^j \mathfrak{g}^\vee \rightarrow 0.$$

For example, for $j = 1$, showing that $H^1(Y, \Omega_Y \otimes L) = 0$ is equivalent to showing that the map of invariant global sections

$$H^0(X, \Omega_X \otimes L)^{PGL_2} \rightarrow (H^0(X, L) \otimes \mathfrak{g}^\vee)^{PGL_2}$$

is surjective.
How to prove Bott vanishing for $Y = (\mathbb{P}^1)^n \sslash L \ PGL_2$

How to think of $PGL_2$-invariant global sections of a line bundle $\mathcal{O}(d_1, \ldots, d_n)$ on $(\mathbb{P}^1)^n$?
How to prove Bott vanishing for $Y = (\mathbb{P}^1)^n \sslash L PGL_2$

How to think of $PGL_2$-invariant global sections of a line bundle $\mathcal{O}(d_1, \ldots, d_n)$ on $(\mathbb{P}^1)^n$?

Gelfand-MacPherson correspondence

Consider the action of the torus $(\mathbb{C}^*)^n$ on the Grassmannian $Gr(2, n)$. Let $\mathcal{O}(1)$ be the ample line bundle on $Gr(2, 5)$ given by the Plücker embedding. We endow it with a $(\mathbb{C}^*)^n$-linearization by choosing the character $(d_1, \ldots, d_n)$. Then

$$\bigoplus_{k \geq 0} H^0((\mathbb{P}^1)^n, \mathcal{O}(kd_1, \ldots, kd_n))^{PGL_2} = \bigoplus_{k \geq 0} H^0(Gr(2, n), \mathcal{O}(k))^{(\mathbb{C}^*)^n}$$

In particular, $PGL_2$-invariant global sections of $\mathcal{O}(d_1, \ldots, d_n)$ can be found in the coordinate ring of the Grassmannian.
How to prove Bott vanishing for $Y = (\mathbb{P}^1)^n \sslash L PGL_2$

How to think of $PGL_2$-invariant global sections of a line bundle $\mathcal{O}(d_1, \ldots, d_n)$ on $(\mathbb{P}^1)^n$?

**Gelfand-MacPherson correspondence**

Consider the action of the torus $(\mathbb{C}^*)^n$ on the Grassmannian $\text{Gr}(2, n)$. Let $\mathcal{O}(1)$ be the ample line bundle on $\text{Gr}(2, 5)$ given by the Plücker embedding. We endow it with a $(\mathbb{C}^*)^n$-linearization by choosing the character $(d_1, \ldots, d_n)$. Then

$$
\bigoplus_{k \geq 0} H^0((\mathbb{P}^1)^n, \mathcal{O}(kd_1, \ldots, kd_n))^{PGL_2} = \bigoplus_{k \geq 0} H^0(\text{Gr}(2, n), \mathcal{O}(k))^{(\mathbb{C}^*)^n}
$$

In particular, $PGL_2$-invariant global sections of $\mathcal{O}(d_1, \ldots, d_n)$ can be found in the coordinate ring of the Grassmannian.
How to prove Bott vanishing for $Y = (\mathbb{P}^1)^n \git PGL_2$

In fact, $H^0((\mathbb{P}^1)^n, \mathcal{O}(d_1, \ldots, d_n))^{PGL_2}$ consists of polynomials in $x_i y_j - x_j y_i$ having homogeneous degree $d_1, \ldots, d_n$ in the variables $x_1, y_1; \ldots; x_n, y_n$, subject to the Plücker equivalence relations.
In fact, $H^0((\mathbb{P}^1)^n, \mathcal{O}(d_1, \ldots, d_n))^{PGL_2}$ consists of polynomials in $x_i y_j - x_j y_i$ having homogeneous degree $d_1, \ldots, d_n$ in the variables $x_1, y_1; \ldots; x_n, y_n$, subject to the Plücker equivalence relations.

Each such section can be described as a linear combination of (directed) graphs having $n$ vertices, $\nu_1, \ldots, \nu_n$, each of them of degree $\deg \nu_i = d_i$. 
How to prove Bott vanishing for $Y = (\mathbb{P}^1)^n /\mathcal{L} \text{PGL}_2$

In fact, $H^0((\mathbb{P}^1)^n, \mathcal{O}(d_1, \ldots, d_n))^{\text{PGL}_2}$ consists of polynomials in $x_i y_j - x_j y_i$ having homogeneous degree $d_1, \ldots, d_n$ in the variables $x_1, y_1; \ldots; x_n, y_n$, subject to the Plücker equivalence relations.

Each such section can be described as a linear combination of (directed) graphs having $n$ vertices, $v_1, \ldots, v_n$, each of them of degree $\deg v_i = d_i$.

The Plücker relations can be depicted as follows:

$$
\begin{array}{c}
\text{\uparrow} & \text{\uparrow} \\
\bullet & \bullet \\
\text{=} & \text{+} \\
\bullet & \bullet
\end{array}
$$
How to prove Bott vanishing for $Y = (\mathbb{P}^1)^n \sslash \mathcal{L} PGL_2$
This way one can show that $H^0(X, \Omega_X \otimes \mathcal{L})^{PGL_2} \rightarrow (H^0(X, \Omega_X) \otimes g^\vee)$ and so

$$H^1(Y, \Omega_Y \otimes \mathcal{L}) = H^1(X, L_X \otimes \mathcal{L})^{PGL_2} = 0$$
How to prove Bott vanishing for \( Y = (\mathbb{P}^1)^n \sslash L \text{PGL}_2 \)

This way one can show that \( H^0(X, \Omega_X \otimes L)^{PGL_2} \rightarrow (H^0(X, \Omega_X) \otimes g^\vee) \) and so

\[
H^1(Y, \Omega_Y \otimes L) = H^1(X, L_x \otimes L)^{PGL_2} = 0
\]

Using similar techniques (plus an argument with Koszul complexes), one can also show that

\[
H^i(Y, \Omega^j \otimes L) = H^i(X, \wedge^j L_x \otimes L)^{PGL_2} = 0, \quad i > 0, j \geq 0
\]

and so \( Y \) satisfies Bott vanishing, as long as the linearization does not admit strictly semi-stable locus.
Interestingly, quantization can also be applied successfully towards toric varieties. In fact, a smooth projective toric variety $Y$ can be written as a GIT quotient $Y = \mathbb{A}^d \sslash (\mathbb{C}^*)^{d-n}$, where $(\mathbb{C}^*)^{d-n} = \text{Hom}(\text{Pic } Y, \mathbb{C}^*)$, and the action is free on the semi-stable locus.
Interestingly, quantization can also be applied successfully towards toric varieties. In fact, a smooth projective toric variety $Y$ can be written as a GIT quotient $Y = \mathbb{A}^d \sslash (\mathbb{C}^*)^{d-n}$, where $(\mathbb{C}^*)^{d-n} = \text{Hom}(\text{Pic} \ Y, \mathbb{C}^*)$, and the action is free on the semi-stable locus.

Using quantization and similar techniques, we recover yet another proof of the following well-known result.

**Theorem**

*A smooth projective toric variety satisfies Bott vanishing.*
References


Thanks!