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Introduction

Definition

A smooth projective variety Y is said to satisfy Bott vanishing if

H i (Y ,Ωj
Y ⊗ L) = 0

for every i > 0, j ≥ 0 and L ample.

Stronger than Kodaira-Akizuki-Nakano vanishing.

Very restrictive property.

Not clear geometric meaning.

Example

Suppose Y is Fano and satisfies Bott vanishing. Then

H1(Y ,TY ) = H1(Y ,Ωn−1
Y ⊗ K ∗Y ) = 0.

In particular, Y must be rigid.
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Introduction

What is known

Pn satisfies Bott vanishing (Bott, 1957).

Toric varieties satisfy Bott vanishing (Danilov 1978, Batyrev-Cox
1993, Buch-Thomsen-Lauritzen-Mehta 1997, ...).

Quintic del Pezzo surface (Totaro 2019).

Bott vanishing holds for K3 surfaces of degree = 20 or ≥ 24, fails for
K3 surfaces of degree < 20 (Totaro 2019).
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Introduction

The quintic del Pezzo is isomorphic to M̄0,5 can be obtained as a GIT
quotient (P1)5 //O(2,2,2,2,2) PGL2. It parametrizes 5-tuples of points on P1

where no three of them coincide.

From now on, we will work over C.
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Introduction

Theorem (T)

Let Y be a GIT quotient (P1)n //L PGL2 given by a linearization with no
strictly semi-stable locus. Then Y satisfies Bott vanishing.
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Introduction

In order to prove that theorem, we use:

Quantization. This allows us to compute cohomology on Y as
cohomology on X of a suitable object F .

Geometric syzygies. The cohomologies of F correspond to the Koszul
resolution of certain locus in X × P(g).

Gelfand-MacPherson correspondence. This allows us to see global
invariant sections as polynomials in the Plücker minors, and we
characterize these as directed graphs.
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GIT

Definition (GIT quotient)

Let X = ProjR be a variety with an action by a group G . Extend the
action of G to R. Then the GIT quotient X //G is defined as ProjRG .

There are two choices involved:

The coordinate ring R. This amounts to specifying an ample line
bundle L, so that R =

⊕
k≥0 H

0(X ,L⊗k).

The action of G on R. This amounts to extending the action of G on
X to the total space of L.
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GIT

Example

Let G act on a ring R. If we extend the action trivially to the trivial line
bundle, then we get SpecR //G = SpecRG .

Example

Let C∗ act on An+1 by multiplication. Extend this action to O and twist it
by the character t 7→ t, that is: t · p(x0, . . . , xn) = tp(t−1x0, . . . , t

−1xn).
Then one obtains the GIT quotient An+1 //C∗ = Pn.
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GIT

Definition

Given an action of G on X and a G -linearized ample line bundle L, the
semi-stable locus is defined as

X ss = {x ∈ X | ∃σ ∈ H0(X ,L⊗k)G , σ(x) 6= 0}

and then we have a quotient map

π : X ss → X //L G .

The stable locus is

X s = {x ∈ X ss | Gx is finite and G · x is closed in X ss}.

We are interested in the cases when X ss = X s .
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GIT

Sebastián Torres (UMass) Bott vanishing using GIT and quantization May 11, 2021 12 / 25



GIT

Example

Let L = O(d1, . . . , dn) be a PGL2-linearized ample line bundle in
X = (P1)n. The semi-stable (resp. stable) locus consists of tuples
(z1, . . . , zn) ∈ (P1)n such that whenever

∑
i∈I di >

∑
i∈I c di (resp. ≥) for

some I ⊂ {1, . . . , n} , the coordinates {zi , i ∈ I} do not all coincide.

The GIT quotient Y = (P1)n //L PGL2 parametrizes such configurations of
n points up to projective equivalence.
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Quantization

We are interested in computing cohomologies H i (Y ,F ), for certain vector
bundles F . Under certain circumstances, this can be computed as
H i (X ,F)G for some suitable object F .

Definition

We say that a G -linearized chain complex F of vector bundles on X
descends to F if F|X ss ∼= π∗F .

Quantization Theorem (Teleman, Halpern-Leistner)

Suppose F descends to F . Take a Kempf-Ness stratification of the
unstable locus X\X ss = tSα. If all the weights of F on Sα are < ηα, then

H i (Y ,F ) = H i (X ,F)G .
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Quantization
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How to prove Bott vanishing for Y = (P1)n //L PGL2

In our case, we have X = (P1)n, G = PGL2 and let g = sl2 be the Lie
algebra. The action of G induces a map of sheaves ΩX → g∨.

Definition

We denote by LX the PGL2-linearized two-step chain complex [ΩX → g∨].

Remark

LX descends to ΩY . This is because of the following short exact sequence

0→ π∗ΩY → ΩX ss → g∨ → 0.

Similarly, ΛjLX descends to Ωj
Y , where ΛjLX is the chain complex

0→ Ωj
X → Ωj−1

X ⊗ g∨ → · · · → S jg∨ → 0.
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How to prove Bott vanishing for Y = (P1)n //L PGL2

Lemma

Let X = (P1)n, G = PGL2 and L = O(d1, . . . , dn) a PGL2-linearized
ample line bundle such that X ss = X s . Then ΛjLX ⊗ L satisfies the
hypotheses of the Quantization theorem, and so

H i (Y ,Ωj
Y ⊗ L) = H i (X ,ΛjLX ⊗ L)PGL2

where Y = (P1)n //L PGL2 and L is the descent of L.

In fact, to show Bott vanishing on Y , it suffices to check that

H i (X ,ΛjLX ⊗ L)PGL2 = 0

for i > 0.
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How to prove Bott vanishing for Y = (P1)n //L PGL2

Recall ΛjLX ⊗ L is the complex

0→ Ωj
X ⊗ L → Ωj−1

X ⊗ g∨ ⊗ L → · · · → S jg∨ ⊗ L → 0.

Lemma

H i (X ,ΛjLX ⊗ L) can be computed as the cohomology of the complex of
global sections

0→ H0(Ωj
X ⊗ L)→ H0(Ωj−1

X ⊗ L)⊗ g∨ → · · · → H0(L)⊗ S jg∨ → 0.

For example, for j = 1, showing that H1(Y ,ΩY ⊗ L) = 0 is equivalent to
showing that the map of invariant global sections

H0(X ,ΩX ⊗ L)PGL2 → (H0(X ,L)⊗ g∨)PGL2

is surjective.
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How to prove Bott vanishing for Y = (P1)n //L PGL2

How to think of PGL2-invariant global sections of a line bundle
O(d1, . . . , dn) on (P1)n?

Gelfand-MacPherson correspondence

Consider the action of the torus (C∗)n on the Grassmannian Gr(2, n). Let
O(1) be the ample line bundle on Gr(2, 5) given by the Plücker
embedding. We endow it with a (C∗)n-linearization by choosing the
character (d1, . . . , dn). Then⊕

k≥0

H0((P1)n,O(kd1, . . . , kdn))PGL2 =
⊕
k≥0

H0(Gr(2, n),O(k))(C∗)n

In particular, PGL2-invariant global sections of O(d1, . . . , dn) can be found
in the coordinate ring of the Grassmannian.
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How to prove Bott vanishing for Y = (P1)n //L PGL2

In fact, H0((P1)n,O(d1, . . . , dn))PGL2 consists of polynomials in xiyj − xjyi
having homogeneous degree d1, . . . , dn in the variables x1, y1; . . . ; xn, yn,
subject to the Plücker equivalence relations.

Each such section can be described as a linear combination of (directed)
graphs having n vertices, v1, . . . , vn, each of them of degree deg vi = di .

The Plücker relations can be depicted as follows:

= +
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How to prove Bott vanishing for Y = (P1)n //L PGL2

This way one can show that H0(X ,ΩX ⊗L)PGL2 � (H0(X ,ΩX )⊗ g∨) and
so

H1(Y ,ΩY ⊗ L) = H1(X , LX ⊗ L)PGL2 = 0

Using similar techniques (plus an argument with Koszul complexes), one
can also show that

H i (Y ,Ωj ⊗ L) = H i (X ,ΛjLX ⊗ L)PGL2 = 0, i > 0, j ≥ 0

and so Y satisfies Bott vanishing, as long as the linearization does not
admit strictly semi-stable locus.
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The toric case

Interestingly, quantization can also be applied succesfully towards toric
varieties. In fact, a smooth projective toric variety Y can be written as a
GIT quotient Y = Ad //(C∗)d−n, where (C∗)d−n = Hom(PicY ,C∗), and
the action is free on the semi-stable locus.

Using quantization and similar techniques, we recover yet another proof of
the following well-known result.

Theorem

A smooth projective toric variety satisfies Bott vanishing.
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