Bott vanishing using GIT and quantization

Sebastián Torres
University of Massachusetts, Amherst
May 11, 2021

Outline

(1) Introduction

Outline

(1) Introduction

(2) GIT

Outline

(1) Introduction

(2) GIT

(3) Quantization

Outline

(1) Introduction

(2) GIT

(3) Quantization

4. How to prove Bott vanishing for $Y=\left(\mathbb{P}^{1}\right)^{n} / /{ }_{\mathcal{L}} P G L_{2}$

Outline

(1) Introduction

(2) GIT

(3) Quantization

4. How to prove Bott vanishing for $Y=\left(\mathbb{P}^{1}\right)^{n} / /{ }_{\mathcal{L}} P G L_{2}$
(5) The toric case

Introduction

Definition

A smooth projective variety Y is said to satisfy Bott vanishing if

$$
H^{i}\left(Y, \Omega_{Y}^{j} \otimes L\right)=0
$$

for every $i>0, j \geq 0$ and L ample.

Introduction

Definition

A smooth projective variety Y is said to satisfy Bott vanishing if

$$
H^{i}\left(Y, \Omega_{Y}^{j} \otimes L\right)=0
$$

for every $i>0, j \geq 0$ and L ample.

- Stronger than Kodaira-Akizuki-Nakano vanishing.

Introduction

Definition

A smooth projective variety Y is said to satisfy Bott vanishing if

$$
H^{i}\left(Y, \Omega_{Y}^{j} \otimes L\right)=0
$$

for every $i>0, j \geq 0$ and L ample.

- Stronger than Kodaira-Akizuki-Nakano vanishing.
- Very restrictive property.

Introduction

Definition

A smooth projective variety Y is said to satisfy Bott vanishing if

$$
H^{i}\left(Y, \Omega_{Y}^{j} \otimes L\right)=0
$$

for every $i>0, j \geq 0$ and L ample.

- Stronger than Kodaira-Akizuki-Nakano vanishing.
- Very restrictive property.
- Not clear geometric meaning.

Introduction

Definition

A smooth projective variety Y is said to satisfy Bott vanishing if

$$
H^{i}\left(Y, \Omega_{Y}^{j} \otimes L\right)=0
$$

for every $i>0, j \geq 0$ and L ample.

- Stronger than Kodaira-Akizuki-Nakano vanishing.
- Very restrictive property.
- Not clear geometric meaning.

Example

Suppose Y is Fano and satisfies Bott vanishing. Then

$$
H^{1}\left(Y, T_{Y}\right)=H^{1}\left(Y, \Omega_{Y}^{n-1} \otimes K_{Y}^{*}\right)=0
$$

In particular, Y must be rigid.

Introduction

What is known

Introduction

What is known

- \mathbb{P}^{n} satisfies Bott vanishing (Bott, 1957).

Introduction

What is known

- \mathbb{P}^{n} satisfies Bott vanishing (Bott, 1957).
- Toric varieties satisfy Bott vanishing (Danilov 1978, Batyrev-Cox 1993, Buch-Thomsen-Lauritzen-Mehta 1997, ...).

Introduction

What is known

- \mathbb{P}^{n} satisfies Bott vanishing (Bott, 1957).
- Toric varieties satisfy Bott vanishing (Danilov 1978, Batyrev-Cox 1993, Buch-Thomsen-Lauritzen-Mehta 1997, ...).
- Quintic del Pezzo surface (Totaro 2019).

Introduction

What is known

- \mathbb{P}^{n} satisfies Bott vanishing (Bott, 1957).
- Toric varieties satisfy Bott vanishing (Danilov 1978, Batyrev-Cox 1993, Buch-Thomsen-Lauritzen-Mehta 1997, ...).
- Quintic del Pezzo surface (Totaro 2019).
- Bott vanishing holds for K3 surfaces of degree $=20$ or ≥ 24, fails for K3 surfaces of degree <20 (Totaro 2019).

Introduction

The quintic del Pezzo is isomorphic to $\bar{M}_{0,5}$ can be obtained as a GIT quotient $\left(\mathbb{P}^{1}\right)^{5} / / \mathcal{O}_{(2,2,2,2,2)} P G L_{2}$. It parametrizes 5-tuples of points on \mathbb{P}^{1} where no three of them coincide.

Introduction

The quintic del Pezzo is isomorphic to $\bar{M}_{0,5}$ can be obtained as a GIT quotient $\left(\mathbb{P}^{1}\right)^{5} / /{ }_{\mathcal{O}(2,2,2,2,2)} P G L_{2}$. It parametrizes 5-tuples of points on \mathbb{P}^{1} where no three of them coincide.

From now on, we will work over \mathbb{C}.

Introduction

> Theorem (T)
> Let Y be a GIT quotient $\left(\mathbb{P}^{1}\right)^{n} / /{ }_{\mathcal{L}} P G L_{2}$ given by a linearization with no strictly semi-stable locus. Then Y satisfies Bott vanishing.

Introduction

In order to prove that theorem, we use:

Introduction

In order to prove that theorem, we use:

- Quantization. This allows us to compute cohomology on Y as cohomology on X of a suitable object \mathcal{F}.

Introduction

In order to prove that theorem, we use:

- Quantization. This allows us to compute cohomology on Y as cohomology on X of a suitable object \mathcal{F}.
- Geometric syzygies. The cohomologies of \mathcal{F} correspond to the Koszul resolution of certain locus in $X \times \mathbb{P}(\mathfrak{g})$.

Introduction

In order to prove that theorem, we use:

- Quantization. This allows us to compute cohomology on Y as cohomology on X of a suitable object \mathcal{F}.
- Geometric syzygies. The cohomologies of \mathcal{F} correspond to the Koszul resolution of certain locus in $X \times \mathbb{P}(\mathfrak{g})$.
- Gelfand-MacPherson correspondence. This allows us to see global invariant sections as polynomials in the Plücker minors, and we characterize these as directed graphs.

GIT

Definition (GIT quotient)

Let $X=\operatorname{Proj} R$ be a variety with an action by a group G. Extend the action of G to R. Then the GIT quotient $X / / G$ is defined as $\operatorname{Proj} R^{G}$.

Definition (GIT quotient)

Let $X=\operatorname{Proj} R$ be a variety with an action by a group G. Extend the action of G to R. Then the GIT quotient $X / / G$ is defined as $\operatorname{Proj} R^{G}$.

There are two choices involved:

- The coordinate ring R. This amounts to specifying an ample line bundle \mathcal{L}, so that $R=\bigoplus_{k \geq 0} H^{0}\left(X, \mathcal{L}^{\otimes k}\right)$.
- The action of G on R. This amounts to extending the action of G on X to the total space of \mathcal{L}.

GIT

GIT

Example

Let G act on a ring R. If we extend the action trivially to the trivial line bundle, then we get $\operatorname{Spec} R / / G=\operatorname{Spec} R^{G}$.

GIT

Example

Let G act on a ring R. If we extend the action trivially to the trivial line bundle, then we get $\operatorname{Spec} R / / G=\operatorname{Spec} R^{G}$.

Example

Let \mathbb{C}^{*} act on \mathbb{A}^{n+1} by multiplication. Extend this action to \mathcal{O} and twist it by the character $t \mapsto t$, that is: $t \cdot p\left(x_{0}, \ldots, x_{n}\right)=t p\left(t^{-1} x_{0}, \ldots, t^{-1} x_{n}\right)$. Then one obtains the GIT quotient $\mathbb{A}^{n+1} / / \mathbb{C}^{*}=\mathbb{P}^{n}$.

GIT

Definition

Given an action of G on X and a G-linearized ample line bundle \mathcal{L}, the semi-stable locus is defined as

$$
X^{s s}=\left\{x \in X \mid \exists \sigma \in H^{0}\left(X, \mathcal{L}^{\otimes k}\right)^{G}, \sigma(x) \neq 0\right\}
$$

and then we have a quotient map

$$
\pi: X^{s s} \rightarrow X / /{ }_{\mathcal{L}} G
$$

GIT

Definition

Given an action of G on X and a G-linearized ample line bundle \mathcal{L}, the semi-stable locus is defined as

$$
X^{s s}=\left\{x \in X \mid \exists \sigma \in H^{0}\left(X, \mathcal{L}^{\otimes k}\right)^{G}, \sigma(x) \neq 0\right\}
$$

and then we have a quotient map

$$
\pi: X^{s s} \rightarrow X / /{ }_{\mathcal{L}} G .
$$

The stable locus is

$$
X^{s}=\left\{x \in X^{s s} \mid G_{x} \text { is finite and } G \cdot x \text { is closed in } X^{s s}\right\} .
$$

GIT

Definition

Given an action of G on X and a G-linearized ample line bundle \mathcal{L}, the semi-stable locus is defined as

$$
X^{s s}=\left\{x \in X \mid \exists \sigma \in H^{0}\left(X, \mathcal{L}^{\otimes k}\right)^{G}, \sigma(x) \neq 0\right\}
$$

and then we have a quotient map

$$
\pi: X^{s s} \rightarrow X / /{ }_{\mathcal{L}} G
$$

The stable locus is

$$
X^{s}=\left\{x \in X^{s s} \mid G_{x} \text { is finite and } G \cdot x \text { is closed in } X^{s s}\right\}
$$

We are interested in the cases when $X^{s s}=X^{s}$.

GIT

GIT

Example

Let $\mathcal{L}=\mathcal{O}\left(d_{1}, \ldots, d_{n}\right)$ be a $P G L_{2}$-linearized ample line bundle in $X=\left(\mathbb{P}^{1}\right)^{n}$. The semi-stable (resp. stable) locus consists of tuples $\left(z_{1}, \ldots, z_{n}\right) \in\left(\mathbb{P}^{1}\right)^{n}$ such that whenever $\sum_{i \in I} d_{i}>\sum_{i \in I^{c}} d_{i}$ (resp. \geq) for some $I \subset\{1, \ldots, n\}$, the coordinates $\left\{z_{i}, i \in I\right\}$ do not all coincide.

The GIT quotient $Y=\left(\mathbb{P}^{1}\right)^{n} / /{ }_{\mathcal{L}} P G L_{2}$ parametrizes such configurations of n points up to projective equivalence.

Quantization

We are interested in computing cohomologies $H^{i}(Y, F)$, for certain vector bundles F. Under certain circumstances, this can be computed as $H^{i}(X, \mathcal{F})^{G}$ for some suitable object \mathcal{F}.

Quantization

We are interested in computing cohomologies $H^{i}(Y, F)$, for certain vector bundles F. Under certain circumstances, this can be computed as $H^{i}(X, \mathcal{F})^{G}$ for some suitable object \mathcal{F}.

Definition

We say that a G-linearized chain complex \mathcal{F} of vector bundles on X descends to F if $\left.\mathcal{F}\right|_{X^{s s}} \cong \pi^{*} F$.

Quantization

We are interested in computing cohomologies $H^{i}(Y, F)$, for certain vector bundles F. Under certain circumstances, this can be computed as $H^{i}(X, \mathcal{F})^{G}$ for some suitable object \mathcal{F}.

Definition

We say that a G-linearized chain complex \mathcal{F} of vector bundles on X descends to F if $\left.\mathcal{F}\right|_{X_{s s}} \cong \pi^{*} F$.

Quantization Theorem (Teleman, Halpern-Leistner)

Suppose \mathcal{F} descends to F. Take a Kempf-Ness stratification of the unstable locus $X \backslash X^{s s}=\sqcup S_{\alpha}$. If all the weights of \mathcal{F} on S_{α} are $<\eta_{\alpha}$, then

$$
H^{i}(Y, F)=H^{i}(X, \mathcal{F})^{G}
$$

Quantization

How to prove Bott vanishing for $Y=\left(\mathbb{P}^{1}\right)^{n} /{ }_{\mathcal{L}} P G L_{2}$

In our case, we have $X=\left(\mathbb{P}^{1}\right)^{n}, G=P G L_{2}$ and let $\mathfrak{g}=\mathfrak{s l}_{2}$ be the Lie algebra. The action of G induces a map of sheaves $\Omega_{X} \rightarrow \mathfrak{g}^{\vee}$.

How to prove Bott vanishing for $Y=\left(\mathbb{P}^{1}\right)^{n} /{ }_{\mathcal{L}} P G L_{2}$

In our case, we have $X=\left(\mathbb{P}^{1}\right)^{n}, G=P G L_{2}$ and let $\mathfrak{g}=\mathfrak{s l}_{2}$ be the Lie algebra. The action of G induces a map of sheaves $\Omega_{X} \rightarrow \mathfrak{g}^{\vee}$.

Definition

We denote by $L_{\mathfrak{X}}$ the $P G L_{2}$-linearized two-step chain complex $\left[\Omega_{X} \rightarrow \mathfrak{g}^{\vee}\right]$.

How to prove Bott vanishing for $Y=\left(\mathbb{P}^{1}\right)^{n} /{ }_{\mathcal{L}} P G L_{2}$

In our case, we have $X=\left(\mathbb{P}^{1}\right)^{n}, G=P G L_{2}$ and let $\mathfrak{g}=\mathfrak{s l}_{2}$ be the Lie algebra. The action of G induces a map of sheaves $\Omega_{X} \rightarrow \mathfrak{g}^{\vee}$.

Definition

We denote by $L_{\mathfrak{X}}$ the $P G L_{2}$-linearized two-step chain complex $\left[\Omega_{X} \rightarrow \mathfrak{g}^{\vee}\right]$.

Remark

$L_{\mathfrak{X}}$ descends to Ω_{Y}. This is because of the following short exact sequence

$$
0 \rightarrow \pi^{*} \Omega_{Y} \rightarrow \Omega_{X s s} \rightarrow \mathfrak{g}^{\vee} \rightarrow 0
$$

How to prove Bott vanishing for $Y=\left(\mathbb{P}^{1}\right)^{n} /{ }_{\mathcal{L}} P G L_{2}$

In our case, we have $X=\left(\mathbb{P}^{1}\right)^{n}, G=P G L_{2}$ and let $\mathfrak{g}=\mathfrak{s l}_{2}$ be the Lie algebra. The action of G induces a map of sheaves $\Omega_{X} \rightarrow \mathfrak{g}^{\vee}$.

Definition

We denote by $L_{\mathfrak{X}}$ the $P G L_{2}$-linearized two-step chain complex $\left[\Omega_{X} \rightarrow \mathfrak{g}^{\vee}\right]$.

Remark

$L_{\mathfrak{X}}$ descends to Ω_{Y}. This is because of the following short exact sequence

$$
0 \rightarrow \pi^{*} \Omega_{Y} \rightarrow \Omega_{X s s} \rightarrow \mathfrak{g}^{\vee} \rightarrow 0
$$

Similarly, $\Lambda^{j} L_{\mathfrak{X}}$ descends to Ω_{Y}^{j}, where $\Lambda^{j} L_{\mathfrak{X}}$ is the chain complex

$$
0 \rightarrow \Omega_{X}^{j} \rightarrow \Omega_{X}^{j-1} \otimes \mathfrak{g}^{\vee} \rightarrow \cdots \rightarrow S^{j} \mathfrak{g}^{\vee} \rightarrow 0
$$

How to prove Bott vanishing for $Y=\left(\mathbb{P}^{1}\right)^{n} /{ }_{\mathcal{L}} P G L_{2}$

Lemma

Let $X=\left(\mathbb{P}^{1}\right)^{n}, G=P G L_{2}$ and $\mathcal{L}=\mathcal{O}\left(d_{1}, \ldots, d_{n}\right)$ a $P G L_{2}$-linearized ample line bundle such that $X^{s s}=X^{s}$. Then $\Lambda^{j} L_{\mathfrak{X}} \otimes \mathcal{L}$ satisfies the hypotheses of the Quantization theorem, and so

$$
H^{i}\left(Y, \Omega_{Y}^{j} \otimes L\right)=H^{i}\left(X, \Lambda^{j} L_{X} \otimes \mathcal{L}\right)^{P G L_{2}}
$$

where $Y=\left(\mathbb{P}^{1}\right)^{n} / /{ }_{\mathcal{L}} P G L_{2}$ and L is the descent of \mathcal{L}.

How to prove Bott vanishing for $Y=\left(\mathbb{P}^{1}\right)^{n} /{ }_{\mathcal{L}} P G L_{2}$

Lemma

Let $X=\left(\mathbb{P}^{1}\right)^{n}, G=P G L_{2}$ and $\mathcal{L}=\mathcal{O}\left(d_{1}, \ldots, d_{n}\right)$ a $P G L_{2}$-linearized ample line bundle such that $X^{s s}=X^{s}$. Then $\Lambda^{j} L_{\mathfrak{X}} \otimes \mathcal{L}$ satisfies the hypotheses of the Quantization theorem, and so

$$
H^{i}\left(Y, \Omega_{Y}^{j} \otimes L\right)=H^{i}\left(X, \Lambda^{j} L_{X} \otimes \mathcal{L}\right)^{P G L_{2}}
$$

where $Y=\left(\mathbb{P}^{1}\right)^{n} / /{ }_{\mathcal{L}} P G L_{2}$ and L is the descent of \mathcal{L}.

In fact, to show Bott vanishing on Y, it suffices to check that

$$
H^{i}\left(X, \Lambda^{j} L_{\mathfrak{X}} \otimes \mathcal{L}\right)^{P G L_{2}}=0
$$

for $i>0$.

How to prove Bott vanishing for $Y=\left(\mathbb{P}^{1}\right)^{n} /{ }_{\mathcal{L}} P G L_{2}$

Recall $\Lambda^{j} L_{\mathfrak{X}} \otimes \mathcal{L}$ is the complex

$$
0 \rightarrow \Omega_{X}^{j} \otimes \mathcal{L} \rightarrow \Omega_{X}^{j-1} \otimes \mathfrak{g}^{\vee} \otimes \mathcal{L} \rightarrow \cdots \rightarrow S^{j} \mathfrak{g}^{\vee} \otimes \mathcal{L} \rightarrow 0
$$

How to prove Bott vanishing for $Y=\left(\mathbb{P}^{1}\right)^{n} /{ }_{\mathcal{L}} P G L_{2}$

Recall $\Lambda^{j} L_{\mathfrak{X}} \otimes \mathcal{L}$ is the complex

$$
0 \rightarrow \Omega_{X}^{j} \otimes \mathcal{L} \rightarrow \Omega_{X}^{j-1} \otimes \mathfrak{g}^{\vee} \otimes \mathcal{L} \rightarrow \cdots \rightarrow S^{j} \mathfrak{g}^{\vee} \otimes \mathcal{L} \rightarrow 0
$$

Lemma

$H^{i}\left(X, \Lambda^{j} L_{\mathfrak{X}} \otimes \mathcal{L}\right)$ can be computed as the cohomology of the complex of global sections

$$
0 \rightarrow H^{0}\left(\Omega_{X}^{j} \otimes \mathcal{L}\right) \rightarrow H^{0}\left(\Omega_{X}^{j-1} \otimes \mathcal{L}\right) \otimes \mathfrak{g}^{\vee} \rightarrow \cdots \rightarrow H^{0}(\mathcal{L}) \otimes S^{j} \mathfrak{g}^{\vee} \rightarrow 0
$$

How to prove Bott vanishing for $Y=\left(\mathbb{P}^{1}\right)^{n} /{ }_{\mathcal{L}} P G L_{2}$

Recall $\Lambda^{j} L_{\mathfrak{X}} \otimes \mathcal{L}$ is the complex

$$
0 \rightarrow \Omega_{X}^{j} \otimes \mathcal{L} \rightarrow \Omega_{X}^{j-1} \otimes \mathfrak{g}^{\vee} \otimes \mathcal{L} \rightarrow \cdots \rightarrow S^{j} \mathfrak{g}^{\vee} \otimes \mathcal{L} \rightarrow 0
$$

Lemma

$H^{i}\left(X, \Lambda^{j} L_{\mathfrak{X}} \otimes \mathcal{L}\right)$ can be computed as the cohomology of the complex of global sections

$$
0 \rightarrow H^{0}\left(\Omega_{X}^{j} \otimes \mathcal{L}\right) \rightarrow H^{0}\left(\Omega_{X}^{j-1} \otimes \mathcal{L}\right) \otimes \mathfrak{g}^{\vee} \rightarrow \cdots \rightarrow H^{0}(\mathcal{L}) \otimes S^{j} \mathfrak{g}^{\vee} \rightarrow 0
$$

For example, for $j=1$, showing that $H^{1}\left(Y, \Omega_{Y} \otimes L\right)=0$ is equivalent to showing that the map of invariant global sections

$$
H^{0}\left(X, \Omega_{X} \otimes \mathcal{L}\right)^{P G L_{2}} \rightarrow\left(H^{0}(X, \mathcal{L}) \otimes \mathfrak{g}^{\vee}\right)^{P G L_{2}}
$$

is surjective.

How to prove Bott vanishing for $Y=\left(\mathbb{P}^{1}\right)^{n} /{ }_{\mathcal{L}} P G L_{2}$

How to think of $P G L_{2}$-invariant global sections of a line bundle $\mathcal{O}\left(d_{1}, \ldots, d_{n}\right)$ on $\left(\mathbb{P}^{1}\right)^{n}$?

How to prove Bott vanishing for $Y=\left(\mathbb{P}^{1}\right)^{n} / /_{\mathcal{L}} P G L_{2}$

How to think of $P G L_{2}$-invariant global sections of a line bundle $\mathcal{O}\left(d_{1}, \ldots, d_{n}\right)$ on $\left(\mathbb{P}^{1}\right)^{n}$?

Gelfand-MacPherson correspondence

Consider the action of the torus $\left(\mathbb{C}^{*}\right)^{n}$ on the $\operatorname{Grassmannian~} \operatorname{Gr}(2, n)$. Let $\mathcal{O}(1)$ be the ample line bundle on $\operatorname{Gr}(2,5)$ given by the Plücker embedding. We endow it with a $\left(\mathbb{C}^{*}\right)^{n}$-linearization by choosing the character $\left(d_{1}, \ldots, d_{n}\right)$. Then

$$
\bigoplus_{k \geq 0} H^{0}\left(\left(\mathbb{P}^{1}\right)^{n}, \mathcal{O}\left(k d_{1}, \ldots, k d_{n}\right)\right)^{P G L_{2}}=\bigoplus_{k \geq 0} H^{0}(\operatorname{Gr}(2, n), \mathcal{O}(k))^{\left(\mathbb{C}^{*}\right)^{n}}
$$

How to prove Bott vanishing for $Y=\left(\mathbb{P}^{1}\right)^{n} / /_{\mathcal{L}} P G L_{2}$

How to think of $P G L_{2}$-invariant global sections of a line bundle $\mathcal{O}\left(d_{1}, \ldots, d_{n}\right)$ on $\left(\mathbb{P}^{1}\right)^{n}$?

Gelfand-MacPherson correspondence

Consider the action of the torus $\left(\mathbb{C}^{*}\right)^{n}$ on the $\operatorname{Grassmannian~} \operatorname{Gr}(2, n)$. Let $\mathcal{O}(1)$ be the ample line bundle on $\operatorname{Gr}(2,5)$ given by the Plücker embedding. We endow it with a $\left(\mathbb{C}^{*}\right)^{n}$-linearization by choosing the character $\left(d_{1}, \ldots, d_{n}\right)$. Then

$$
\bigoplus_{k \geq 0} H^{0}\left(\left(\mathbb{P}^{1}\right)^{n}, \mathcal{O}\left(k d_{1}, \ldots, k d_{n}\right)\right)^{P G L_{2}}=\bigoplus_{k \geq 0} H^{0}(\operatorname{Gr}(2, n), \mathcal{O}(k))^{\left(\mathbb{C}^{*}\right)^{n}}
$$

In particular, $P G L_{2}$-invariant global sections of $\mathcal{O}\left(d_{1}, \ldots, d_{n}\right)$ can be found in the coordinate ring of the Grassmannian.

How to prove Bott vanishing for $Y=\left(\mathbb{P}^{1}\right)^{n} / /{ }_{\mathcal{L}} P G L_{2}$

In fact, $H^{0}\left(\left(\mathbb{P}^{1}\right)^{n}, \mathcal{O}\left(d_{1}, \ldots, d_{n}\right)\right)^{P G L_{2}}$ consists of polynomials in $x_{i} y_{j}-x_{j} y_{i}$ having homogeneous degree d_{1}, \ldots, d_{n} in the variables $x_{1}, y_{1} ; \ldots ; x_{n}, y_{n}$, subject to the Plücker equivalence relations.

How to prove Bott vanishing for $Y=\left(\mathbb{P}^{1}\right)^{n} /{ }_{\mathcal{L}} P G L_{2}$

In fact, $H^{0}\left(\left(\mathbb{P}^{1}\right)^{n}, \mathcal{O}\left(d_{1}, \ldots, d_{n}\right)\right)^{P G L_{2}}$ consists of polynomials in $x_{i} y_{j}-x_{j} y_{i}$ having homogeneous degree d_{1}, \ldots, d_{n} in the variables $x_{1}, y_{1} ; \ldots ; x_{n}, y_{n}$, subject to the Plücker equivalence relations.

Each such section can be described as a linear combination of (directed) graphs having n vertices, v_{1}, \ldots, v_{n}, each of them of degree $\operatorname{deg} v_{i}=d_{i}$.

How to prove Bott vanishing for $Y=\left(\mathbb{P}^{1}\right)^{n} /{ }_{\mathcal{L}} P G L_{2}$

In fact, $H^{0}\left(\left(\mathbb{P}^{1}\right)^{n}, \mathcal{O}\left(d_{1}, \ldots, d_{n}\right)\right)^{P G L_{2}}$ consists of polynomials in $x_{i} y_{j}-x_{j} y_{i}$ having homogeneous degree d_{1}, \ldots, d_{n} in the variables $x_{1}, y_{1} ; \ldots ; x_{n}, y_{n}$, subject to the Plücker equivalence relations.

Each such section can be described as a linear combination of (directed) graphs having n vertices, v_{1}, \ldots, v_{n}, each of them of degree $\operatorname{deg} v_{i}=d_{i}$.

The Plücker relations can be depicted as follows:

How to prove Bott vanishing for $Y=\left(\mathbb{P}^{1}\right)^{n} /{ }_{\mathcal{L}} P G L_{2}$

How to prove Bott vanishing for $Y=\left(\mathbb{P}^{1}\right)^{n} /{ }_{\mathcal{L}} P G L_{2}$

This way one can show that $H^{0}\left(X, \Omega_{X} \otimes \mathcal{L}\right)^{P G L_{2}} \rightarrow\left(H^{0}\left(X, \Omega_{X}\right) \otimes \mathfrak{g}^{\vee}\right)$ and so

$$
H^{1}\left(Y, \Omega_{Y} \otimes L\right)=H^{1}\left(X, L_{X} \otimes \mathcal{L}\right)^{P G L_{2}}=0
$$

How to prove Bott vanishing for $Y=\left(\mathbb{P}^{1}\right)^{n} /{ }_{\mathcal{L}} P G L_{2}$

This way one can show that $H^{0}\left(X, \Omega_{X} \otimes \mathcal{L}\right)^{P G L_{2}} \rightarrow\left(H^{0}\left(X, \Omega_{X}\right) \otimes \mathfrak{g}^{\vee}\right)$ and SO

$$
H^{1}\left(Y, \Omega_{Y} \otimes L\right)=H^{1}\left(X, L_{X} \otimes \mathcal{L}\right)^{P G L_{2}}=0
$$

Using similar techniques (plus an argument with Koszul complexes), one can also show that

$$
H^{i}\left(Y, \Omega^{j} \otimes L\right)=H^{i}\left(X, \Lambda^{j} L_{\mathfrak{x}} \otimes \mathcal{L}\right)^{P G L_{2}}=0, \quad i>0, j \geq 0
$$

and so Y satisfies Bott vanishing, as long as the linearization does not admit strictly semi-stable locus.

The toric case

Interestingly, quantization can also be applied succesfully towards toric varieties. In fact, a smooth projective toric variety Y can be written as a GIT quotient $Y=\mathbb{A}^{d} / /\left(\mathbb{C}^{*}\right)^{d-n}$, where $\left(\mathbb{C}^{*}\right)^{d-n}=\operatorname{Hom}\left(\operatorname{Pic} Y, \mathbb{C}^{*}\right)$, and the action is free on the semi-stable locus.

The toric case

Interestingly, quantization can also be applied succesfully towards toric varieties. In fact, a smooth projective toric variety Y can be written as a GIT quotient $Y=\mathbb{A}^{d} / /\left(\mathbb{C}^{*}\right)^{d-n}$, where $\left(\mathbb{C}^{*}\right)^{d-n}=\operatorname{Hom}\left(\operatorname{Pic} Y, \mathbb{C}^{*}\right)$, and the action is free on the semi-stable locus.

Using quantization and similar techniques, we recover yet another proof of the following well-known result.

Theorem

A smooth projective toric variety satisfies Bott vanishing.

References

[1] D. A. Cox, Erratum to "The homogeneous coordinate ring of a toric variety" [MR1299003], J. Algebraic Geom. 23 (2014), no. 2, 393-398.
[2] D. Halpern-Leistner, The derived category of a GIT quotient, J. Amer. Math. Soc. 28 (2015), no. 3, 871-912.
[3] B. Totaro, Bott vanishing for algebraic surfaces, Trans. Amer. Math. Soc. (2020).
[4] S. T., Bott vanishing using GIT and quantization (2020), available at https://arxiv.org/abs/2003.10617.

Thanks!

