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Abstract: Numerical computations based on a high-order Godunov method
for multiple phases are presented. Computations of asymmetric oblique im-
pacts reveal an instability that may reduce the jet velocity below predicted
values. At small impact angles the peak pressure experienced by jetted mate-
rials is substantially less than that given by the standard model. Calculated
temperatures and the fraction of melt and vapor created by a jetting collision
must be reduced commensurately.

Key words: Godunov methods, Shock waves, Jetting

1. Introduction

We have developed an Eulerian high-order Godunov method for shock-capturing
computations with multiple condensed phases. The thermodynamic model is
based on a Mie-Griineisen equation of state and a linear Hugoniot. This nu-
merical method includes a volume-of-fluid algorithm for tracking solid-solid and
solid-vacuum interfaces and an adaptive mesh refinement algorithm for locally
resolving important features of the flow field in space and time. Details are
presented in Miller & Puckett (1996). We have used this computational model
to study shock refraction in experimental assemblies (Miller & Puckett 1994).
Here, we present new computational results aimed at understanding the fluid-
dynamic regime in asymmetric collisions that lead to jetting.

2. Jetting

The theory that provides jet mass and momentum is based on the fully de-
veloped flow resulting from the collision of thin plates (Birkhoff et al. 1948,
Walsh et al. 1953, Harlow and Pracht 1966). In that theory, a length scale is
provided by the plate thicknesses. In problems involving the collision of spheres
(e.g., Melosh & Sonett 1986, Vickery 1993) the relevant length scale is not at
all obvious, and in fact fully developed flow of the sort described in the thin-
plate theory never occurs. Likewise the relevant scale governing the short-time
behavior of plate impacts (or equivalently the impact of plates that are thick
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compared to their lengths) is not known. There is some experimental work ad-
dressing these issues. Yang et al. (1992) have shown good agreement between
theory and jet properties in experiments with plates that are thin compared to
their lengths, while Yang & Ahrens (1995) found a striking disagreement be-
tween thick-plate experimental results and the steady-state thin-plate theory.
To reconcile the theory with experiment it is necessary to understand how the
jet develops in the self-similar regime, and its subsequent transition to steady
state. Preliminary work aimed at addressing that question is described here.

The inset to Fig. 1a shows the initial geometry of our computation — an
aluminum (Al) plate strikes a 50° Al ramp at Vi, = 2 km/s. The bottom
boundary is a reflecting wall. The problem domain is 10 cm by 5 em. Figure 1a
shows the configuration of the material interfaces 900 ns after impact. A jet
has formed, and the slip plane joining the impacted materials has undergone a
Kelvin-Helmholtz instability.

Figure 1b shows the pressure contours at 900 ns. It is apparent from this
figure that the material flowing from the colliding materials into the jet is not
compressed by a single shock or collection of shocks, but rather by a complex
and dispersed compressional fan.

The vortices we observe are similar to those observed in shock welding
in the irregular regime (e.g..Bahrani et al. 1967, Godunov et al. 1971). The-
ories for the origin of these features derive the vortex length scale from the
plate thicknesses (e.g., Hunt 1968, Godunov et al. 1970, Bazdenkov et al. 1985,
Gupta & Kainth 1990). It seems likely that the vortex formation evident in our
computations is responsible for the wave formation observed in shock welding.
If so, we believe the theories for wave formation that draw on analogy to von
Karman vortex streets are incorrect since we find only a single vortex sheet
in our results. Godunov et al. (1971) reached this same conclusion using an
argument based on the Reynolds and Strouhal numbers.

3. Theoretical considerations

The model (Kieffer 1977) that is commonly used to calculate the pressure at
the stagnation point is incorrect, and hence in many cases will give inaccurate
values for the stagnation pressure. The calculation is based on transforming the
problem to a reference frame in which the point of collision is stationary and
then using Bernoulli’s law

I+ |U?/2 = const. (along streamlines in stationary, isentropic flow) (1)

to calculate the enthalpy I = E + PV at the stagnation point. The model
assumes the streamline connecting the stagnation point 7, to some upstream
point T crosses a single shock. Consequently, (1) together with a form of (1)
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()
Figure 1. (a) Material interfaces at 900 ns after impact and at 0 ns (inset); (b) pressure

contours from 0.2 to 10.2 GPa in steps of 0.2 GPa, and superimposed solid-vacuum
interface boundary; (c) velocity vectors relative to the stagnation point.
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that holds across shock waves can be used to obtain the value of the enthalpy
at the stagnation point: I,, = I + |Up|2/2. In order to obtain the stagnation
pressure Py, from I, one needs two additional equations relating the variables
P, V, and E. One of these is the equation of state P(E,V). In the standard
model one closes the system of equations with the Rankine-Hugoniot energy
jump condition E = Ey + (P + Fy)(Vo — V)/2. However, this assumes that
the energy in the post-shock state, say E,, is identical to the energy E,, at the
stagnation point. This cannot be true, for in applying Bernoulli’s law to connect
the post-shock state (P, Vi, E) to the stagnation-point state (P, Vi,, E,) one
must assume that the entropies of these points are equal: S; = S,,. If By = E,,
and S} = S, then the two thermodynamic states must be equal, (P, Vi, E;) =
(Psp, Vip, Ep) and consequently by conservation of energy U, = ﬁ,,, = 0. This
implies zero mass flux p,U; across the shock, which is impossible.

Since AP/0V |Hugonior < OP/3V|s < P[0V | < 0, for a given stagnation
enthalpy I, closure of the problem using the energy-jump equation will under-
estimate P, as shown in Fig. 2. The lower bound (b) is what Kieffer calculated,
but this point is not physically attainable as discussed above. For a single-shock
process, the true pressure must lie on an isentrope (S, > Sp) connected to the
Hugoniot #H at pressure lower than P,. The intersection of this isentrope S;
with the isenthalp I = Uy*/2 will lie between (a) and (b).

Figure 2. Bernoulli’s law specifies the en-
thalpy I = I, at the stagnation point. If
the path to the stagnation point is isen-
tropic Sp, the pressure P, will be a max-
imum. If dissipation is maximized, which
we think implies a single shock #, the pres-
sure P, will be a minimum.

We also note that this pressure calculation is not well posed for asymmetric
oblique collisions (e.g., Fig. 1) since in the stationary reference frame the ini-
tial kinetic energy of the plate and wedge are different, and so the stagnation
pressures calculated from them using Bernoulli’s law differ.

The computations shown in Fig. 1 are nearly self-similar (Jones et al. 1951).
Under these circumstances the flow is not stationary and (1) must be modified.
Instead,

1 | Sap
Ly + glzn/tl? = o+ 3104 = [0 ds (2)

where ' = U — z/t, and V' is the gradient operator with respect to é‘: Z/t.
The integral is taken along the integral curve defined by d¢/ds = U'(£(s)) from
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some initial point sq to the stagnation point s,, (Fig. 1¢). At small angles o the
stagnation-point enthalpy computed from (2) is generally less than that given
by (1), principally because the upstream velocities in the self-similar regime are
0 and Viy,, whereas they are Vi, cot @ and Vi, csca in the steady-state regime.

The steady-state theory applied to the self-similar computations (Fig. 1)
gives a stagnation pressure of 4.0 GPa or 10.0 GPa depending on whether the
calculation is done for the plate or the wedge. The peak pressure in Fig. 1
is 10.2 GPa. However, in a similar computation with a 20° angle the theory
gives 48.4 and 55.4 GPa whereas the numerical computation gives 27.5 GPa.
At 15° the disagreement is still larger: theory gives 94.1 or 101.4 and com-
putation gives 35.9. For the cases described the discrepancy between theory
and computations is largest near the onset of jetting (13.2° with the present
geometry and 2 km/s horizontal velocity) where the upstream velocity Uy dif-
fers most from the steady-state value. Geological and planetary applications
that seek to explain tektites, chondrules, and the formation of the Moon (e.g.,
Kieffer 1975, Melosh & Sonett 1986, McKinnon 1989, Vickery 1993) are more
nearly self-similar than steady-state, and it is under such conditions that our
computations suggest the commonly used theory fails most egregiously.

4. Conclusions

Oblique, asymmetric collisions lead to vortex sheets that in turn lead to Kelvin-
Helmholtz instabilities. Jetting models based on the idealized symmetric geom-
etry presented in Birkhoff et al. (1948), i.e., assuming locally smooth, linear,
and stationary material interfaces, are wrong in detail and possibly lead to
inaccurate conclusions.

A conclusion that is independent of our computations is that the model
commonly used to compute the stagnation-point pressure is incorrect. Our
computations support this result by revealing more complex wave interactions
than commonly supposed, and by demonstrating poor agreement between the
theoretical and the computed peak pressures. Because of this we suggest that
calculations of the thermodynamic state of jetted materials by the commonly
used model require reevaluation. Our numerical results suggest the discrepancy
is largest at small jetting angles, with the commonly used model overestimating
the stagnation pressure by as much as a factor of three in the examples given.
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