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Preface 
 
It is our great privilege and honor to present the proceedings of the 18th 
International Symposium on Transportation and Traffic Theory (ISTTT), held at 
The Hong Kong Polytechnic University in Hong Kong, China on 16-18 July 2009. 
The 18th ISTTT is jointly organized by the Hong Kong Society for Transportation 
Studies and Department of Civil and Structural Engineering of The Hong Kong 
Polytechnic University.  
 
The ISTTT series is the main gathering for the world’s transportation and traffic 
theorists, and those who are interested in contributing to or gaining a deep 
understanding of traffic and transportation phenomena in order to better plan, 
design and manage the transportation system. Although it embraces a wide range 
of topics, from traffic flow theories and demand modeling to road safety and 
logistics and supply chain modeling, the ISTTT is hallmarked by its intellectual 
innovation, research and development excellence in the treatment of real-world 
transportation and traffic problems. The ISTTT prides itself in the extremely high 
quality of its proceedings. Previous ISTTT conferences were held in Warren, 
Michigan (1959), London (1963), New York (1965), Karlsruhe (1968), Berkeley, 
California (1971), Sydney (1974), Kyoto (1977), Toronto (1981), Delft (1984), 
Cambridge, Massachusetts (1987), Yokohama (1990), Berkeley, California (1993), 
Lyon (1996), Jerusalem (1999), Adelaide (2002), College Park, Maryland (2005), 
and London (2007).  
 
This 18th ISTTT celebrates the 50th Anniversary of this premier conference series. 
The first Symposium, organized by Professor Robert Herman, was held on 7-8 
December 1959. A total of 15 papers were presented in the 1st Symposium. The 
scope of this Symposium series has since broadened, from the Symposium on the 
Theory of Traffic Flow to the International Symposium on Transportation and 
Traffic Theory. The ISTTT has also grown in size, but is still limited to around 35 
papers. The rationale is, as was since the 1st Symposium, to allow ample time for 
presentation and informal discussion. Indeed, this time, in celebrating the 50th 
Anniversary of this tradition, we have arranged roundtable discussions to further 
enhance the interactions among researchers, scientists, and practitioners. We hope 
to have an opportunity to reminisce advances made in the past, and to outline 
important, uncharted territories. In reviewing the outline of the 1st Symposium, we 
were awed by the foresights of the researchers then, addressing research topics 
such as traffic control, distribution of traffic on a network and that of households 
and workplaces, clustering tendency of vehicular traffic, modeling traffic via 
stochastic processes, and simulation of bottlenecks, etc.  These topics appear as 
fresh today as they were posed 50 years ago, despite much progress having been 
made. Transportation and traffic theories renew themselves as technology 
advances, as human activities are re-organized, and as scarce resources become 
gradually depleted, etc, representing our best effort at the time to understand and 
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hence manage the needs and consequences of connecting activities, goods, and 
people.  From this vantage point, we are confident that the best years for ISTTT 
are yet to come in the future.  
 
It is timely to organize the 18th ISTTT in Hong Kong, as the thrust of 
transportation infrastructure development has emerged strongly in Asia. Indeed, 
many parts of Asia are currently undertaking extensive transportation 
infrastructure programs. Hong Kong, for example, will initiate 10 major 
infrastructure projects with an investment of about HK$250 billion (roughly 
US$32 billion), in which 6 are transportation projects, including 4 railway and 2 
highway infrastructure projects. These transportation infrastructures will bring 
about an economic benefit of more than HK$100 billion (roughly US$12 billion) 
annually, amounting to some 7% of the GDP of Hong Kong in 2006. This points 
to the imminent demand of high caliber transportation and traffic planners and 
engineers for the planning, design, management and operation of the 
transportation systems. The 18th ISTTT offers an excellent platform to elevate the 
role of transportation and traffic theories for transportation infrastructure planning 
and operations.  
 
Special thanks are given to Members of the International Advisory Committee 
(IAC) and the local organizing committee for reviewing the extended abstracts and 
then full paper submissions, especially under the short review time requested of 
them.  Our particular appreciation is extended to the referees who have 
contributed their considerable time and effort to the two-tier review process. With 
their dedicated support, each paper submission received at least three reviews, 
typically four to five, sometimes up to six reviews. Given the extremely high 
selectivity, we have tried our very best to ensure that each paper submission 
received a sufficient number of reviews to evaluate its merit. In reality, the tight 
constraint on the number of papers to be accepted for this Symposium have forced 
us to decline a number of very high quality submissions, which would be 
acceptable for publications in quality transportation journals. All in all, out of 230 
extended abstract submissions, we have finally selected 35 papers to be included 
in this volume. We sincerely hope that this volume will serve as a vehicle to 
stimulate novel research initiatives in transportation and traffic theories. 
 
As this volume was heading towards press, the news of Ryuichi Kitamura’s 
untimely death on 19 February 2009 struck us with sadness and a profound sense 
of loss.  A professor at Kyoto University, Ryuichi had given his unstinting support 
to ISTTT as a Member of the IAC.  All of us who had the good fortune of having 
met him were often touched by his cheerfulness, kindness, and generosity.  His 
positive attitude and warmth endured even when he was suffering from a long 
illness. We shall sorely miss his scholarship and friendship.  
 
This commemorative Symposium volume is dedicated to researchers, scientists, 
and practitioners who have spent their career advancing the state-of-the-art in 
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transportation and traffic theories. We celebrate their accomplishments and honor 
the memory of those who are not with us today. 
 
Finally, we express our gratitude to the organizations whose financial contribution 
has made it possible for us to host the 18th ISTTT in Hong Kong.  
 
 
William H. K. Lam, S.C. Wong and Hong K. Lo 
 
March 2009 

 



Remembering Ryuichi Kitamura 
 
On February 19, 2009, many of us were saddened to hear of Ryuichi Kitamura’s 
passing. His close friends and colleagues had known for some time of his struggle 
with cancer, but had drawn hope from his appearances at conferences and 
occasional correspondence. He taught us a lot about how to be graceful in the face 
of adversity, as he remained his wonderful positive self until the end, and 
continued to write and conduct far-reaching research with his students and 
collaborators. He had hoped to attend the 18th ISTTT meeting in Hong Kong, but 
unfortunately it was not meant to be. 
 
Ryuichi returned to Kyoto University, his alma mater, in 1993, as a Professor of 
Urban Management in the Faculty of Engineering, after a distinguished 15-year 
career on the faculty of the Department of Civil and Environmental Engineering at 
the University of California at Davis, where he was instrumental in founding the 
Institute for Transportation Studies (ITS). He received his BS in Civil Engineering 
and MS in Transportation in 1972 and 1974, respectively, from Kyoto University, 
and a PhD in Civil Engineering from the University of Michigan at Ann Arbor in 
1978. 
 
Through his research, teaching and professional service, Ryuichi played a key role 
in advancing the state of the art as well as state of practice in travel demand 
modeling and the dynamic analysis of transportation systems through micro-
simulation of household travel and activity behaviour. He realized early on that 
travel demand does not occur for its own sake, but is part of a broader set of 
activities undertaken by individuals and households in fulfilling their various 
needs. He became a major force in the US and internationally in promoting greater 
behavioural realism in transportation models, leading the way towards 
comprehensive activity-based models of travel demand. 
   
Ryuichi challenged conventional wisdom and brought a fresh perspective to nearly 
all topics on which he worked. He was a scholar, with a probing inquisitive mind, 
who subtly but firmly made you look at problems from a different angle. He was a 
keen observer of social trends, and among the first to recognize how they might 
impact travel and transportation. Telecommuting, changing gender roles, 
increased environmental awareness and shifting preferences are examples of 
phenomena he sought to understand and quantify in terms of transportation 
implications. Ryuichi was one of few researchers who had the methodological 
firepower to analyze these kinds of trends rigorously, ranging from novel survey 
methods to advanced econometric and psychometric techniques. 
 
His quest for models based on sound behavioural theories was promoted through 
several disciples who studied under him at both Davis and Kyoto, and who went 
on to become influential scholars and practitioners in their own right. He helped 
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shape the field through his service as chair of the Traveller Behaviour and Values 
committee of the Transportation Research Board in the mid to late 1980’s, a time 
of major advances in both research and practice. He served as President of the 
International Association of Travel Behaviour Research (IATBR) in 1992-94, and 
hosted its triennial meeting in Kyoto in 2006. In that same year, the IATBR 
recognized his contributions by awarding him the Lifetime Achievement Award. 
 
Ryuichi was a member of the International Advisory Committee of the ISTTT, 
and had discussed with us his desire to host it in Kyoto at some future date.  It is 
unfortunate he did not live to see this wish fulfilled. We will miss his thoughtful 
interventions and good humour, the depth of insight and breadth of perspective he 
brought to the ISTTT, and his warm, pleasant and congenial personality. I will 
miss a dear friend, who contributed so much to making what we do the exciting 
privilege it truly is. 
 
 
Hani S. Mahmassani 
 
March 2009 
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Chapter 30 

Supply-demand Diagrams and a New Framework for 
Analyzing the Inhomogeneous Lighthill-Whitham-
Richards Model 

W.L. Jin, University of California, U.S.A.; L. Chen, University of Science and 
Technology of China, China; Elbridge Gerry Puckett, University of 
California, U.S.A. 

Abstract   Traditionally, the Lighthill-Whitham-Richards (LWR) models for ho-
mogeneous and inhomogeneous roads have been analyzed in flux-density space 
with the fundamental diagram of the flux-density relation. In this paper, we 
present a new framework for analyzing the LWR model, especially the Riemann 
problem at a linear boundary in which the upstream and downstream links are 
homogeneous and initially carry uniform traffic. We first review the definitions of 
local supply and demand functions and then introduce the so-called supply-
demand diagram, on which a traffic state can be represented by its supply and de-
mand, rather than as density and flux as on a fundamental diagram. It is well-
known that the solutions to the Riemann problem at each link are self-similar with 
a stationary state, and that the wave on the link is determined by the stationary 
state and the initial state. In our new framework, there can also exist an interior 
state next to the linear boundary on each link, which takes infinitesimal space, and 
admissible conditions for the upstream and downstream stationary and interior 
states can be derived in supply-demand space. With an entropy condition consis-
tent with a local supply-demand method in interior states, we show that the statio-
nary states exist and are unique within the solution framework. We also develop a 
graphical scheme for solving the Riemann problem, and the results are shown to 
be consistent with those in the literature. We further discuss asymptotic stationary 
states on an inhomogeneous ring road with arbitrary initial conditions and demon-
strate the existence of interior states with a numerical example. The framework 
developed in this study is simpler than existing ones and can be extended for ana-
lyzing the traffic dynamics in general road networks. 
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1. Introduction 

Essential to effective and efficient transportation control, management, and plan-
ning strategies is a better understanding of the evolution of traffic dynamics on a 
road network; i.e., the formation, propagation, and dissipation of traffic queues. 
The seminal work by (Lighthill and Whitham 1955) and (Richards 1956) (LWR) 
attempts to study traffic dynamics with respect to aggregate values such as density 
ρ , speed v , and flux q . Based on a continuous version of traffic conservation  

 0q
t x
ρ∂ ∂
+ =

∂ ∂
, (1) 

and an assumption about the fundamental diagram of the flux-density relation 
( )q Q ρ= , the LWR model of a homogeneous road link can be written as 

 ( ) 0Q
t x
ρ ρ∂ ∂
+ = .

∂ ∂
 (2) 

The corresponding speed-density relation is ( ) ( )v V Qρ ρ ρ= ≡ / . Here the max-
imum or jam density is denoted by jρ ; i.e., [0 ]jρ ρ∈ , . Usually, ( )V ρ  is a non-

increasing function of traffic density, (0)fv V=  is the free flow speed, 

( ) 0jV ρ = , and ( )q Q ρ=  is unimodal with maximum flux or capacity ( )cC Q ρ=  

where cρ  is the critical density. Finally, traffic states with density higher than cρ  
are congested or over-critical, and those with density lower than cρ  are free flow-
ing or under-critical.  

Compared with microscopic traffic flow models (e.g. Gazis et al. 1961; Nagel 
and Schreckenberg 1992) the LWR model can be used to analyze traffic evolution 
at the aggregate level with shock and rarefaction waves. With its analytical power 
and simplicity, the LWR theory has been extended for studying traffic dynamics 
in more general transportation networks. For examples, Daganzo (1997) proposed 
a traffic flow model for freeways with special lanes and high-occupancy vehicles 
with a two-regime fundamental diagram, and Wong and Wong (2002) proposed a 
multi-class model for heterogeneous drivers. 

In this paper, we are interested in the LWR model for a road with bottlenecks, 
where traffic characteristics such as free flow speed, jam density, the number of 
lanes, and capacity may be different for different locations. In other words, the 
fundamental diagram ( )q Q x ρ= ,  depends on location. Such a road link is called 
inhomogeneous and the corresponding inhomogeneous LWR model can be writ-
ten as  

 ( ) 0Q x
t x
ρ ρ∂ ∂ ,
+ = .

∂ ∂
 (3) 

In order to understand the fundamental properties of equation (3), we usually 
analyze its Riemann problem at 0x = . Hereafter, we will refer to the upstream 
branch as link 1, the downstream branch as link 2, and 0x =  as a linear boun-
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dary. In the Riemann problem, links 1 and 2 are both homogeneous and initially 
carry uniform traffic. That is,  

 1

2

( ) 0
( )

( ) 0
Q x

Q x
Q x

ρ
ρ

ρ
, < ,⎧

, = ⎨ , > ,⎩
 (4) 

and  

 1

2

0
( 0)

0
x

x t
x

ρ
ρ

ρ
, < ,⎧

, = = ⎨ , > .⎩
 (5) 

Since (Mochon 1987), there have been many analytical and numerical studies 
related to the inhomogeneous LWR model in the literature. Roughly speaking, 
there have been two types of methods for solving the Riemann problem of inho-
mogeneous LWR model 1. In the first type, the inhomogeneous LWR model can 
be analyzed as a non-strictly hyperbolic conservation law (Isaacson and Temple 
1992; Lin et al. 1995; Jin and Zhang 2003a) or as a hyperbolic conservation law 
with a discontinuous flux function (Gimse and Risebro 1990; Gimse 1993; Klin-
genberg and Risebro 1995; Diehl 1995, 1996b; Diehl and Wallin 1996; Diehl 
1996a; Zhang and Liu 2003; Burger et al. 2005, 2008), and various numerical me-
thods can be used (Bale et al. 2002; Zhang and Liu 2005a,b; Zhang et al. 2006; 
Herty et al. 2007). In the second type, the self-similar waves of the Riemann solu-
tions are separated into links 1 and 2 by introducing a stationary state for each 
link, and the wave on each link is determined by a new Riemann problem of the 
corresponding homogeneous LWR model (Seguin and Vovelle 2003; Garavello et 
al. 2007). Here the stationary states are subject to admissible conditions as well as 
certain entropy conditions. This solution framework was first proposed for solving 
Riemann problems at general junctions with more than one upstream and down-
stream link (Holden and Risebro 1995; Coclite et al. 2005). In (Seguin and Vo-
velle 2003), the method was introduced for solving the inhomogeneous LWR 
model, and the stationary states are solved for a specific example. In (Garavello et 
al. 2007), a more general approach was proposed for solving the stationary states 
with a singular map method. However, all these existing methods solve the Rie-
mann problem in flux-density space: the first type of method is tedious due to the 
need to analyze kinematic waves on both links at the same time, and the second 
type of method fails to present the entropy condition in a physically meaningful 
way. In addition, all existing methods do not account for interior states in statio-
nary shock waves (van Leer 1984; Bultelle et al. 1998) and cannot be easily ex-
tended for studying traffic dynamics in a road network (Jin 2003). Note that, in 
this paper, we do not intend to study numerical solution methods for solving the 
inhomogeneous LWR model. 

                                                            
1In (Daganzo 2006), the inhomogeneous LWR model is solved in the space of cumulative num-
ber of vehicles as a calculus of variations problem, and the existence of its solution is proved for 
road links with point bottlenecks. However, the wave solutions of the Riemann problem are not 
explicitly discussed. 
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In this paper, we present a new framework for analyzing the inhomogeneous 
LWR model. We also adopt the method of wave separation by (Holden and Rise-
bro 1995), but introduce a stationary state and an interior state for each branch. 
Here stationary states are the self-similar states at the boundary, and interior states 
do not take any space in the continuous solution and only show up in the numeri-
cal solutions as observed in (van Leer 1984; Bultelle et al. 1998). Rather than us-
ing the fundamental diagram, we introduce a so-called supply-demand diagram 
and discuss the problem in supply-demand space. After deriving admissible solu-
tions for upstream and downstream stationary and interior states in supply-demand 
space, we introduce an entropy condition based on the discrete supply-demand 
method (Daganzo 1995a; Lebacque 1996). We then prove that stationary states ex-
ist and are unique for given upstream demand and downstream supply, and inte-
rior states exist but may not be unique. Further we compare the Riemann solutions 
obtained by the new method with those in the literature for both the homogeneous 
and inhomogeneous LWR models. We also apply the new framework for analyz-
ing asymptotic stationary states on an inhomogeneous ring road and demonstrate 
the existence of interior states with numerical examples.  

The rest of the paper is organized as follows. In Section 2, we review the defi-
nitions of the supply and demand functions and the discrete supply-demand me-
thod for computing boundary fluxes. In Section 3, we introduce the supply-
demand diagrams and the structure of the solutions to the Riemann problem of the 
inhomogeneous LWR model in supply-demand space. In Section 4, we derive the 
admissible conditions for stationary and interior states in supply-demand space 
and an entropy condition consistent with the local supply-demand method in inte-
rior states. In Section 5, we solve the Riemann problem for both the homogeneous 
and inhomogeneous LWR models and present a graphical solution scheme. In 
Section 6, we analyze asymptotic stationary states on an inhomogeneous ring road 
and demonstrate the existence of interior states with numerical solutions. In Sec-
tion 7, we conclude our study with a discussion of future directions. 

2. Review of the Supply-demand Functions and Methods 

2.1 Review of Engquist-Osher Functions and the Godunov 
Method for Convex Conservation Laws 

For the original LWR model (2), assuming that ck ρ ρ= − , we obtain a hyperbolic 
conservation law in [ ]c j ck ρ ρ ρ∈ − , −  as follows  

 ( ) 0k f k
t x

∂ ∂
+ = ,

∂ ∂
 (6) 
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where ( ) ( )cf k C Q kρ= − −  is convex when ( )Q ρ  is concave, since 
2 2

2 2
( ) ( ) 0f k Q

k
ρ

ρ
∂ ∂

∂ ∂
= − ≥ . Here (0) 0f = . Moreover, if ( )q Q ρ=  is the Green-

shields fundamental diagram (Greenshields 1935), then (6) is Burgers’ equation. 
For the nonlinear equation (6), we usually have to resort to numerical solutions 

for general initial and boundary conditions. After dividing the time duration into a 
number of time intervals of tΔ  and splitting the road link into a number of cells 
of width xΔ , the finite difference equation in conservation form can be written as 
follows (Colella and Puckett 2004; LeVeque 2002): 

 1
1 2 1 2

j j j j
i i i i

tk k f f
x

+ ∗ ∗⎛ ⎞
⎜ ⎟+ / − /⎝ ⎠

Δ
= − − ,

Δ
 (7) 

where j
ik  is the average value of ( )k x t,  in cell i  between 2

x
ix Δ−  and 2

x
ix Δ+  

at time step j , and 1 2
j

if
∗

+ /  is the flux through the boundary 1 2
xx Δ+  between time 

steps j  and 1j + . Here xΔ  and tΔ have to satisfy the so-called CFL condition 
(Courant et al. 1928).  

For a hyperbolic conservation law (6), the following functions were first intro-
duced by (Engquist and Osher 1980a,b, 1981; Osher and Solomon 1982) 

 

0 0

( ) if 0
( ) (max{ 0})

0 if 0

( ) ( ) max{ ( ) 0}
k k

f k k
g k f k

k

s f s ds f s dsχ

, ≥⎧
= , = ,⎨ , ≤⎩

′ ′= = , ,∫ ∫
 (8) 

 

0 0

( ) if 0
( ) (min{ 0})

0 if 0

(1 ( )) ( ) min{ ( ) 0}
k k

f k k
h k f k

k

s f s ds f s dsχ

, ≤⎧
= , = ,⎨ , ≥⎩

′ ′= − = , ,∫ ∫

 (9) 

where ( )kχ  equals 1 iff ( ) 0f k′ ≥  and equals 0 otherwise. Note that 
( ) ( ) ( )f k g k h k= +  and ( ) max{ ( ) ( )}f k g k h k= , . Therefore, we can rewrite 

equation (6) in the following form:  
 ( ) ( ) 0t x xk g k h k+ + = ,  (10) 

 [ ] 0max{ ( ) ( )}t x
k g k h k+ = .,  (11) 

Further, based on these definitions, the following E-O flux is introduced (Eng-
quist and Osher 1980b; Osher 1984) 

 
1

1

1

1 2 1 1

1

( ) ( ) ( ) min{ ( ) 0}

( ) max{ ( ) 0}

1 ( ) ( ) ( )
2

i

i

i

i

i

i

kj j j j
i i i i k

kj
i k

kj j
i i k

f g k h k f k f s ds

f k f s ds

f k f k f s ds

−

−

−

∗
− / − −

−

′= + = + ,

′= − ,

⎡ ⎤′= + − | | .⎢ ⎥⎣ ⎦

∫

∫

∫

 (12) 
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That is, (7) can be written as  

 ( )1
1 1( ) ( ) ( ) ( )j j j j j j

i i i i i i
tk k h k h k g k g k
x

+
+ −

Δ
= − − + − .

Δ
 (13) 

This can be considered as upwind method for equation (10), since ( )g k  is non-
decreasing and ( )h k  non-increasing.  

In (van Leer 1984), the Godunov flux (Godunov 1959) for Burgers’ equation 
was written as  
 1 2 1max{ ( ) ( )}j j j

i i if g k h k∗
− / −= , .  (14) 

In (Osher 1984), a new formulation of the Godunov flux was introduced as  
 1 2 1max{ ( ) ( )}j j j

i i if g k h k∗
− / −= , .  (15) 

For convex ( ) max{ ( ) ( )}f k g k h k= , , since ( )g k  and ( )h k  are monotonically in-
creasing and decreasing respectively, this is equivalent to  

 
1 1

1 1

1

1 2
1

1

max{ min ( ) min ( )}

max{ max ( ) max ( )}

max{ ( ) ( )}

j j j j
i ii i

j j j j
i ii i

j j
i i

k k k k k kj
i j j

i i
k k k k k k

j j
ii

g k h k k k
f

g k h k k k

g k h k

− −

− −

⎧
⎪ −
⎪ ≤ ≤ ≤ ≤∗ ⎪
⎨− / ⎪
⎪ −

≥ ≥ ≥ ≥⎪⎩

−

, , ≤
=

, , >

= , .

 

That is, equation (15) is equivalent to equation (14). However, it has been shown 
that equation (15) can also be applied to non-convex ( )f k .  

2.2 Review of Supply and Demand Functions and Godunov 
Methods for the LWR Model 

For the LWR model (2), we define the following functions  

 

0 0

( ) if
( ) (min{ })

if

( ) ( ) max{ ( ) 0}

c
c

c

Q
D Q

C

s Q s ds Q s ds
ρ ρ

ρ ρ ρ
ρ ρ ρ

ρ ρ

χ

⎧
⎪
⎨
⎪
⎩

, ≤
= , = ,

, ≥

′ ′= = ,∫ ∫

 (16) 

 

0 0

( ) if
( ) (max{ })

if

(1 ( )) ( ) min{ ( ) 0}

c
c

c

Q
S Q

C

C s Q s ds C Q s ds
ρ ρ

ρ ρ ρ
ρ ρ ρ

ρ ρ

χ

⎧
⎪
⎨
⎪
⎩

, ≥
= , = ,

, ≤

′ ′= + − = + , ,∫ ∫
 (17) 

where ( )χ ρ  equals 1 iff ( ) 0Q ρ′ ≥  and equals 0 otherwise. It is straightforward 
to show that ( ) ( )D C g kρ = −  and ( ) ( )S C h kρ = − . Therefore, the Godunov me-
thod for (2) is equivalent to  

 1
1 2 1 2

j j j j
i i i i

t q q
x

ρ ρ+ ∗ ∗⎛ ⎞
⎜ ⎟+ / − /⎝ ⎠

Δ
= − − ,

Δ
 (18) 

where the boundary flux can be written as (van Leer 1984) 
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 1 2 1min{ ( ) ( )}j j j
i i iq D Sρ ρ∗
− / −= , ,  (19) 

or as (Osher 1984) 

 1

1

1

1 2
1

min ( )

max ( )

j j
ii

j j
i i

j j
i i

j
i j j

i i

Q
q

Q
ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ
−

−

⎧
⎪ −
⎪ ≤ ≤∗ ⎪
⎨− / ⎪
⎪ −

≤ ≤⎪⎩

, <
= .

, <
 (20) 

From (20), we can see that (19) is valid as long as the fundamental diagram ( )Q ρ  
is unimodal and may not be concave. 

In the transportation literature, (Bui et al. 1992) first applied (18) and (20) for 
solving the LWR model. In (Daganzo 1995a), a new finite difference form was 
proposed for the LWR model with a triangular or trapezoidal fundamental dia-
gram 
 ( ) min{ ( ) }f c j maxQ v v Qρ ρ ρ ρ= , − ,  (21) 

where c

j cc fv v ρ
ρ ρ−=  is the absolute value of the shock wave speed in congested 

traffic. In the so-called cell transmission model (CTM), the space-time domain 
was discretized with a CFL number of 1; i.e., 

fx v tΔ = Δ , and the boundary flux in 
(18) was written as 
 1 2 1min{ ( ) ( )}j j j

i i iq D Sρ ρ∗
− / −= , ,  (22) 

where ( ) min{ }j j
i max iD t Q t nρ Δ = Δ ,  and ( ) min{ ( )}c

f

vj j
i max max ivS t Q t N nρ Δ = Δ , −  are 

defined as “the maximum flows that can be sent and received by cell i  in the in-
terval between time steps j  and 1j + ", j j j

i i i fn x v tρ ρ= Δ = Δ  is the number of 

vehicles in cell i  at time step j , and max j j fN x v tρ ρ= Δ = Δ  is the maximum 
number of vehicles in cell i . Hence the physical meaning of (22) is that the boun-
dary flux is the minimum of the upstream sending flux and the downstream re-
ceiving flux. It can be shown that ( ) ( )D Dρ ρ=  and ( ) ( )S Sρ ρ= . Thus, (22) is 
equivalent to (19) for a CFL number of 1 and triangular or trapezoidal fundamen-
tal diagrams.  

Following (Lebacque 1996), we refer to ( )D ρ  in (16) and ( )S ρ in (17) as the 
demand and supply functions respectively and call (19) the discrete supply-
demand method for computing fluxes. The physical interpretations of demand and 
supply functions and the supply-demand method have formed the basis for extend-
ing the supply-demand method for computing fluxes through various network 
junctions (Daganzo 1995a; Lebacque 1996; Jin 2003). For inhomogeneous roads, 
the extension is straightforward as follows (Daganzo 1995a; Lebacque 1996): the 
demand and supply functions in (16) and (17) are location-dependent, 

( ( )) ( min{ ( ) ( )})cD x x t Q x x t xρ ρ ρ, , = , , ,  and ( ( )) ( max{ ( ) ( )})cS x x t Q x x t xρ ρ ρ, , = , , , , 
and the flux is still computed by the supply-demand method (19), 

1 2 1 1min{ ( ) ( )}j j j
i i i i iq D Sρ ρ∗
− / − −= , , where 

1( )iD ρ−
 is the demand function in cell 

1i − , and ( )iS ρ  is the supply function in cell i . It has been shown that the flux by 
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the extended supply-demand method is still the Godunov flux (Jin and Zhang 
2003a; Zhang and Liu 2003).  

In this study, based on the Godunov finite difference equation in (18) and the 
supply-demand method in (19) for computing boundary fluxes, we attempt to con-
struct the convergent solution of (3) with discontinuous flux functions (4) and ini-
tial conditions (5). In (Daganzo 1995b), the convergence, truncation error, and 
capture of shock waves were directly derived from the corresponding finite differ-
ence equation of the homogeneous LWR model. Here, we attempt to present a 
new framework and find the solutions to the Riemann problem of the inhomoge-
neous LWR model at a linear boundary. 

3. Supply-demand Diagrams and the Structure of Riemann 
Solutions 

In the literature, the inhomogeneous LWR model has been analyzed in flux-
density space. Since a traffic state in flux-density space ( )qρ,  can also be 
represented in supply-demand space as ( )U D S= , , in this study we will analyze 
the inhomogeneous LWR model in supply-demand space. Furthermore, we 
present the structure of solutions to the Riemann problem of the inhomogeneous 
LWR model in supply-demand space.  

3.1 Supply-demand Diagrams 

Corresponding to the fundamental diagram in flux-density space, a supply-demand 
diagram can be introduced in supply-demand space. In Fig. 1(b), we draw a 
supply-demand diagram for the two fundamental diagrams in Fig. 1(a). On the 
dashed branch of the supply-demand diagram, traffic is under-critical (UC) and 

( )U D C= ,  with D C≤ ; on the solid branch, traffic is over-critical (OC) and 
( )U C S= ,  with S C≤ . Compared with the fundamental diagram of a road sec-

tion, the supply-demand diagram only considers capacity C  and congestion level 
of traffic flow, but not other detailed characteristics such as critical density, jam 
density, or relationship between density and flux. That is, different fundamental 
diagrams can have the same supply-demand diagram, as long as they have the 
same capacity and are unimodal, and their critical densities, jam densities, or 
shapes are not relevant. However, there is always a one-to-one mapping between a 
given supply-demand diagram and its corresponding fundamental diagram. That 
is, there exists a one-to-one mapping between ( )qρ,  and ( )D S, . 
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Fig. 1. The fundamental diagram and its supply-demand diagram 

For the demand and supply functions in (16) and (17), we can see that D  is 
non-decreasing with ρ  and S  non-increasing. Thus D C≤ , and S C≤ , and 
max{ }D S C, = . In addition, D S C= =  iff traffic is critical; D S C< =  iff traf-
fic is strictly under-critical (SUC); S D C< =  iff traffic is strictly over-critical 
(SOC). Therefore, the state ( )U D S= ,  is under-critical (UC), iff S C= , or equi-
valently D S≤ . The state ( )U D S= ,  is over-critical (OC), iff D C= , or equiva-
lently S D≤ . 

From a state on the supply-demand diagram, we can obtain the corresponding 
flux ( ) min{ }q U D S= ,  and capacity max{ }C D S= , . However, we cannot tell the 
density from the supply-demand diagram, and the fundamental diagram is still 
needed to compute the density ρ  from ( )D S, . That is, ρ  can be written as a 
function of ( )D S,  as  

 
1

1

( )
( )

( )
D D D S

D S
S S S D

ρ
−

−

⎧ , ≤ ,
, = ⎨

, < ,⎩
  

since ( )D ρ  and ( )S ρ  are invertible when the traffic is UC and OC respective-
ly. Note that ρ  is not a function of q . If we introduce the supply-demand ratio 

D Sγ = / , then ( ) { 1 }q D S min Cγ γ, = , / ⋅ , and  

 

1

1

( ) 1
( ) ( )

( ) 1

D C
D S R CS

γ γ
ρ γ

γ
γ

−

−

⎧ , ≤ ,
⎪, = ≡ ⎨ , > ,⎪
⎩

  

where ( )R γ  is an increasing function in [0 ]γ ∈ ,∞ . Here (0) 0R = , 

(1) cR ρ= , and ( ) jR ρ∞ = . In this sense, ( )Rρ γ=  can be considered as the 

inverse flux-density relationship. Similarly, ( ) ( ( ))v V V Rρ γ= =  is a non-

increasing function in γ , (0) fV v= , and ( ) 0V ∞ = . 
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3.2 The Structure of Solutions to the Riemann Problem 

In supply-demand space, initial conditions (5) are equivalent to  

 1 1 1

2 2 2

( ) 0
( 0)

( ) 0
U D S x

U x t
U D S x

= , , < ,⎧
, = = ⎨ = , , > .⎩

 (23) 

The Riemann problem at a linear boundary is then equivalent to the Riemann 
problem for (3) with initial conditions (23).  

Unlike existing studies of hyperbolic conservation laws with discontinuous flux 
functions, in which solutions to the Riemann problem have been constructed in 

qρ −  space, within the framework of wave separation developed in (Holden and 
Risebro 1995), we construct the solutions to the Riemann problem for (3) with ini-
tial conditions (23) in supply-demand space.  

In solutions to the Riemann problem for (3) with initial conditions (23), a shock 
wave or a rarefaction wave could initiate on a link from the linear boundary 

0x = , and traffic states on both links become asymptotically stationary after a 
long time. We denote the stationary state on the upstream link 1 by 1U −  and the 

stationary state on the downstream link 2  by 2U + . At the boundary, there can also 
exist interior states (van Leer 1984; Bultelle et al. 1998), which take infinitesimal 
space. We denote the interior states on links 1 and 2 by 1(0 )U t−,  and 2 (0 )U t+ ,  
respectively. The structure of Riemann solutions on upstream and downstream 
links are shown in Fig. 2.  

 
Fig. 2. Structure of Riemann solutions: (a) Upstream link 1; (b) Downstream link 2 

Then the kinematic wave on the upstream link 1 is the solution of the corres-
ponding homogeneous LWR model with initial left and right conditions of 1U  

and 1U − , respectively. Similarly, the kinematic wave on the downstream link 2  is 
the solution of the corresponding LWR model with initial left and right conditions 
of 2U +  and 2U , respectively. Since the stationary and interior states are constant 

for 0t > , states on both links 1 and 2 are self-similar (Smoller 1983). That is, if 
stationary states exist and are unique, we have unique self-similar solutions for the 
Riemann problem of (3). In the following sections, we first derive necessary con-
ditions for both stationary and interior states and then solve them in supply-
demand space. 
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4. Necessary Conditions for the Existence of Stationary and 
Interior States 

We denote 1 2 (0 )q t→ ,  as the flux from link 1 to link 2. We first observe that the 
fluxes are determined by the stationary states: the asymptotic out-flux of link 1 is 

1 1(0 ) ( )q t q U− −, = , and the asymptotic in-flux of link 2 is 2 2(0 ) ( )q t q U+ +, = . 
Furthermore, from the conservation of traffic at the linear boundary, we have  
 1 2 1 2 1 2(0 ) (0 ) (0 ) ( ) ( )q t q t q t q U q U− + − +

→ , = , = , = = .  (24) 

4.1. The Admissible Conditions for Stationary States 

As observed in (Holden and Risebro 1995; Coclite et al. 2005), the speed of the 
kinematic wave on an upstream link cannot be positive, and that on a downstream 
link cannot be negative. We have the following theorem.  

 

 

Fig. 3. Admissible stationary states for upstream link 1 



 

 

614  Transportation and Traffic Theory 2009 

 

Fig. 4. Admissible stationary states for downstream link 2 

Theorem 1 (Admissible stationary states). For initial conditions in (23), statio-
nary states are admissible if and only if  
 1 1 1 1 1( ) or ( )U D C C S− −= , , ,  (25) 
where 1 1S D− <  , and  

 2 2 2 2 2( ) or ( )U C S D C+ += , , ,  (26) 

where 2 2D S+ <  .  The results are illustrated in Figs. 3 and 4. 

Proof When the initial state on link 1  is strictly under-critical; i.e., when 

1 1 1D S C< = , the admissible stationary state 1U −  is the same as 1 1 1( )U D C= ,  

or strictly over-critical with 1 1 1( )U C S− −= , , where 1 1S D− < . In this case, the 

Riemann problem for the LWR model on the upstream link 1 with upstream and 
downstream initial states 1 1 1( )U D C= ,  and 1U −  has the following possible solu-

tions: there is no wave when 1 1U U− = ; there is a backward traveling shock wave 

when 1 1 1( )U C S− −= , . In addition, we can verify that any stationary states not 

equal to 1U  and with 1 1S D− >  will lead to forward traveling shock waves or 

rarefaction waves. Note that when 1 1 1( )U C D− = , , the Riemann problem is 
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solved by a zero shock wave, but 1U −  cannot be the stationary state by definition. 

When the initial state on link 1 is over-critical; i.e., when 1 1 1S D C≤ = , the ad-

missible stationary state 1U −  is over-critical with 1 1 1( )U C S− −= , , where 

1 1S C− ≤ . In this case, the Riemann problem for the LWR model on the upstream 

link 1  with upstream and downstream initial states 1 1 1( )U C S= ,  and 

1 1 1( )U C S− −= ,  has the following possible solutions: there is no wave when 

1 1S S− = ; there is a backward traveling shock wave when 1 1S S −> ; and there is a 

backward traveling rarefaction wave when 1 1S S −< . Therefore, the stationary 
state is indeed admissible. In addition, we can verify that any strictly under-critical 
stationary states 1U −  will lead to forward traveling rarefaction waves and are not 
admissible.  

When the initial state on link 2  is under-critical; i.e., when 2 2 2D S C≤ = , 

the admissible stationary state 2U +  is under-critical with 2 2 2( )U D C+ += , , where 

2 2D C+ ≤ . In this case, the Riemann problem for the LWR model on the down-

stream link 2  with upstream and downstream initial states 2 2 2( )U D C+ += ,  and 

2 2 2( )U D C= ,  has the following possible solutions: there is no wave when 

2 2D D+ = ; there is a forward traveling shock wave when 2 2D D+ < ; there is a 

forward traveling rarefaction wave when 2 2D D+ > . Therefore, the stationary 
state is indeed admissible. In addition, we can verify that any strictly over-critical 
stationary states 2U +  will lead to backward traveling rarefaction waves and are not 

admissible. When the initial state on link 2  is strictly over-critical; i.e., when 

2 2 2S D C< = , the admissible stationary state 2U +  is the same as 

2 2 2( )U C S= ,  or strictly under-critical with 2 2 2( )U D C+ += , , where 2 2D S+ < . 

In this case, the Riemann problem for the LWR model on the downstream link 2  
with upstream and downstream initial states 2U +  and 2 2 2( )U D C= ,  has the fol-

lowing possible solutions: there is no wave when 2 2U U+ = ; there is a forward 

traveling shock wave when 2 2 2( )U D C+ += , . In addition, we can verify that any 

stationary states not equal to 2U  and with 2 2D S+ >  will lead to backward travel-

ing shock waves or rarefaction waves. Note that when 2 2 2( )U S C+ = , , the Rie-
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mann problem is solved by a zero shock wave, but 2U +  cannot be the stationary 
state by definition.    
 
Remark 1 Note that 1 1U U− =  and 2 2U U+ =  are always admissible. In this case, 
the stationary states are the same as the corresponding initial states, and there are 
no waves.  
 
Remark 2 From the proof of theorem 1, we can see that the types and traveling 
directions of waves on a homogeneous road can be solely determined by upstream 
demand and downstream supply and are not related to the shape of fundamental 
diagrams. This is why we are able to discuss the Riemann problem of the inhomo-
geneous LWR model in supply-demand space. Note that, however, the wave 
speeds are related to the details of the flux-density relation ( )Q ρ .  
 
Remark 3 Then the out-flux 1 1 1 1 1(0 ) ( ) min{ }q t q U D S D− − − −, = = , ≤  and the 

in-flux 2 2 2 2 2(0 ) ( ) min{ }q t q U D S S+ + + +, = = , ≤ . That is, 1D  is the maximum 

sending flux and 2S  is the maximum receiving flux in the sense of (Daganzo 

1994, 1995a). Furthermore, 1 1(0 )q t D− , = , iff 1 1 1( )U D C− = , , and iff 1U −  is 

UC; 1 1(0 )q t D− , <  iff 1 1 1( )U C S− −= ,  with 1 1S D− < , and iff 1U −  is SOC. Si-

milarly, 2 2(0 )q t S+ , = , iff 2 2 2( )U C S+ = , , and iff 2U +  is OC; 2 2(0 )q t S+ , <  

iff 2 2 2( )U D C+ += ,  with 2 2D S+ < , and iff 2U +  is SUC. 

4.2 The Admissible Conditions for Interior States 

The Riemann problem on link 1 with left and right initial conditions of 1U −  and 

1(0 )U t− ,  cannot have negative waves. Otherwise, 1(0 )U t− ,  will propagate up-
stream and violates the condition that it only exists at the boundary, but not any-
where upstream. Similarly, the Riemann problem on link 2 with left and right ini-
tial conditions of 2 (0 )U t+ ,  and 2U +  cannot have positive waves. Therefore, 

interior states 1(0 )U t− ,  and 2 (0 )U t+ ,  should satisfy the following admissible 
conditions.  
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Fig. 5. Admissible interior states for upstream link 1 

  

Fig. 6. Admissible interior states for downstream link 2 
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Theorem 2 (Admissible interior states). For asymptotic stationary states 1U −  

and 2U + , interior states 1(0 )U t−,  and 2 (0 )U t+ ,  are admissible if and only if  

 1 1 1 1 1 1
1

1 1 1 1 1

( ) when
(0 )

( (0 ) (0 )) when
C S U S D C

U t
D t S t D S C

− − − −⎧
⎪− ⎪
⎨

− − − −⎪
⎪⎩

, = , < =
, =

, , , , ≤ =
 (27) 

where 1 1(0 )S t D− −, ≥  , and  

 2 2 2 2 2 2
2

2 2 2 2 2

( ) when
(0 )

( (0 ) (0 )) when
D C U D S C

U t
D t S t S D C

+ + + +⎧
⎪+ ⎪
⎨

+ + + +⎪
⎪⎩

, = , < =
, =

, , , , ≤ =
 (28) 

where 2 2(0 )D t S+ +, ≥  .  The results are illustrated in Figs. 5 and 6. 
Proof The results can be verified with the observation that the Riemann solutions 
for the homogeneous LWR model of the upstream links cannot have negative 
waves and those of the downstream links cannot have positive waves.   
 
Remark 1 Note that 1 1(0 )U t U− −, =  and 2 2(0 )U t U+ +, =  are always admissi-
ble. In this case, the interior states are the same as stationary states, and it is 
equivalent to saying that there are no interior states.  

4.3 An Entropy Condition for the Local Supply-demand Method 

In addition to traffic conservation and admissible conditions, we introduce an en-
tropy condition such that the boundary flux is always consistent with that by the 
supply-demand method (19) for the local interior states. At the boundary at 

0x = , the immediate upstream state is 1(0 )U t− , , and the immediate down-

stream state 2 (0 )U t+ , . That is, the interior states have to satisfy the following 
entropy condition  
 1 2 1 2(0 ) min{ (0 ) (0 )}q t D t S t− +

→ , = , , , .  (29) 
Note that the entropy condition (29) is also equivalent to the following loca-

lized optimization problem  
 1 2 1 2max{ (0 ) (0 ) (0 )}q t q t q t− +

→ , = , = ,   
subject to  

 1 1

2 2

(0 ) (0 )

(0 ) (0 )

q t D t

q t S t

− −

+ +

, ≤ , ,

, ≤ , .
  

That is, the stationary and interior states are solutions of the optimization problem 
in the domain defined by the traffic conservation condition (24), the admissible 
conditions for stationary states (25-26), and the admissible conditions for interior 
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states (27-28). Optimization formulations of entropy conditions were also adopted 
in (Holden and Risebro 1995; Coclite et al. 2005), but in terms of stationary states 
in flux-density space rather than in supply-demand space as we have done here.  

In all of the necessary conditions above, we can see that the stationary and inte-
rior states are independent of the upstream supply, 1S , and the downstream de-

mand, 2D . That is, the same upstream demand and downstream supply will yield 
the same solutions of stationary and interior states: when the upstream traffic is 
congested, its congestion level is not relevant to the stationary and interior states 
or the boundary flux; when the downstream traffic is free flow, its density is not 
relevant to the stationary and interior states or the boundary flux. Note that, how-
ever, the types and speeds of waves on both links can be related to 1S  as shown in 

Fig. 3(d) and 2D  as shown in Fig. 4(d).  

5. Solutions to the Riemann Problem for the Inhomogeneous 
LWR Model 

For the Riemann problem of (3) with initial conditions (23), we first solve for the 
stationary and interior states that satisfy the traffic conservation condition (24), the 
admissible conditions for stationary states (25-26), the admissible conditions for 
interior states (27-28), and the entropy condition (29). Then we compare them 
with existing solutions for both the homogeneous and inhomogeneous LWR mod-
els.  
 
Lemma 1 In the Riemann solutions, the boundary flux satisfies  
 1 2 1 2 1 2(0 ) ( ) ( ) min{ }q t q U q U D S− +

→ , = = = , .  (30) 
Proof From theorem 1 and traffic conservation (24), we have that  
 1 2 1 2 1 2(0 ) ( ) ( ) min{ }q t q U q U D S− +

→ , = = ≤ , .   

We demonstrate that it is not possible for 1 2 1 2(0 ) min{ }q t D S→ , < , . Otherwise, 

we assume that 1 2 0 1 2 1 2(0 ) min{ } min{ }q t q D S C C→ , = < , ≤ , . Since 

1 0 1( )q U q D− = < , from (25) we have that 1 1 0( )U C q− = , . Further from (27) 

we have that 1 1 1 0(0 ) ( )U t U C q− −, = = , . Hence 1 1(0 )D t C−, = . Similarly, 

since 2 0 2( )q U q S+ = < , from (26) we have that 2 0 2( )U q C+ = , . Further from 

(28) we have that 2 2 0 2(0 ) ( )U t U q C+ +, = = , . Hence 2 2(0 )S t C+ , = . Then 

from (29) we have 1 2 1 2(0 ) min{ }q t C C→ , = , , which contradicts the assumption 

that 1 2 1 2(0 ) min{ }q t C C→ , < , . Therefore we have (30).  
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That is, the local optimal solution in (29) leads to a global optimal flux at a li-
near boundary, which satisfies the following optimization problem  
 1 2max{ (0 )}q t→ ,   
subject to  

 1 2 1

1 2 2

(0 )
(0 )

q t D
q t S

→

→

, ≤ ,
, ≤ .

  

Therefore, in the Godunov finite difference equation (18), the boundary flux at 
the first time step by (19) is the same as the asymptotic flux, regardless of the time 
step size. That is, the discrete flux in (19) is consistent with the continuous flux in 
(29).   
 
Theorem 3 The stationary states and interior states of the Riemann problem for 
(3) with initial conditions (23) are the following:  
1. When 1 2D S< , we have unique stationary and interior states:  

 1 1 1 1(0 ) ( )U U t D C− −= , = ,  and 2 2 1 2(0 ) ( )U U t D C+ += , = , ;   

2. When 1 2D S> , we have unique stationary and interior states:  

 1 1 1 2(0 ) ( )U U t C S− −= , = ,  and 2 2 2 2(0 ) ( )U U t C S+ += , = , ;   

3. When 1 2D S= , we have unique stationary states: 1 1 1( )U D C− = , , and 

2 2 2( )U C S+ = , ; but interior states may not be unique: 1 1 1(0 ) ( )U t D C− , = ,  

and 2 2(0 )D t S+ , ≥  and 2 2(0 )S t S+ , ≥ , or 2 2 2(0 ) ( )U t C S+ , = ,  and 

1 1(0 )S t D− , ≥  and 1 1(0 )D t D− , ≥ .  

Proof When 1 2 2D S C< ≤ , (30) leads to 1 2 1(0 )q t D→ , = . For link 1, since 

1 1( )q U D− = , from (25) we have that 1 1 1( )U D C− = , . Further from (27) we 

have that 1 1 1(0 ) ( (0 ) (0 ))U t D t S t− − −, = , , ,  with 1 1 1(0 )S t D D− −, ≥ = . For 

link 2, since 2 1 2( )q U D S+ = < , from (26) we have that 2 1 2( )U D C+ = , . Fur-

ther from (28) we have that 2 2 1 2(0 ) ( )U t U D C+ +, = = , . Then from (29) we 

have 1 2 1 2 1(0 ) min{ (0 ) }q t D t C D−
→ , = , , = . Therefore, 1 1(0 )D t D− , =  and 

1 1(0 )S t C− , = .  

When 2 1 1S D C< ≤ , (30) leads to 1 2 2(0 )q t S→ , = . For link 1, since 

1 2 1( )q U S D− = < , from (25) we have that 1 1 2( )U C S− = , . Further from (27) 

we have that 1 1 1 2(0 ) ( )U t U C S− −, = = , . For link 2, since 2 2( )q U S+ = , from 

(26) we have that 2 2 2( )U C S+ = , . Further from (28) we have that 
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2 2 2(0 ) ( (0 ) (0 ))U t D t S t+ + +, = , , ,  with 2 2(0 )D t S+ , ≥ . Then from (29) we 

have 1 2 1 2 2(0 ) min{ (0 )}q t C S t S+
→ , = , , = . Therefore, 2 2(0 )S t S+ , =  and 

2 2(0 )D t C+ , = .  

When 1 2D S= , (30) leads to 1 2 1 2(0 )q t D S→ , = = . For link 1, since 

1 1( )q U D− = , from (25) we have that 1 1 1( )U D C− = , . Further from (27) we 

have that 1 1 1(0 ) ( (0 ) (0 ))U t D t S t− − −, = , , ,  with 1 1 1(0 )S t D D− −, ≥ = . For 

link 2, since 2 2( )q U S+ = , from (26) we have that 2 2 2( )U C S+ = , . Further from 

(28) we have that 2 2 2(0 ) ( (0 ) (0 ))U t D t S t+ + +, = , , ,  with 2 2(0 )D t S+ , ≥ . 

Then from (29) we have 1 2 1 2 1 2(0 ) min{ (0 ) (0 )}q t D t S t D S− +
→ , = , , , = = . If 

1 1 2(0 )D t D S− , = = , then 1 1(0 )S t C− , = , and 2 2(0 )S t S+ , ≥ . In this case, 

the interior state 2 (0 )U t+ ,  may not be unique with 2 2(0 )D t S+ , ≥  and 

2 2(0 )S t S+ , ≥ . Note that, when 2 2S C= , the interior state is 2 2(0 )U t U+ +, = . 

If 2 1 2(0 )S t D S+ , = = , then 2 2(0 )D t C+ , = , and 1 1(0 )D t D− , ≥ . In this case, 

the interior state 1(0 )U t− ,  may not be unique with 1 1(0 )S t D− , ≥  and 

1 1(0 )D t D− , ≥ . Note that, when 1 1D C= , the interior state is 1 1(0 )U t U− −, = . 
If both the upstream link 1 and the downstream link 2 have the same fundamental 
diagram, this case corresponds to a stationary shock, and the interior state is the 
same as that in (van Leer 1984).   
 
Remark 1 From the theorem we can see that the stationary states always exist and 
are unique for the same pair of 1D  and 2S . Thus, with given 1U  and 2U , we 
can find unique kinematic waves on both links 1 and 2. Therefore, in the new so-
lution framework, the solutions for the Riemann problem of the inhomogeneous 
LWR model always exist and are unique, although we may have multiple interior 
states.  
 
Remark 2 If the entropy condition (29) is replaced by (30), we still have the same 
solutions 1U −  and 2U + . That is, if we do not consider possible interior states as in 
(Seguin and Vovelle 2003; Garavello et al. 2007), then traffic conservation (24), 
admissible conditions for stationary states (25-26), and the entropy condition (30) 
will yield the same stationary state solutions. However, this simplified approach - 
which is what currently exists in the literature - does not yield the existence or 
properties of the interior states.  
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Remark 3 When 1 2D S= , we have the following interior states that are different 

from the stationary states at 0x −=  or 0x += . The interior state at 0x −=  has 
to satisfy 1 1( (0 ))q U t D−, ≥ , and the interior state at 0x +=  has to satisfy 

2 2( (0 )q U t S+ , ≥ .  
In addition, we have the following conclusions concerning possible stationary 

states at a linear boundary.   
 
Corollary 1 When both links 1 and 2 reach asymptotic stationary states, they 
share the same flux q , and possible stationary states are the following: both links 

are UC with link 1 at 1( )q C,  and link 2 at 2( )q C,  where 1 2q D S= < ; both 

links are OC with link 1 at 1( )C q,  and link 2 at 2( )C q,  where 2 1q S D= < ; 

link 1 is UC at 1( )q C,  and link 2 OC at 2( )C q,  where 1 2q D S= = . It is not 
possible that link 1 is SOC and link 2 SUC. 
Remark. The stationary states are stable in the sense that, when they are given as 
initial states, we obtain the same stationary states following theorem 3.  

5.1 The Homogeneous LWR Model 

For the original LWR model (2), the upstream link 1 and the downstream link 2 
have the same fundamental diagram. Therefore we have 1 2C C= . In (Lebacque 
1996), there are four scenarios for solutions to the Riemann problem. Here we re-
organize them into the following six cases of initial conditions:  
1. Link 1 is SUC, and link 2 is UC. That is, 1 1 1D S C< =  and 2 2 2D S C≤ = . 

In this case, 1 2D S< . From theorem 3 we have that 

1 1 2 2 1(0 ) (0 )U U t U U t U− − + += , = = , =  and 1 2 1(0 ) ( )q t q U→ , = . There-
fore, on link 1, there is no wave; and on link 2, there is a forward shock wave 
when 1 2D D< , a forward rarefaction wave when 1 2D D> , and no wave 

when 1 2D D= .  

2. Link 1 is OC, and link 2 is UC. That is, 1 1 1S D C≤ =  and 2 2 2D S C≤ = . 

In this case, 1 2 2D S C= = . From theorem 3 we have that 

1 1 2 2 1 2(0 ) (0 ) ( )U U t U U t C C− − + += , = = , = ,  and 1 2 1(0 )q t C→ , = . 

Therefore, on link 1, there is a backward rarefaction wave when 1 1S C<  and 

no wave when 1 1S C= ; and on link 2, there is a forward rarefaction wave 
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when 2 2D S<  and no wave when 2 2D S= .  

3. Link 1 is OC, and link 2 is SOC. That is, 1 1 1S D C≤ =  and 2 2 2S D C< = . 

In this case, 1 1 2C D S= > . From theorem 3 we have that 

1 1 2 2 2(0 ) (0 )U U t U U t U− − + += , = = , =  and 1 2 2(0 ) ( )q t q U→ , = . There-

fore, on link 1 there is a backward shock wave when 1 2S S> , a backward 

rarefaction wave when 1 2S S< , and no wave when 1 2S S= ; and on link 2, 
there is no wave.  

4. Link 1 is SUC, and link 2 is OC, and 1 2( ) ( )q U q U< . That is, 

1 2 2 1 1D S D S C< ≤ = = . From theorem 3 we have that 

1 1 2 2 1(0 ) (0 )U U t U U t U− − + += , = = , =  and 1 2 1(0 ) ( )q t q U→ , = . There-
fore, on link 1, there is no wave; and on link 2, there is a forward shock wave.  

5. Link 1 is SUC, and link 2 is SOC, and 1 2( ) ( )q U q U> . That is, 

2 1 1 2 1S D S D C< ≤ = = . From theorem 3 we have that 

1 1 2 2 2(0 ) (0 )U U t U U t U− − + += , = = , =  and 1 2 2(0 ) ( )q t q U→ , = . There-
fore, on link 1, there is a backward shock wave; and on link 2, there is a no 
wave.  

6. Link 1 is SUC, and link 2 is SOC, and 1 2( ) ( )q U q U= . That is, 

1 2 2 1 1D S D S C= < = = . From theorem 3 we have that 

1 2 1 2( )U U D S− += = , , and 1 2 1 2(0 ) ( ) ( )q t q U q U→ , = = . Therefore, on 
link 1, there is no wave; and on link 2, there is no wave. In this case, there can 
exist interior states on link 1 or link 2: 1 1(0 )U t U− −, =  and 

2 2 1min{ (0 ) (0 )}D t S t D+ +, , , ≥  or 2 2(0 )U t U+ +, =  and 

1 1 1min{ (0 ) (0 )}D t S t D− −, , , ≥ .  
Obviously the results of stationary states and kinematic waves above are con-

sistent with those in (Lebacque 1996). That is, the new solution framework yields 
the same wave solutions as traditional approaches.  

The solutions of stationary states for the six cases are also shown in Fig. 7, 
where figures (a)-(f) are for cases 1-6 respectively. In these figures, both the up-
stream and downstream links share the same supply-demand diagram. From initial 
conditions 1U  and 2U  we can first draw the pair 1 2( )D S, , from which we can 
determine upstream and downstream stationary states accordingly. Further we can 
summarize the solutions of stationary states in Fig. 8 in the 1 2( )D S,  space. This 
figure also demonstrates a graphical scheme for solving the stationary states as 
follows. First, from initial 1U  we draw a vertical line (thin pink line with an ar-
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row), from initial 2U  we draw a horizontal line (thin pink line with an arrow), and 

the intersection point is 1 2( )D S, . Then, if the intersection point is above the line 

0A , we draw a vertical line (thick blue line with arrow), and its intersection with 
AC  gives the stationary states; if the intersection point is below the line 0A , we 

draw a horizontal line (thick blue line with arrow), and its intersection with AC  
gives the stationary states; if the intersection point is on the line 0A , we draw 
both a vertical line (thick blue line with arrow) and a horizontal line (thick blue 
line with arrow), and their intersections with AC  are the stationary states for the 
upstream and the downstream links respectively. Note that this scheme also works 
when the upstream and downstream links do not have the same fundamental dia-
grams but the same supply-demand diagram, i.e., 1 2C C= .  
 

 
Fig. 7. The Riemann problem for the LWR model: stationary states in supply-demand diagrams 

5.2 The Inhomogeneous LWR Model 

When 1 2C C≠ , then the road is inhomogeneous, and there is a discontinuity in 

the fundamental diagram at 0x = . In Fig. 9, we demonstrate a graphical scheme 
for solving stationary states in the 1 2( )D S,  space for the inhomogeneous LWR 

model. We take Fig. 9(a) as an example, in which 1 2C C< . First, from initial 1U  
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we draw a vertical line (thin pink line with an arrow), from initial 2U  we draw a 
horizontal line (thin pink line with an arrow), and the intersection point is 

1 2( )D S, . Then, if the intersection point is above the line 0A , we draw a vertical 

line (thick blue line with arrow), and its intersections with 1AC  and 2AC  are the 

stationary states on links 1 and 2 respectively; if the intersection point 1 2( )D S,  is 

below the line 0A , we draw a horizontal line (thick blue line with arrow), and its 
intersections with 1AC  and 2AC  are the stationary states on links 1 and 2 re-

spectively; if the intersection point 1 2( )D S,  is on the line 0A , we draw both a 
vertical line (thick blue line with arrow) and a horizontal line (thick blue line with 
arrow), and their intersections with 1AC  and 2AC  are the stationary states for 
the upstream and the downstream links respectively. This scheme is the same as 
that for the homogeneous LWR model.  

 

 
Fig. 8. Solution of stationary states for the Riemann problem for the LWR model 

In (Jin and Zhang 2003a), the Riemann problem for the inhomogeneous LWR 
model was solved as a resonant nonlinear system, and ten types of wave solutions 
were obtained. For example, wave solutions of Type 1 can be obtained in the new 
framework as follows. Both 1U  and 2U  are UC, 2 1 2 2D D C S< ≤ = , and 1C  

may be greater or smaller than 2C . From Fig. 9 or theorem 3, we can see that 



 

 

626  Transportation and Traffic Theory 2009 

1 1 1 1( )U D C U− = , = , 2 1 2( )U D C+ = , , there is no wave on link 1, there is a 

forward rarefaction wave on link 2, and 1 2 1(0 ) ( )q t q U→ , = . It is easy to check 
that the wave solutions of other types are also consistent.  

 

 

Fig. 9. Solution of stationary states of the Riemann problem for the inhomogeneous LWR model 

6. Asymptotic Traffic Dynamics on an Inhomogeneous Ring 
Road 

In this section we consider the inhomogeneous ring road with length L  shown in 
Fig. 10, in which the traffic direction is shown by the arrow. The ring road is 
composed of two homogeneous links: link 1 with capacity 1C  for 1[0 ]x L∈ , , 

link 2 with capacity 2C  for 1[ ]x L L∈ , , the upstream boundary of link 1 is de-
noted as boundary 1, and the downstream boundary as boundary 2. Here we as-
sume that link 1 is a bottleneck; i.e., 1 2C C< . For example, such a bottleneck can 
be caused by a smaller number of lanes. We assume the fundamental relationships 
for two links as 1( )q Q ρ=  and 1( )Rρ γ=  for 1[0 ]x L∈ , , and 2 ( )q Q ρ=  

and 2 ( )Rρ γ=  for 1[ ]x L L∈ , .  
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Fig. 10. A ring road 

6.1 Asymptotic Stationary and Interior States 

Table 1. All possible stationary states on the ring road in Fig. 10 

 UC 2( )q C, SS 2 2( ) ( )q C C q, → ,  SOC 2( )C q,  

UC 1( )q C,  (a) (b) (c) 

SOC 1( )C q,  x x (d) 

SS 1 1( ) ( )q C C q, → ,  x x x 

 
When the ring road reaches asymptotic stationary states, the flux at any location is 
the same, e.g., q . As we know, the asymptotic stationary state on a link can be 
uniformly UC, uniformly SOC, or a stationary shock wave (SS) connecting an up-
stream SUC state and a downstream SOC state (Bultelle et al. 1998). Then all 
possible combinations of stationary states are listed in Table 1 and explained in 
the following.  
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• When link 1 is UC at 1( )q C,  with 1q C≤ , we have the following scenarios. 

(a) From theorem 3 it is possible that link 2 is UC at 2( )q C, , and the total 
number of vehicles on the ring road is 

1 1 1 2 2 1( ) ( )( )aN R q C L R q C L L= / + / − . (b) If link 2 is SS with upstream 

2( )q C,  and downstream 2( )C q, , we have that 1q C=  and link 1 is critical 

at 1 1( )C C, . Assuming that link 2 is SUC for 1 2[ ]x L L∈ ,  and SOC for 

2[ ]x L L∈ , . In this case, the total number of vehicles on the ring road is 

1 1 2 1 2 2 1 2 2 1 2(1) ( )( ) ( )( )bN R L R C C L L R C C L L= + / − + / − . (c) If link 2 is 

SOC at 2( )C q, , we have from theorem 3 that 2 1q S C= =  at boundary 1. 

That is, link 1 is critical at 1 1( )C C, . In this case, the total number of vehicles 

on the ring road is 1 1 2 2 1 1(1) ( )( )cN R L R C C L L= + / − .  

• When link 1 is SOC at 1( )C q,  with 1q C< , we have the following scenarios. 

(d) It is possible that link 2 is SOC at 2( )C q, , and the total number of vehicles 

on the ring road is 1 1 1 2 2 1( ) ( )( )dN R C q L R C q L L= / + / − . If link 2 is UC at 

2( )q C, , we have from theorem 3 that 1q C=  at boundary 2. If link 2 is SS 

with upstream 2( )q C, , we have from theorem 3 that 1q C=  at boundary 2. 

Thus these two scenarios are impossible, since 1q C=  contradicts 1q C< .  

• When link 1 is SS with upstream 1( )q C,  and downstream 1( )C q,  with 

1q C< , we have the following scenarios. If link 2 is UC at 2( )q C, , we have 

from theorem 3 that 1 2 1min{ }q C C C= , =  at boundary 2; if link 2 is SS with 

upstream 2( )q C, , we have from theorem 3 that 1 2 1min{ }q C C C= , =  at 

boundary 2; if link 2 is SOC at 2( )C q, , we have from theorem 3 that 

2 1 1min{ }q C C C= , =  at boundary 1. All three of these scenarios are imposs-

ible, since 1q C=  contradicts 1q C< .  
For all four scenarios of asymptotic stationary states on the ring road, different 

scenarios have a different number of vehicles since  

 1 1 2 1 2 1

1 2 2 1 1 1 1 2 1

0 (1) ( )( )
(1) ( )( ) ( ) ( )( )

a b c

i d

N R L R C C L L N N
r L R C C L L N R L R L L
≤ ≤ + / − < < =

+ / − < ≤ ∞ + ∞ − .
  

Due to traffic conservation on the ring road, we can therefore determine the final 
stationary states by the initial number of vehicles N  on the road as follows: (a) 
When 1 1 2 1 2 1(1) ( )( )N R L R C C L L≤ + / − , links 1 and 2 will be asymptotically 
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stationary at UC with 1( )q C,  and 2( )q C,  respectively, where q  is the solution 

of 1 1 1 2 2 1( ) ( )( )R q C L R q C L L N/ + / − = ; (b) When 

1 1 2 1 2 1 1 1 2 2 1 1(1) ( )( ) (1) ( )( )R L R C C L L N R L R C C L L+ / − < < + / − , link 1 

will be asymptotically stationary at critical with 1 1( )C C, , and link 2 at SS with 

1 2( )C C,  for 1 2[ ]x L L∈ ,  and 2 1( )C C,  for 2( ]x L L∈ , , where 2L  is the solu-

tion of 1 1 2 1 2 2 1 2 2 1 2(1) ( )( ) ( )( )R L R C C L L R C C L L N+ / − + / − = ; (c) When 

1 1 2 2 1 1(1) ( )( )N R L R C C L L= + / − , link 1 will be asymptotically stationary at 

critical with 1 1( )C C, , and link 2 at SOC with 2 1( )C C, ; (d) When 

1 1 2 2 1 1(1) ( )( )N R L R C C L L> + / − , links 1 and 2 will be asymptotically statio-

nary at SOC with 1( )C q,  and 2( )C q,  respectively, where q  is the solution of 

1 1 1 2 2 1( ) ( )( )R C q L R C q L L N/ + / − = .  
From theorem 3, an interior state can occur at a boundary when its upstream 

demand equals the downstream supply, and its flux cannot be smaller than the 
demand or supply. In the following we consider possible asymptotic interior states 
on the ring road in Fig. 10. First, at any location inside a uniform traffic stream on 
a homogeneous road, it is not possible to have interior states, since the upstream 
and downstream states are exactly the same at ( )D S,  and D S=  if and only if 
the traffic is D S C= = , in which case the interior states have to be the same as 
the stationary states. Thus, interior states can only exist around the interface be-
tween two uniform traffic streams when the upstream demand equals the down-
stream supply, and we examine possible interior states in all four scenarios as fol-
lows. (a) The necessary condition for an interior state to exist at boundary 1 is 

1q C= , i.e., when 1 1 2 1 2 1(1) ( )( )N R L R C C L L= + / − . From theorem 3, the in-

terior state can only exist at 0x −= , but not 0x += . The necessary condition for 
an interior state to exist at boundary 2 is 2q C= , which is not possible. (b) It is 
not possible for interior states to exist at either boundary 1 or 2, but it is possible 
for an interior state to exist around the SS interface at 2x L= . From theorem 3, 

the interior state can only exist at 2x L−=  or 2x L+= . (c) It is not possible for an 
interior state to exist at boundary 1, but it is possible for an interior state to exist 
around boundary 2. That is, when 1 1 2 1 2 1(1) ( )( )N R L R C C L L= + / − , from 

theorem 3, the interior state can only exist at 1x L+= , but not 1x L−= . (d) It is not 
possible for interior states to exist at either boundary 1 or 2.  

In summary, there can exist three types of interior states: (a) When 

1 1 1 2 1 2 1(1) ( )( )N N R L R C C L L= = + / − , an interior state can only exist at 
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0x L− −= = ; (b) When 
1 1 2 1 2 1 1 1 2 2 1 1(1) ( )( ) (1) ( )( )R L R C C L L N R L R C C L L+ / − < < + / − , an interior state 

can exist at 2x L−=  or 2x L+= ; (c) When 

3 1 1 2 2 1 1(1) ( )( )N N R L R C C L L= = + / − , an interior state can only exist at 

1x L+= .  

6.2 Numerical Examples 

In this subsection, we study asymptotic traffic dynamics on the inhomogeneous 
ring road in Fig. 10 with 600L l=  = 16.8 km, 1 100L l= =2.8 km, and the loca-
tion-dependent speed-density relationships are based on (Kerner and Konhauser 
1994; Herrmann and Kerner 1998) 

1

6( ( )) 5 0461 1 exp{[ 0 25] 0 06} 3 72 10
( ) j

V a x l
a x
ρρ τ
ρ

−⎡ ⎤
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎛ ⎞
, = . + − . / . − . × / ,⎜ ⎟⎜ ⎟

⎝ ⎠

where the relaxation time τ  = 5 s; the unit length l  = 0.028 km; the free flow 
speed 27 8fv = .  m/s; the jam density of a single lane jρ  = 180 veh/km/lane. 

Here the number of lanes ( ) 1a x =  for link 1 and ( ) 2a x =  for link 2. The cor-
responding fundamental diagram ( ( ))q Q a xρ= ,  is non-convex but unimodal in 

density ρ . In addition, 1 0 7091C = .  veh/s, and 2 12C C= . Thus we can com-

pute 1(1)R =35.8944 veh/km, 1
2 1 2 2 2( ) ( )R C C R/ = =26.4162 veh/km, and 

2 2 1 2( ) (2)R C C R/ = =118.3550 veh/km. Hence 

1 1 1 2 1 2 1(1) ( )( ) 470 3311N R L R C C L L= + / − = .  veh, and 

3 1 1 2 2 1 1(1) ( )( ) 1757 4746N R L R C C L L= + / − = .  veh.  
Here we consider the following initial condition:  

 0
2( 0) ( )( 3sin ) [0 ]

( 0) ( ( 0) ( )) [0 ]

xx a x x L
L

v x V x a x x L

πρ ρ

ρ

, = + , ∈ , ,

, = , , , ∈ , .
 (43) 

Then, the total number of vehicles on the ring road is  

 
100

0 0 00

2 4502 ( 3sin ) 1100
l xN L dx l l

L
πρ ρ ρ

π
= − + = −∫  



 

 

A New Framework for Analyzing the Inhomogeneous Lighthill-Whitham-Richards Model   631 

When 0 15 4007ρ = .  veh/km, 1N N=  and we observe an interior state at 

0x L− −= = ; when 0 57 1911ρ = .  veh/km, 3N N=  and we observe an inte-

rior state at 1x L+= ; when 0 (15 4007 57 1911)ρ ∈ . , . , we observe an interior 

state at 2x L−=  or 2x L+= , where 2L  is the solution of 
1

1 1 2 2 1 2 22(1) ( )( ) (2)( )R L R L L R L L N+ − + − = . For example, when 

0 28ρ =  veh/km, 858 3893N = .  veh, and  

 
1

1 2 1 22
2 1

2 22

( (1) ( )) (2) 449 2561
( ) (2)

N R R L R LL l
R R

− − −
= = . .

−
  

  

Fig. 11. Solutions of ρ , v , and q  at 24000T =  s for initial conditions in (31): solid lines 

with stars for 0 15 4007ρ = .  veh/km, dashed lines with circles for 0 28ρ =  veh/km, and 

dash-dotted lines for 0 57 1911ρ = . . 

In the following, we simulate traffic dynamics on the ring road for three differ-
ent initial 0ρ : 15.4007 veh/km, 28 veh/km, and 57.1911 veh/km. Here we use the 
Godunov finite difference equation in (18) and the supply-demand method in (19) 
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for computing boundary fluxes. The simulation time is 4800T τ=  = 24000 s. 
We partition the road [0 ]L,  into 4800N =  cells and the time interval [0 ]T,  
into 240000K =  steps. Hence, the length of each cell is 3 5xΔ = .  m and the 
length of each time step is 0 1tΔ = .  s. The CFL condition number (Courant et al. 
1928) is 0 79 1t

f xv Δ
Δ ≤ . < . The results for the three initial conditions are shown 

in Fig. 11, where the bottom figure shows the locations and fluxes of all three inte-
rior states. From the figure, we can see that each of the three interior states only 
exists in one cell, and the locations of interior states are exactly as predicted 
above. Note that the top right figure of Fig. 18 in (Jin and Zhang 2003a) also de-
monstrates the existence of an interior state, which is at the interface of a statio-
nary shock. 

7. Conclusion 

In this paper we first reviewed the definitions of the supply and demand functions 
and the discrete supply-demand method for computing boundary fluxes. We then 
introduced the supply-demand diagram of a roadway and a new framework for 
solving the Riemann problem of the inhomogeneous LWR model in supply-
demand space. In this framework, each link can have asymptotic interior and sta-
tionary states near the boundary, and the wave on each link is determined by the 
Riemann problem of the homogeneous LWR model with stationary and initial 
states for initial conditions. We have derived conditions for admissible stationary 
and interior states and introduced an entropy condition based on the discrete 
supply-demand method for computing boundary fluxes. We then proved that solu-
tions to the Riemann problem exist and are unique and demonstrated that these so-
lutions are consistent with those in literature for both the homogeneous and inho-
mogeneous LWR models. We also presented a graphical approach for finding the 
asymptotic stationary states with the help of supply-demand diagrams. Finally, we 
discussed the asymptotic stationary states on a ring road with arbitrary initial con-
ditions and demonstrated with numerical examples that the existence and proper-
ties of the interior states are as predicted in this framework.  

Unlike existing studies of the homogeneous or inhomogeneous LWR models, 
this study analyzes traffic dynamics in supply-demand space. In this framework, 
the discrete supply-demand method is applied as an entropy condition. In this 
sense, our study provides a new approach for constructing convergent solutions of 
finite difference equations arising in a Godunov method (18) with a supply-
demand method (19) for both the homogeneous and inhomogeneous LWR mod-
els. We have demonstrated that this new approach can successfully predict the ex-
istence and properties of interior states in numerical solutions. However, note that 
interior states take only one cell in numerical solutions and vanish as we diminish 
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the cell size. In this sense, the interior states are inconsequential to solutions of the 
Riemann problem.  

Compared with existing studies, the new approach in the supply-demand 
framework is much simpler. In addition, since supply-demand methods have been 
proposed for computing fluxes through other junctions in general road networks 
(Daganzo 1995a; Lebacque 1996; Jin and Zhang 2003b; Jin 2003), our framework 
could be extended to constructing solutions to the Riemann problem in these mod-
els. In (Jin 2009), we successfully applied this framework to analyze the Riemann 
problem of merging traffic flow. In addition, one could also apply this new 
framework to analyze asymptotic traffic dynamics in a road network, such as the 
diverge-merge network studied in (Jin 2008). 
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