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On the Refraction of Shock Waves
at a Slow-Fast Gas Interface*

L. F. Hendersont, P. Colellat, and E. G. Puckett

[-316
Lawrence Livermore National Laboratory

Livermore, California 94550, USA

We present the results of our calculations on the refraction of a plane shock wave at a CO,/CHy
gas interface. The numerical method was an operator split version of a second order Godunov method,
with automatic grid refinetnent. We solved the unsteady, two-dimensional, compressible, Buler equations
numerically, assuining perfect gas equations of statc. We compared our results with the experiments of Abd-
El-Fattah and Henderson. Good agreement was obtained when the artifacts of the experiments were taken
into account: especially the contaniination ol the Cll; by the COy. A remaining discrepancy was ascribed to
the uncertainty in measuring a wave angle due to the sharp curvature of the transmitted wave i the Cll,.
All the main features of the regular and irregular refractions were resolved numerically for shock strengths
that were weak, intermediate, or strong. These include free pre-cursor shock waves in the intermediate and
strong cases, and evanescent (smeared out) compressions in the weak case, and the appearance of an extra

expansion wave in the bound pre-cursor refraction.

1. Introduction

We consider two gases mecting along a planc interface, and we assume for simplicity that both them

obey the perfect gas equation of state (Figure 1). We suppose that a plane incident shock 1 of wave velocity
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UJ; is propagated into one of the gases by the impulsive motion of a rigid boundary, such as a piston which
drives into the gas at a velocity Up,; < U;. We also assume that all the boundaries of the system are adiabatic.
Subsequently i meets the interface between the gases at an angle of incidence «o; measured with respect to
the interface (Figure 2). The shock i now begins to pass from the first, or incident gas I, into the second,
or receiving gas II, where it becomes the transmitted shock t. When its new velocity U, differs in either
magnitude and/or direction from U;, then by definition i has been refracted. Formally the relative refractive

index n is defined by,

n= U/ |0 (1.1)

We will say that the refraction is slow-fast when n < 1; fast-slow when n > 1; but that there is no refraction

when n = 1.

If the velocities of the gas upstream and downstrean of the incident shock and relative to it are ug and

u; respectively, then the piston velocity is,

Upi = uy —u . (1.2)

Coordinates may be taken which are at rest with respeet to the gas npstream of 7, so that wy = 0, and the

boundary condition then becomes simply,

wy =Upi . (1.3)

In general a reflected wave is also produced at the gas interface by the refraction (Figures 1,2). When
the incident wave 7 is a shack then so also will be the transmitted wave t, but the reflected wave may be
either an expansion e or a shock » (lienderson 1989). 1t is assumed that there is always continuity in the
pressure /> and in the particle velocity u across the interface. Following refraction this gives,
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=P, (1)

The nature of the reflected wave may be determined with the help of (1.4) and (1.5) together with the
definition of the wave impedance Z. This is the increase in the pressure which must be applied to the gas in

order to inducc a unit particle velocity in it, for example,

P h PR (1.6)

7y == 3

Uy — Uy Up(

with similar definitions for the other waves. Equation (1.6) amounts to the momentim equation, and with

the aid of the continuily equation it may also be writben as,

where v is the specific volmne. "This demonstrates that 7Z; is an average adiabatic bulk modulus. Alternatively

we may obtain,

N
|

=+ fl-o/l/e = :tpﬂ‘un = :F[)O[-]i s (18)

Zi:ﬂ:eel/v; =+ puy (1.9)

where p is the density, and where we have used the fact that in shock wave coordinates,

wy = =U; . (1.10)



The pressure reflection and transmission coefficients may now be defined as,

P, - Py _ P -P ,
= 22T =-t—-2 1.11
kR=s—% ' T=B-p ° (111)

and they are easily rewritten in terms of the wave impedance with the help of (1.4-1.6) together with the

definitions of Z, and Z,;,

Ze Lo 7
L el 1.12
¢ Zi By = Ay ( )

r=fi b (1.13)
Zy 4y~ 7y

Similar definitions may be given for the shock intensity I s the average power flux through unit area in the
direction of propagation, and for the total power transnutted. The coefficients (1.11) to (1.13) show that
when the impedance increases during refraction |7,| > |/7;|, then a reflected shock r will be reflected from
the interface, back into the incident gas, but that when it decreases |Z¢| < |Z;], then we obtain a reflected
expansion. When the iinpedances are cqual |Z,] = |7, there is no reflected wave even though the two
gases may differ in comnposiiion or in states 1f this condition occurs at a non-zero angle of incidence then
the particular angle is called the angle of intromission oy = ry,,, as in acoustic theory. The wave ¢ is still

refracted at this condition because in gencral n # 1 when a; = 04, (Figure 2b).

The wave systems illustrated in Fignres 2a, b, and o are called regular refractions by analogy with
von Neumann’s (1943) classification of regnlar and Mach reflecfions. His theory of regular reflection is
easily extended to regular refraction and the resulls are in good agreement with experiment (Jahn 1956,

Abd-El-Fattah et al. 1976, Abd-Tl-Fattah and Henderson 1978a,b).

If o regular wave system is o exist, then all of its waves must travel at the same velocity U along the
interface, and this fact gives immediately the fundamenta’ law of refraction, nanely,
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U.‘ Ug - U,- - UJ )

sino; sina; sina, sin aj

(1.14)

where Uj is the velocity of any wave in the reflected and centered expansion wave, and a; is the corresponding
wave angle. Evidently, |U;| = a;, which is the local speed of sound. Under certain conditions this law may be
violated, for example with a continuous increase in the parameter o; the regular wave system may break up
with the ¢ shock moving ahead of the incident and reflected waves to form some type of irregular refraction

with pre-cursor waves (Figures 2d, e, and f). In this event,

Yo, U U (1.15)
sina; sina; sino, sino;j

The refraction law may be combined with the definitions of n and Z as follows.

Uil  siney 12
_ il _ - . 1.16
" lU;l sin ¢ Vy Z; ( ))

Clearly we have,

() for slow-fast refraction, n < 1, then a; < ay, and the refracted shock ¢ is steeper than the incident

shock with respect to the gas interface;
. (i) for fast-slow refraction, n > 1, oy > a, and { is less steep than i;
(ii7) for n =1, a; = a;, and the wave is not (bent) refracted.

Using the refraction law we may also write,

cos oy :(l—sinza,)’:':(1—~n“zsin2a,~)i’ . (117

2

Thus cos a; becomes pure imaginary when n=2sin?a; — 1 < 0, that is when a, exceeds the normal critical
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angle, o > o, which is defined for a; = 7 /2,

sina. = [Uil/|U]=n . (1.18)

Clearly a,. only exists for slow-fast refraction, n < 1. At the critical condition, ¢ is perpendicular to the
gas interface oy = 7/2, that is, it is a normal shock. Accordingly the gas interface is not deflected in this
special case and it remains everywhere in a single plane. It follows that when the pressure Ps is applied to
the receiving gas it causes no deflection of the interface, so that it behaves like a rigid surface. In this sense
|Z:| = o0, when o; = a.. In summary, n is a measure of capacity of the gases to bend or refract the cident
shock, while the wave impedances determine the nature of the reflected and transmitted waves. For oblique

refraction it is convenient to generalize the definition of wave impedance to,

P-F

Ly = e
! Upg’COS ﬁ“

(1.19)
where f3; is the wave angle measured with respect to the disturbed gas interface (Figure 2). Similar expressions
are defined for the other waves, and with these definitions (1.11) to (1.13) remain valid; (1.16) may also be

used by introducing the factor cos x?,-/cos By,

The von Neumann theory is inadequate for describing irregular refractions, because it can only describe
the uniform regions of flow near a refraction point. But irregular systems have non-uniform flow regions
and it is necessary to solve the equation of motion everywhere in order to obtain an adequate description of
the phenomena. In the present paper, we present tlic results of our numerical studies of slow-fast refraction
with particular emphasis on the irregular systems. The numerical method that we used is an adaption
of a second order, finite difference solution of the Euler and continuity equations for the two-dimensional,
unsteady, compressible flow of perfect gases. It is an operator split version of the second order Godunov
method developed by van Leer (1979), Colella and Glaz (1985), and Colella and Woodward (1985). The
results are compared with the experimental data of Abd-El-Fattah and Henderson (1978b). Agreement with
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experiment is satisfactory for much of the data, if allowance is made for the effects of gas contamination
in the experiments. Some discrepancies do exist, especially for the a, data for irregular systems. This is

ascribed to uncertainties in the measurements caused by the sharp curvature of the transmitted wave.

2. The Experiments

The experimental method has been described by Bitondo (1950), Jahn (1956), Abd-El-Fattah et al
(1976), and Abd-El-Fattah and Henderson (1978a,b). The experiments of the last named authors appear to
be the most extensive and we describe them briefly. A delicate polymer membrane was set up in a shock
tube; its functions were to define the gas interface as a plane surface, and to prevent the gases from mixing
until the incident shock arrived. The mass of the membrane was between 0.5 and 1.0 x10~* kg m~2, and
its thickness was between 5.5 and 6.5 x 10™% m. In order to set up a slow-fast interface such as COs/
CHy, the CO, was slowly introduced onto one side of the membrane while the CHy was introduced onto the
other. The gases were continuously circulated through the shock tube to minimize mutual contamination by
diffusion and leakage across the membrane. The contamination was monitored continuously by a thermal
conductivity meter, and typically the CH, was contaminated by about 10% by volume with COs, but the
CO3 was much purer. It should be noted that the volume of CO5 in the shock tube was about 250 times

larger than the CHy.

A shock of prescribed inverse strength & = Pn/Pl, was started in the CO,, and arranged to strike the
membrane/gas interface at a pre-determined angle of incidence «;. The shock shattered the membrane and
entered the CHj4, and was thus refracted. The wave system was photographed by a schlieren optical system,

and transducers measured the speed and strength of the incident shock.

Recently, Haas and Sturtevant (1987) have experimented with weak shocks refracting at cylindrical and
spherical interfaces. The gases were initially prevented from mixing by the use of plastic membranes or soap

bubbles. However, in the interest of simplicity we will confine our attention to plane gas interfaces.
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3. The Computations
3.1. The numerical method

We used a second order finite difference solution of the Euler and continuity equations on a rectangular
grid with reflecting boundary conditions on three sides and inflow boundary conditions on the fourth. The
numerical integration of the equations was accomplished by using an operator split version of a second order
Godunov procedure (van Leer 1979, Colella and Woodward 1984). In our implementation we employed an
efficient algorithm for the solution of the Riemann problem (Colella and Glaz 1985). Since the method is
a conservative finite difference scheme, mass, momentum, and energy were all conserved. The method is
accurate to second order in space and time for smooth flow, and captures shocks and other discontinuities
with minimum numerical overshoot and dissipation. It has been used quite extensively to compute unsteady
shock reflections in gases, with a demonstrated ability to resolve complex interactions of discontinuities with

good agrecement with experiment (Glaz el al. 1985).

An important feature of the numerical method is that it employs a dynalmic regridding strategy called
adaptive mesh refinement (AMR) in order to refine the solution in regions of particular interest or excessive
error. This is accomplished by placing a finer, rectangular grid over any such region, with the grid spacing
being reduced by an even factor which is typically either 2 or 4. The boundary of the refined grid always
coincided with the cell edges of the coarse grid. Multiple levels of refinement were possible with the maximum
number ¢f nested grids being supplied as a parameter by the user. In the present work, we determined
those regions which required refinement by estimating the local truncation error in the density, and refining
wherever the error was greater than an initially specified amount. Special care was taken to ensure the
correct fluxes on boundaries between coarse and fine grids; the details are given by Berger and Colella
(1987). Adaptive gridding was a crucial component of our method which enabled us to resolve important
features of the flow economically. A typical run with two levels of gridding and with a refinement factor of

2 took about 5 to 10 minutes of CPU time on a CRAY XMP computer.

The gas interface was modelled using an algorithm of Noh and Woodward (1976). Here a number, f;;



between 1 and 1, and ealled the volume Mraction was associated with cach grid cell through which the gas
mterface passed. This fi; was the volume fraction of the cell occupied by one of the gases. Obviously the other
gas occupicd the fraction T — fi; 0 At the end of every time step a sitple picture of the interface consisting
entirely of vertical and horizontal line segnients wis constructed from the volume fraction information. This
was used to deternine how much of each gas was convected out of the cell and into adjacent cells at this
timestep, and hence to update the volume fractions associated with cach cell. One of the drawbacks of the
SLIC algorithm is that in a region nndergoing expansion or compression both of the gases in a multi-gas cell
will be expanded or compressed equally, in spite of {he density differences that may exist between them. To
use this method with the present problem we incorporaied a scheme due to Colella ef al. (1989} in which the
equations of gas dynamics are supplemented with evolution equations for the vohune fraction, total energy,
and mass density of each gns in the multi-gas cells. This formulation takes into account the compressibilty

of each gas component in a multifluid cell so as to ensure the correct individual expansions or compressions.

3.2. Outline and plau of the numerical work

We shall present the results of our computations as though we had done a series of experinwents in a
shock tube. This means thal in a particular sequence, the ratios of the specific heats 5;. 7, of the gases
and their molecular weiglits yi;, s1, were held constant. and so also was £. The only parameter that varied
through the sequence was @y, This was assuried 1o be initially near the condition for head-on incidence
at ooy = 0; it was then incicased in discrete steps until it approached glancing incidence at oy =2 7/2; thus
0 <oy < /2. A particular refraction was uniquely defined once the values of (4. 7, 1, jiy, &, 0;) logether
with the system boundaries were given. Typically the phenomena that appeared from this procedure were

a sequence of regular refractions followed by an irregular sequence,

We shall compare our numerical results with the experimental data obtained by Abd-El-Fattah and
Henderson (1978b) for the slow-fast, n < 1, CQ4/CHy gas interface. There were two artifacts in those
experiments which we took inte account in our caleulations in order to make the comparison as accurate

as possible. These were the inertia of the membrane and the contamination of the gases by diffusion and



lcakage across it.

Membrane Inertia: We calculated the menibrane density from the published data, and it was about 680
time denser than CO» at standard conditions. Using this factor in the calculations, the membrane was
treated as though it were super dense carbon dioxide. Generally its effect was negligible; all we noticed
was a slight displacement in the pressure contours when the contours were compared with, and without, the

membrane for the same refractions. In view of this we deleted it from the remainder of our calculations.

Gas Contamination: The published data showed that the methane was contaminated by about 10% by
volume with carbon dioxide, but that the CO» itself was approximnately pure. (Remember their volume ratio
in the shock tube was about 250:1 in favor of the CO3.) The properties for the pure and contaminated gases

are presented in Table 1. Contamination is a significant effect and it will be discussed below.

Purc carbon dioxide Pure methane Contaminated methane

Y 1.288 1.303 1.301

i 14.01 16.04 18.84

Table 1. Properties of the pure and contaminated gases.

4. Results and Discussion for a Weak Shock Refraction Sequence

4.1. The polar diagrams

The sequence and its polar diagrams are presented in Figure 3, they arce similar to the ones described by
Abd-El-Fattah and Henderson. When a; is comparatively small, there is a regular refraction with a reflected
expansion (RRE), (Figure 3a), so |7 < |Zi], R < 0, T > 0. Since the refraction is slow-fast n < 1, we have
by (1.16) that ay > ay, that is, ¢ is steeper than i. ‘The reflection e, is a centered, Prandtl-Meyer, expansion

fan and it is plotted in the polar diagram as the isentropic curve ¢. It intersects the polar for the ¢ shock at
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the point ¢; which defines the von Newmann solution for RRE. The solution requires there to be contimity
in the pressure and in the streamline direction 6, everywhere along the gas interface. Although (1.4) remiains

valid when a; # 0, (1.5} must be replaced by,

So+br =6 (4.1)

which is the continuity condition for the streamline direction. Ti is sometimes necessary to replace (1.4) and

(4.1) by the equivalents,

(Py =P+ (P = Py)=(P - 1) (4.2)

9

Upi cos j3; {/ cos B dif; = Uppcos B, (4.3)
1

where Upi, Upr. are the driving piston velocities of the 7 and £ shocks, dl/,; is the infinitesimal withdrawing
piston velocity for an arbitrary jth wave in the reflected expansion, and 3y, £, 4, are the wave angles which

are defined with respect to the disturbed gas interface (Figure 2).

If o; is now increased continuously, the polars shrink somewhat and the intersection point Ay moves
downwards towards the point 4 which is the map of the incident shock. As this happens the strength | Py — Py}
of the expaunsion decreases and eventually vanishes at the angle of intromission o, = aj, &= 32.0592°, which
corresponds o ¢; =1 = A; where Ay is the intersection point of the primary polars (1,7). The rellection ix
reduced to a Mach line degeneracy |1 — Pi| = 0 and the other wave impedances becone equal 7y = Z;,
R =0,T =1, this is the condition for fotal transmission, and here also «; > a; (Figure 3b). As ¢y continues

to increase a, > ay,,, the refleetion becoimes a shock, (RRR) (Figure 3c), and now |7,

> |2 > 0,1 >0,
with again a; > a;. The von Neumanu theory gives two solutions A and Ay for RRR, but experiment shows
that it is the wcaker Ay solution which appears physically. In this respect note that Ay is the continuation

of the € solution while A5 is not; in fact at the intromission angle, ¢, and X; are identical and degenerate,



As a, continues to increase, Ay and Ay approach cach other and eventually coincide, Ay = s (Figure 3d).
This takes place at the shock critical angle o; = vy = 34488°. In general this angle does nof cotneide with
the normal critical angle o, defined by (1.13), and usually oceurs before i, v, < .. For o > o, the
and A, solutions are no longer physically significani, hecause they are unreal. The refraction is now irregnlar
and pre-cursor compression waves may develop (Figures 3e-g). In the experiments of both Jahn and Abd-

El-Fattah and Henderson the pre-cursors did not appear as soon as the shock eritical angle was excceded. In

fact o; had to increase somewhat beyond n,. before they were observed. We will relurn to this point later.

4.2. The numerical resulis for the sequence

The numerical resulis presented here are all for uncontaminated gases with no membrane. We believe
that these results will be of more general interest than those which iclude the artifacts of the experiments.
Selected contour plots for the sequence are shown in Figure 4, a schlieren photograpl from the experinents is
shown in Figure 5a and color graphices to compare with the schlicren photograplt are shown in Figures 5b,c,d
(Plates 1, 2). Of course the comparison can only he gualitative because the nunerical results do not include

the artifacts.

4.3. Structure of the weak irregular refraction systoms
4.3.1. The bound pre-cursor refraction system, BPR.

The regular systems RRE and RRR are well deseribed by the von Neumann theory, and in more detail
by our numerical results. When the shock critical angle is exceeded o > oy, 22 34.4885°, the RRR system
becomes augmented with an expansion wave which appears in the receiving gas (CH,4), and with its pressure
contours apparently centered on the refraction point 2 (Fignres 3e, 4e). The contours at first diverge as
they move away from R, but then swing around and refract into the incident gas (COaq) where they converge
into a compression downstreant of the reflected shock . According to the von Neumann theory, there are no

physically acceptable solutions for a; > a,,. and the impedance of the gases are unreal. For those reasons



the systen is irregular. The » and ¢ shocks now have sharply increased curvatures near £, and furthermore
t is now everywhere inclined forward of R, ay > 7/2 (I'igures 4e,f). By contrast for the regnlar systems,
is everywhere inclined ba-kwards, o, < 7/2 (Figures 4a-d). ‘Thus { is a pre-cursor wave for o; > o, and in
the special case shown in Figures 3¢ and 4e, the ¢ wave moves along the gas interface at the same velocity
as i and r, that is Eqnation (1.14) remains satisfied, it is also a bound pre-cursor. With Abd-El-Fattah and

Henderson we will call this irregular system a “bound precursor refraction” (BPR).

4.3.2. The conditions for the RRR = BPR transition

The shock critical angle «,, is defined by the double root Ay = As, of the von Newmann theory
(Figure 3d). and this amounts to a gencralization of the well known shock detachment eriterion for reg-
ular /irregular transition in shork reflection. If we suppose that |Z,] increases without imit, |7} -~ ¢, then
reflection can be thought of as a limiting case of relraction. Iuspection of the polar dingram makes it clear
that the rival (sonic) criferion for transition (Hornung and Taylor, 1982) does not exist for this refraction
because the flow downstrean of the reflected shock is supersonic M. > 1, all the way to the Ay = Ay point.
Thus, this point which corresponds to a; = a,. scems to be the only possibility for a transition criterion in

weak refraction, RRR — BPR.

The computational data indicates that transition occurs at a, = ¢v,,., or very close to it, but experiment
suggests that it is somewhat delayed beyond this poinl. However, the fransition point is a little obseunved in
the experiments by the wire frame on which the menmbrane s mounted, and also by 1he presence of a thin
film of silicone oil that was used to seal the wire to the shock tube windows in order to reduce gas leakage.
In view of this, we conclude from the evidence available to s thatl transition either occurs at o, = v, or

else very close to it.

It is interesting to vole that the condition a, = 7/2 must also be attained during the transition RRR
— BPR, because as this occurs we have scen thal (o, < 7/2) — (ny > 7/2). Therefore the condition
corresponding to the normal critical angle o, defined by Equation (1.18) is forced to occur al the same

condition as the shock critical angle a,., even though . < n,.
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4.3.3. The free pre-cursor refraction system, FPR.

With steadily increasing oy, the ¢ wave eventually breaks loose from the i and r shocks and runs ahead of
them along the gas interface (Figures 4f and g). The refraction law has now been violated as with expression
(1.15), and there is now a free pre-cursor refraction (FPR) in which the ¢ wave moves ever further ahead of

t and r with time.

It will be noticed that the pressure contours for the ¢ wave are now spread out at, and near, the gas
interface (Figures 4f and g), instcad of being concentrated as for a shock (Figure 4e). Thus ¢ is a locally
smeared out or evanescent wave. However, further away from the interface the contours do converge to form
a coherent shock. The ¢ wave is itself refracted from the CHg4 back into the CO,, which means that its
refraction is locally fast-slow, n > 1. The wave transmitted into the CQO, is the side wave s, and it is also
an evanescent wave (Figure 3(). Since locally, n > 1, then |oy[ > Ja,|. There appears to be no sign of a
reflected wave from the t — s refraction, nor does there seem to be one in the experiments, (presumably it
1s too weak to be resolved). Thus the local system appears to consist only of the ¢ — s pair. The 5 wave
and the incident shock i eventually encounter, and mutually modify, each other. The s contours converge to
the reflected shock r after passing through i. The modified shock k, continues to the disturbed gas interface
where it is locally refracted with total internal reflection R = —1, T = 0, Z; = 0.; this means that k is
reflected as a centered expansion wave, e. This last wave eventually overtakes » and causes almost complete

mutual cancellation, so that finally a weak reflection is propagated into the downstream COx.

It is natural to consider the conditions where a bound pre-cursor system becomes a free pre-cursor
system or vice versa, BPR = FPR. This is associated with the spreading out of the ¢t wave into a distributed
compression near the interface and it then runs ahead of the i and r shocks along the interface. Therefore
the transition occurs with the violation of the refraction law, Equation (1.14), in other words (1.15) now

applies. The law is of course immediately re-cstablished for the pre-cursors,

U, Uy

sin a,  SIN oy

(4.4)
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4.3.4. The free pre-cursor von Necumann refraction system, FNR,

Transition to yet another irregular refraction takes place as oy continues to increase. [t is characterized
by a weak Mach reflection appearing in the CQ3. Some pressure contours of it are presented in Figure 1h
and a schlieren photograph and color graphics in Figures 5a and b (Plates 3 and 4). Abd-El-Fattah and

Henderson (1978) called it & “free pre-cursor von Neumann refraction” (FNR) sce Figure 2f of this paper.

The conditions for the FPR = FNR transition are not known and our calculations are not sufficiently
detailed to form a hypothesis with any confidence, although we might conjecture that transition is associated

with sonic flow downstream of f along the gas intcrface.

In summary the sequence of phenomena for the refraction of a weak shock at a slow-fast gas interface

with increasing angle of incidence a; is as follows.

RRE = RRIR = BI'R = FPR = FNR

This sequence seems to be generally well supported by both the computations and by the cxperiments.

4.4. Comparison of the numerical results with experiment

In the interests of making the comparison as precise as possible we used the same values of the parameters
(7i, veo £iy s &, ) for our input data as Abd-El-Fattah and 1lenderson measured in their experiments. This
included using the data for the contaminated gas shown in Table 1, and the same boundary configuration.
Some of the calculations were repeated for the pure gases in order to obtain an estimate of the sensitivity of
the results to gas contamination. The nunierical data for the pure and the contaminated gascs are compared
with experiment in Figures 6 and 7. Figure 6 shows a varicty of wave angles as well as the trajectory
path angle x for the four waves i — s — k — #'. For the regular part of the sequence, RRE - RRR, the
numerical results for the contaminated gas are everywhere in satisfactory agreement with experiment, but
the corresponding results for the pure gases show a significant discrepancy for the «, data, but not for the

15



a,, &, data. So only the a, data scems to be sensitive to contamination, and that sensitivity is greatest
near transition a; = a,., Ay = A2, where siall variations in the contamination can cause significant changes
to a;. Thus, the o, data is sensitive to contamination while the other angle data are not. This is ascribed
to the fact that incident and reflected waves propagate in the CO, which is little affected by contamination
because of the large fraction of the volume it occupies in the shock tube, while the t wave propagates in the

CHy4 and this is significantly affected (Table 1).

After transition to irregular refraction the numerical data for the contaminated gas is again in agreement
with experiment so long as, approximately, a; < 60°; but a significant discrepancy is evident for a; > 60°.
By contrast the data for the purc gases everywhere shows a larger discrepancy. For irregular refraction
the ¢ wave is everywhere curved, and for a; > 60° we found that this curvaturc became quite sharp near
the gas interface. This mmade it increasingly uncertain about where to draw the tangent to ¢ in order to
measure v; at the interface. The samme difficulty occurred for both the schlieren photographs and for the
contour plots. We therefore looked for more robust data to compare with the experiment, and we found this
in the measurements of the wave velocities U; and U,. The numerical data for |U,|/|U;] is compared with
experiment in Figure 7. These data include the calculations for the pure and the contaminated gases, and

it will be noted that the results bracket the experiment data.

It should be remarked that the measurements of the gas contamination are only average values obtained
after the contaminated gases had been drawn from the shock tube and individually sent to the thermal
conductivity meter. Therefore the local contamination near the gas interface could have been significantly
different from the average value obtained at the meter. In view of the uncertainties involved we conclude

that the agreement between the numerical data and experiment is satisfactory.

5. Results and Discussion for a Strong Refraction Sequence

5.1. Wave structures in the sequence

A second series of computations was done for the CO,/CH, interface, except that i was now a strong
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shock &; = 0.18; this work was restricted to the pure gases. Selected contours are presented in Figure 9, and
a schliercn photograph together with color graphics are presented in Figure 10 (Plates 3,4). A comparison
with experiment cannot be precise because the effect of gas contamination has not been taken into :ccount,

in the calculations.

The polar diagrams are presented in Figurc 11. When a; is small enough to result in regular refraction,
the von Neumann theory provides three physically acceptable solutions, namely two with reflected shocks Ay,
A2 and one with a reflected expansion ¢; (Figure 11a). It was the ¢; (RRE) solution which Abd-El-Fattah
and Henderson observed. With increasing o; one obtains the coincidence Ay = Xy = i = A;, and then the
reflected shocks in the Ay, Xy, (RRR) solutions degenerate to Mach lines (Figure 11b). Although this takes
place at the angle of intromission o, = 35.95°, it has no physical significance in this case because €, is not
degenerate at this condition. Ience the impedances arc not equal, |Z,] # |Z;|, for the solution ¢; which is

actually observed.

For a; > aj., the A, A3, solutions are unreal and at the same time we obtain a second solution € of
the RRE type (Figure 11c). However, once more il was Lthe ¢; solution that Abd-El-Fattah and Henderson
observed. Clearly, at a; = a4, the colncidence can be extended to €3, thus, A\ = Ay = ¢ = 1 = A4;. Notice,
however, that the €; solution nowhere forms a coincidence with either of the Ay, As, solutions as it did at
the A; point in the weak sequence. Consequently no refraction of the RRR type can appear in this strong

sequence.

As a; continues to increase one eventually obtains e; = ¢5 (Figure 11d), where the isentropic ¢ is tangent
to the t polar. This again occuts at the shock critical angle o, = 37.79°, but it differs from the weak series

in that the coincidence is an RRE type ¢, = ¢,, instead of the RRR type, A, = .

For a; > a,.. the refraction is irregular and both the experiments and the calculations agree that it is
again a free pre-cursor system. I[lowever, the numerical results show that both the ¢ and the s waves are
shocks and not evanescent compressions as they were in the weak sequence. Structurally the system consists

of the pre-cursor, transmitted-side shock pair t — s, interacting, with a single Mach reflection triplet of shocks
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i—ry —n (Figure 11e). The side shock s, now interacts with the Mach shock n, modifies it and produces the
second reflected shock 2. Consequently, there are two Mach reflections in the incident gas, i — n — r;, and
8 = n — rg, the refraction will be called a “lwin Mach refleclion-refraction” (‘''MR). 'The ro shock nudergoes
total internal reflection at the disturbed gas interface and gives rise to the reflected expansion e, which
in turn overtakes and attenuates ry. Contact discontinuities cdy and cdy appear at the MR triple points
(Figures 9e, 10a (Plate 3), and 1le); but they are not visible in Figure 10 (Plates 3 and 4). There are now

three shear layers in the downstream flow, namely ed;, cdy, and the disturbed gas interface.

5.2. Comparison of the numerical results with experiment

The numerical results are compared with the experimental data in Figur~s 8 and 12. As expected the
discrepancy for the oy data is comparatively large because we did not take into account the gas contamination.
Qualitatively it is similar to the discrepancy for the weak series in Figure 6. The increasing size of the
discrepancy for the irregular refraction is again attributed to the uncertainty of measuring a, with increasing
curvature of the ¢ shock near the interface. The other angle data, x1, x2, @, @j, and &, are generally in
satisfactory agreement, granied the numerical and experimental uncertainties. These last measurements were
mude either for the CO, flow field, or along its boundary (6,), and, as we have seen, such tneasurements are

"insensitive to gas contamination. The curvature of the reflected shock r prevented us from making reliable

measurements of o, from o ir numerical plots.

The numerical data for {U:l/[U,-] display a small systematic discrepancy from the experimental data
(Figure 12). This is qualitatively similar to the pure gas results shown in Figure 7, and is ascribed to the
same cause, namely gas contamination. Nevertheless, the agreement with experiment is quite reasonable.

6. The Boundary Betwecen the Strong and the Weak Systems

We consider how a weak irregular refraction may be changed into a strong one, or vice versa, FPR <

TMR. This will be done by continuously reducing &; from & = 0.78 where the system is weak, to & = 0.18,
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where it is strong. For simplicity the other parameters (vi, 71, i, #e, ;) will be held constant as & varies.
During this process one finds that the shock triple points Fo, Py (Figures 2d,3g) continuonsly approach the
quadruple point G (Figure 2¢) and then for some & they coincide with it, Fy = 1% = (/. The weak Mach
reflection has now vanished and the nuinber of shocks in the incident gas are reduced to four, 1 — s — | — ra.
If we imagine that the CHy is replaced by a rigid medium with the same boundaries, then the four-shock
interaction would amount Lo the twin regular reflection studied by Smith (1959). Since the 7 and s shocks
are generally of unequal strength, their interaction is asymmetrical and a contact discontinuity arises in
the downstream flow. A schlieren photograph of this refraction, obtained by Abd-El-Fattah and Henderson
with & = 0.53 is presented in Figure 13 (Plate 5), together with some color graphics from the calculations
(Figure 13, Plates 5, 6). We will call it a twin regular reflection-refraction (TRR). Actually the cited authors
found that this system existed for a range of & and not just for a particular value on the boundary between
the strong and the weak systems. Lventually, however, as £; becomes small enough the four shock system
in the TRR transits into the twin Mach reflection characteristic of a TMR (Figure 10, plates 3, 4, and
Figure 11). The condition for the TRR <~ TMR, transition have been discussed by Smith for reflection, and

Abd-Fl-Fattah and Henderson for refraction.

A variety of special conditions way be used to define precisely the strong/weak boundary. Some of
them have heen discussed by the above authors. Here we notice that for weak systems the regular/irregular
transition RRR «— FPR takes place at the von Neumann tangency point. A = A, that is at o, but for
strong systems the tangency condition has a different, character ¢; = €2, so RRE & TMR, but again at ay,.
It seems plausible therefore to define the strong/weak houndary at the point where both conditions are in
coincidence, Ay = Ay = ¢y = ey =1 = A,. For the pure gas interface C()g/('-[h this is approximately at
& =& = 0471, or oy = oy = 34.05%. So an incident shock 1 has a weak refraction whenever £ > &, and a

strong one when §; < £.

Abd-El-Fattah and Henderson used a different condition for the boundary. Theirs was based upon a
generalization of the vou Nenmann classification for shock reflection, but the definition of the boundary is

soinewhat arbitrary.
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There s some hint that in our results for the strong sequence € = 0.18, the four-shock TRR system
appears immediately after transition to an irregular refraction. However, it is not resolved unequivocally,

and in any event a TMR. is certainly present when «; increases by only a small further amount.

7. Concluding Remarks

In our calculations for the weak refraction sequence we used the same input data as Abd-El-Fattah
and Henderson had measured in their experiments. This included the effects of gas contamination due to
leakage and diffusion across the membrane, and also the inertia of the membrane. 'T'he object was to test
the validity of the calculations by obtaining as precise a comparison with experiment as possible. We found
that the membrane inertia made very little difference and we ignored it in our later calculations. However,
our data for the wave angle a, of the transmitted shock was sensitive to gas contamination, and to a lesser
extent so was the wave velocity 7y data of this shock. None of the other data displayed such sensitivity,
and was ascribed to the fact that ay, and {/; were measured for the ClI4 component which was significantly
affected by contamination (‘lable 1) whercas the other data, x, o, a4, and so on, were measured for the

CO4y component which was very little affected by the contamination.

Our calculations were everywhere in reasonable agreement with experiment when gas contamination
was laken into account, except for the a, data when «; > 60°. There was there a discrepancy which was
ascribed to the uncertainty of making accurate measurements of «; due to the increasingly large curvature
of the transmitted wave with increasing «;. This uncertainty applied to both the experimnental data and to

measurements made from the contour plots.

The computations resolved the structure of the bound pre-cursor refraction (BPR), and revealed the
presence of a fourth wave, which was an expansion and apparently centered on the refraction point. After
transition to a free pre-cursor system, BPR — FPR, the transmitted/side shock pair were found to be

smeared out in the region of the gas interface, called evancscent waves.

Sumilar effects were found in our calculairons for sironger refraction and were ascribed to the same
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causes. Our calculations displayed all the principle features found i experiment, such as local single Mach
reflections, twin Mach refleciions, free pre-cursor shocks, contact discontiniities, reflected expansion waves.
and so on. We conclude that the code does provide a satisfactory representation of the refraction phenomena

even though it 1gnores the effects of viscosity and three-dimensionality.
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Figure Captions
Figure 1. Refraction of a normal shock wave at head-on incidence,

Figure 2. Regular and irregular shock refraction system: for a slow-fast COo/Cll4 gas interface, n < 1.
{a) Regular refraction with reflected shock, RRR, |Z:] > |7, cv > a7 (b)) Regular refraction with reflected
wave a Mach line degeneracy, |7, = |Z;], oy > oo = ov,,0; () Regular refraction with a reflected expansion
wave, RRE, |7 < |Zi], a1 > ai; (d) Weak irregular refraction of the pre-cursor vou Neumann type,
FNR; (e) Intermediate irvegular refraction of the Lwin regular refleciion type, TRR; (f) Strong irregular
refraction of the twin Mach reflection type TMR. 7, incident shock; £, transmitted shock; r, reflected shock;
¢, reflected expansion wave, &, modified incident shock; 1 Macl shock; s, side shock; m gas interface; 1,
region of undisturbed CO4; 11, region of undisturbed CIi,: MW, Mach line; ed, contact discontinuity; O
origin where 7 first encountered gas interface.

Figure 3. Polar diagrams for a weak shock refraction sequence, & = 0.78, at a pure C04/CIl4 gas interface.
Moi, Moy, Moy, free stream Mach nunbers, upstream and relative to the 7, £, and » shocks; (cy, Ay, Aa)
solutions of the voi Nemann regular refraction theory; D, disturbed gas interface; Ay, intersection point of
tlie primary polars (1,t). For other symbols sec the caption to Figure 2. (a) Regular refraction with a reflected
expansion e, (RRE); |Z,| < |Z,]; o = 27%; (b) Regular refraction with w degenerate reflection, |7, = |Z;];
R =0, T =1, the condition for total encrgy transmission; o; = oy, = 32.0502° 1s the angle of intromission:
(c) Regular refraction with a reflected shoek », (RRR): | 7] > | Zi]; oy = 33.27° (d) Condition of RRR at the
shock critical angle o, & 34 4883°; (¢) Irregular refraction for ov; > ., called a bound pre-cursor refraction
BPR; (f) Irregular refraction after violation of refraction law, called a free pre-cursor refraction; s and ¢ are

evanescent waves; (g) Trregular refraction called a free pre-cursor von Neumann refraction (FNR).

Figure 4. Contour plots of log P for a weak shock refraction sequence & = 0.78, at a pure CO,/Cll,4
gas interface. The line running diagonally from npper left to lower right represents the initial, undisturbed
gas interface. It is drawn here for reference only and does not represent a contour line of the pressure.
(a) oy = 27°, RRE; (b) Total transmission at angle of intromission, «o; = ay,, = 32.0592°%; (¢) oy = 33.27°,
RRR,; (d) RRR = BPR, A; = o, at the shock critical angle a,. & 34.4885°; (¢) o; = 38°, BPR; () o, = 43°,
FPR; (g) ai =49°. V'PR; (h) o, = 65°, FPR;

Figure 5. (Plates 1 and 2) Sehilieren photograph and color graphics for a weak irregular shock refraction,
TNR, & = 0.78, o; = 60°, at. & CO»/CHy gas interface. Note that the schilicren photograph was taken during
the experiment so the experimental artifacts of the polymer membrane and gas contamination are present.
The color graphics are for the pure gas and without the membrane.

Figure 6. Comparison of angles measured from the nimerical contour plots with those measured from the
schlieren photographs from the experiments, for the COy/CI, gas interface, for a weak shock refraction
sequence, & = 0.78. o, experimental data for oy for regular refraction; (), experimental data for ay for
irregular refraction; A, experimental data for the reflected wave angle o, or, a, in regular refraction; 7,
experimental data for the reflected wave angle in irregnlar refraction; &, experimental data for the side shock
angle o,; O, experimental data for the trajectory path angle \; v, angle measured from the numerical plots
for the contaminated gas interface; +, angles measured from the numerical plots for the pnre gas interface;
—+, indication of cxperimental error. (Experimental data from Abd-El-Fattalh and Henderson 1978D.)

Figure 7. Comparison for the wave speed ration U /{7, measured from the numerical contour plots with
those measured from the schlicren photographs from the experiments, for the C:Qa/CI, gas interface for a
weak shock relraction sequence, & = .78, (Fxperimental data from Abd-Bl-Fattah and enderson 1978L.)
O, experimental dala; for other symbols see caption to Figure 6.

Figure 8. Comparison of the wave speed ration U, /l/; measured from the numerical contour plots with
those measured from the schlieren photographs from the experiment for the COy/CH, gas interface for a



strong shock sequence. & = 018, For other information see the caption to Figure 7.

Figure 9. Contour plots of log P> and log p for a strong shock refraction sequence, & = 0.18, at a pure
CO9/CH,4 gas interface.

Figure 10. (Plates 3 and 4} Schlicren photograph and color graphies plot for a strong shock irregular
refraction, TMR, £; = 0.18, o; = 66°, at. a CO4/CIl, gas interface. See also note to the caption of Figure 5.

Figure 11. Polar diagrams for a strong shock refraction sequence, & = 0.18 at a pure CO,/CHy gas
interface. (a) RRE, ¢, solulion at o; = 30°; (b) RRE, ¢; solution at o; = a,, = 35.95°. Note that ¢, is not
a continuation of either the A}, or Ay solutions, therefore the shock critical angle for A\ = A2 is irrelevant for
transition to irregular refraction in this case; (¢} RRE, at a; = 37°; note there arc now two RRE solutions,
¢1 and €2; the ¢; solution is obscrved in experiments; (d) RRE, at the relevant shock critical angle, ¢; = €a,
@y = oy = 46.294°: transition condition for RRE = T'MR; (e) Twin-Mach-reflection-refraction (TMR) at
a; = 66° > ;..

Figure 12. Comparison of angles measured from the numierical contour plots with those measured from the
schlieren photographs from the experimnents, for the COa/CHy gas interface, for a strong shock refraction

sequence, & = 0.18. For the definition of the symbols sce the caption to Figure 6.

Figure 13. (Plates 5 and 6) Schlieren photograph and color graphics for an intermmediate shock irregular
refraction, TRR, & = 0.53, o; = 50°, at a CO,/ClH, gas interface. See also the caption to Figure 5.
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