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ABSTRACT 

/I. L. Z I{ 

Two methods are presented for simulating the development of photolithographic profiles during the resist dissolution phase. 
These algorithms are the volume-of-fluid I algorithm. and the steady level-set algorithm. These methods are compared with the 
ray-trace, cell and level-set techniques employed in SAMPLE-3D2. The volume-of-fluid algorithm employs an Euclidean Grid 
with volume fractions. At each time step, the surface is reconstructed by computing an approximation of the tangent plane of 
the surface in each cell that contains a value between 0 and 1. The geometry constructed in this manner is used to determine 
flow velocity vectors and the flux across each edge. The material is then advanced by a split advection scheme3

, The steady 
Level Set algorithm is an extension of the Iterati ve Level Set algorithm2,4. The steady Level Set algorithm combines Fast Level 
Set concepts5 and a technique for finding zero residual solutions to the eikonal function6. The etch time for each cell is 
calculated in a time ordered manner. Use of heap sorting data structures allows the algorithm to execute extremely quickly. A 
similar technique was submitted by J. Sethian in 7,8. Comparisons of the methods have been performed and the results are shown. 
Keywords: photolithography, volume-of-fluid, level-set, steady level-set, fast level-set, three dimensions, etch, advection, 
eikonal. 

1 INTRODUCTION 

Most photolithography dissolution models describe the dissolution process as the advancement of the surface according 
to a spatially varying etch rate. The etch rate is determined by chemical densities that were assigned during the exposure and 
post-exposure bake manufacturing steps. Because these materials do not diffuse by a noticeable amount inside the photoresist 
during the dissolution step, the etch rate varies only as a function of position and not as a function of time9-14. This property 
causes photolithography dissolution to be a useful application for computer simulation from a theoretical perspective, since the 
mathematics is simple enough that good comparisons can be made between alternate methods of topography simulation to 
understand the different advantages and disadvantages of various algorithms. In addition t the mathematical simplicity of 
photolithographic dissolution simulation allows many interesting and innovative algorithms to be constructed and tested before 
being applied to more complex problems. 

Two new techniques are introduced in this manuscript for simulating photolithography dissolution. These techniques are 
the steady Level Set Method and the volume-of-fluid method1. Both techniques can be derived from the Hamilton-Jacobi 
equation7. Each method describes the advancement of a surface, in the direction of its surface normal, according to a specified 
etch rate that is defined as a function of position and is independent in time. The mathematics of the derivations of each method 
from the Hamilton-Jacobi equation will be shown, and implementation techniques will be described. The steady Level Set 
method solves the Hamilton-Jacobi equation as a transformation into the eikonal equation. It should be noted that J. Sethian has 
published a similar method that takes advantage of the same principles. Both his method and this one were invented 
independently8. The transformation of the Hamilton-Jacobi equation to the eikonal equation generates a function defined over 
the simulation space, whose contours represent the surface of the resist at different development times. By using a gradient 
operator that only computes the gradient with local values that are less than the value at the point that the gradient is being 
evaluated, and a scheduling algorithm, the equation can be solved for exactly with 0 residual. (I.e. the error is only dependent 
on the accuracy of the grid and the gradient operator. No diffusive smearing occurs as a result of advancement.) Because this 
method can use past etch times to accurately compute the gradient for any advancing flat surface, this method does not cause 
facets to occur. 

The volume-of-fluid method operates in a manner like a cell method. in that it assigns each cell in the grid a volume fraction 



of 0 to 1. The volume fraction represents the amount of volume in the cell that has been etched. Interface reconstruction routines 
are used at each time step to compute a surface nonnal for each cell that has a partial volume fraction. The volume fractions are 
then taken to represent the presence of an etching material, whose advancement under the volume-of-fluids equation represents 
the etching of the photoresist. As the fluid advances into the simulation region. this is taken to mean that the area that is dissolved 
by the dissolution solution is advancing into the area occupied by the photoresist.The etched material is then advanced 
according to the advection equation from fluid mechanics, with an additional source tenn that is dependent on curvature. The 
velocity of material advancement is detennined by solving the Riemann condition3 using the interpolated nonnals and 
multiplying the result by the etch rate, thereby giving the component of the surface velocity at each cell edge. The advancement 
is perfonned by a split advection scheme, thereby simplifying advancement to a number of one-dimensional cases. Because the 
methods used to reconstruct the interface in volume-of-fluids can exactly recapture any representation of a half plane from its 
associated volume fractions, this method also has no faceting. 

2. HAMILTON-JACOBI EOUATION 

2.1. A,;!,;!lication of the Hamilton-Jacobi Equation to surface motion 

The Hamilton-Jacobi equation is defined for some cp as: 

(1) 
~ + RII V'4>11 = 0 

where R is the etch rate. For the photolithographic case, R is only a function of position and is not dependent on time. To 
describe motion of surfaces using this equation, the function cp must be a monotonic function with 3 additional conditions. First 
cp must acquire the value 0 on the surface, i.e. the 0 contour of cp represents the surface of the photoresist. Second, ~ must be 
positively valued and monotonically increase along paths leading into the photoresist. Finally, cp in the dissolved region must 
be negatively valued and monotonically decrease along paths that lead away from the resist surface. 

When equation (1) is evolved in time, the 0 contour moves in the direction of positive cp at the rate R. This motion may be 
more accurately demonstrated through the I-dimensional version of equation (1): 

dCP +R dCP = 0 at ax (2) 

Assume that the equation cp(x) has the fonn: 

<j>(x) = ax + b (3) 

then the intercept of the x-axis (i.e. the 0 point) is at: 

-b 
x = (4) 

a 
Given R(x) = r where r is a constant, equation (2) evaluates to: 

dCP dcp 
at = -rax (5) 

or: 

acp 
(6) dt = -ra 

giving: 

cp (x~ t) = a (x - rt) + b (7) 



This demonstrates that the 0 point advances at a speed r for any choice of a. In two and three dimensions, the advancement 
occurs in the direction of the surface normal at the local etch rate. Therefore, in any small region about the surface, the 
advancement can be defined as: 

d4> D4> 
y + R (x, y, z) ----:;:- = 0 
at Dn 

(8) 

where 11 is the surface normal, but since the surface normal is the gradient of the equation, the equation can be rewritten as: 

a4> at + R (x, y, z)" v 4>11 = 0 (9) 

2.2. Boundary conditions 

The most natural boundary condition for the Hamilton-Jacobi equation as applied to photolithography and other 
topography problems is the reflective boundary condition. For this condition, the plane where the boundary occurs is considered 
to be a "mirror" that reflects the values inside the simulation region. This is a useful condition, since it represents both a region 
of unetchable material, or the plane of symmetry that represents the boundary between the topographical evolution under 
consideration and another surface undergoing the same evolution in a symmetric manner. 

The boundary condition on the part of the simulation region that represents the initial surface is handled in a different 
manner. To properly advance the zero contour of the level set. the initial surface is set to 4> = -t where t is the elapsed 
simulation time. This allows the conditions on the monotonicity of 4> to be preserved. 

3. STEADY LEVEL-SETS 

3.1. Mathematical Deri vation 

A great deal of freedom exists in picking appropriate 4> to employ in equation (1) for values off the surface of the 
photoresist. Often, 4> is chosen to be equivalent to the signed distance function, where 4> represents the distance along the 
shortest path from the point to the surface. Another possible choice for 4> is to set 4> such that: 

d<p 
- = -1 (10) at 

This causes equation (1) to be rewritten as: 

R (x, y, z) II V 4>11 = 1 (11) 

or, assuming that R (x, y, z) is not equal to 0 at any point (a reasonable assumption for photolithography): 

IIVeIll1 = R (/y, z) (12) 

This is the eikonal equation from geometrical optics. Two important results have occurred due to this transformation. First, the 
time evolution aspect of the equation has been removed. This is relevant, since the removal of time dependence from the 
equations negates the need to pursue solutions over all spatial elements for many time steps. The non-existence of time 
dependence suggests that no divided differencing in time is necessary to find a solution, therefore the possibility that a very 
efficient algorithm to find values of <p that satisfy (12) probably exists. Second, the fact that <p and t are related by (10) means 
that a solution to (12) generates the location of the surface at different times as contours of <p. (Assume that a solution to (12) 
exists such that the initial surface location has the boundary condition <p = O. and the other conditions on <p expressed in 
section 2.1 are satisfied. The resulting <p will also satisfy equation (10). Therefore after evolution of (1) from t = 0 to t = c, 
the 0 contour of <p will be identical to the points that were described by the c contour of the initial 4». Therefore any technique 
that can solve (12) efficiently will also solve (1) for non-zero non-time varying R (x, y, z) . 



3 2. Implementation 

To solve the problem numericaJly, it is necessary to find solutions to the discretized fonn of (12): 

1 
IIVCPlli'k=-R (13) 

,j, .. k 
l,j, 

To find solutions to (13) rapidly, a special discretization of the gradient operator that was described in [5] is employed. This 
operator was also used to rapidly compute eikonal functions. This operator is: 

IIV cp11i,J,k = 

(14) 

where: 

iflus = cj>, 1 "k-CP'-k 
• ( r+ ,j, I,). 0) (15) 

x mIn Ax ' 

Dminus cj>"k-CP· l'k (l'l' 1- .j. 0) ( 16) = max Ax ' x 

d lus = 
cp, 0 Ik-CP, Ok 

. ( l,j+ , l,j. 0) (17) 
y mIn Ay , 

Dminus 
cp .. k G>.. 1 k 

= max ( l,j, I,) -, 0) (18) 
y Ay , 

Jj1lus k I-G>· 'k 
= min ( + r.), 0) (19) z Az ' 

Dminus <P- . k <1>i,}, k-l 
,0) = max ( I,j, (20) z Az 

This operator has two properties that will be taken advantage of. First, the computation of II V G>" i . k is only dependent values 
of <1> in neighboring cells that are strictly less than cP 0 • k' Second, given advance knowledge of ttilvaJues of cP in neighboring 
cells that are known to be less than cpo . k' the val~~' of <p. , k necessary to satisfy equations (13-20) can be computed by 

. r,), l,j, 
solvmg: 

(21) 
since foreknowledge of the neighboring vaJues of <1> that are less than <Pi 0 k aJlows the max and min operators to be evaluated. 
Equation (21) therefore reduces to either a quadratic or linear equatib-H with G> 0 0 k as an unknown. If this equation is a 
quadratic, then only the largest root will satisfy the max and min operators, theref~;l the solution is unique. Because solutions 
to <1> are found which satisfy equation (13) to nearly the limit imposed by roundoff error, it can be seen that this method is 
extremely accurate. It is also dear that this method is extremely fast, since the set-up and evaluation of the quadratic equation 
is a computationally undemanding operation. 

In the previous paragraph. it was remarked that equation (13) can be solved using equation (21) provided that the values of 
all smaller neighboring values cP are known for each cell. This can be perfonned by evaluating <p in each cell in ascending order 



through the use of a scheduling algorithm. The cells are divided into 3 groups. First, the frozen cells that have computed values 
of <I> permanently assigned. The second group of cells is the group of cens with preliminary values of <1>, these cells are also 
those cells that are adjacent to a frozen cell. The preliminary values of <I> are generated through the use of equation (21) and the 
assumption that Finally there are the untouched cells that have no value of ~ assigned. None of the untouched cells can be 
adjacent to a frozen celL In addition, a heap data structure is maintained with entries for all the preliminary cells sorted by the 
preliminary values of ~. 

The algorithm is initialized by setting all of the cells along the top boundary of the simulation region, which represents the 
top of the photoresist, to the value Q> = 0 and placing each of these cells in the frozen list. All cells which neighbor the frozen 
cells are placed in the preliminary list. The preliminary values of Q> are generated by assuming that only cells in the frozen list 
have values of <p that are strictly less than the values of in the cells in the preliminary list. The preliminary values are inserted 
into the heap, and all other cells in the simulation region are placed in the list of untouched cells. 

Execution of the algorithm proceeds by removing the lowest valued cell in the preliminary list and placing it in the frozen 
list, and assigning the pre1iminary value to be the true <I> value of that cell. The preliminary cells that neighbor it have their 
preliminary values recomputed via equation (21) using the recently transferred cell as a cell of lesser value. Neighboring 
untouched cells are placed in the preliminary list. The algorithm now repeats by removing the next lowest cell from the heap. 
Termination of the algorithm occurs when preliminary list is empty. 

4. VOLUME OF FLUID 

4.1. Mathematical Derivation 

The volume-of-f1uid method is based on a mathematical transformation of equation (1). The function <I> is replaced by a 
function f. f is defined as having the value 1 when <I> is positive and the value 0 when <I> is negative. This allows equation (1) 
to be rewritten as: 

we now define: 

giving: 

Transformation via vector identities yields: 

af 
- + R . II V ill at 

~ Vf 
n = IIVfll 

o 

af ~ t7 
- +nR. v f = 0 at 

af t7 ..l> tv ~ at + v· (jRn) = • (Rn) 

(25) 

(26) 

(27) 

(28) 

Equation (28) is an advection equation of a material f according to a velocity field given by Rn. The value f can be represents 
the ratio of the volume of the cell occupied by the material to the total volume of the cell. Methods of sol ving this problem given 
Rn have been employed in a wide variety of problems. Therefore, the challenge is to accurately determine Rn. Since R is 
given as input and is a simple scalar~ the real question is solving for the surface normal n. 

4.2. Implementation 

Advection methods require velocities on the cell faces. To determine these velocities it is necessary to determine the normal 
component to the face of the surface normal on these cell faces. This is performed be first approximating the surface normal 
inside each cell by employing interface reconstruction techniques. Once this has been performed, it is possible to find the value 
of the normal at each cell face by solving the Riemann problem using Godunov techniques. The advection routine used is an 



X-Y-Z, Z-Y-X split advection scheme. In this method. the X component velocities are solved fOT, and the volume fractions 
transported only across the cell faces that are perpendicular to the X direction. This is known as an X-sweep. For each sweep, 
the interface and velocities are completely recalculated. The X-Y-Z, Z-Y-X split advection method performs an X-sweep, 
followed by a V-sweep, followed by a Z-sweep on odd time steps, and reverses the order for even time steps. 

4.2.1. Interface reconstruction 

To determine the normal to the surface resident in each cell, the interface is calculated using Pilliod's fast interface 
calculation scheme. This is performed by employing a 5x5x5 cube of cells with the cell under consideration at the center. A 
5xs5x5 cube of cells is necessary since there are cases where a 3x3x3 cube generates ambiguous results. The center of mass of 
the fluid is first located in the 5x5x5 cube. This center of mass is then used to rotate the cube so that the center of mass sits as 
low as possible in the cube. This is the rotation in which the normal of the surface will be found to point into the first octant. 
Once this is performed, the central column and four neighboring columns have their volumes summed. There are now four 
possible ways to determine the orientation of the plane, since there are two ways to take divided differences off the central 
column in each coordinate direction. The divided differences of the column volumes are used to determine the surface normal, 
and an interface for each normal is generated. The interface that generates the least error is the one selected. This method can 
regenerate the volumes that represent a flat surface exactly. 

4.2.2. The Riemann problem 

The Riemann problem is solved by employing Godunov techniques to s01ve for the jump condition suggested by 
Hamaguchi. The Hamaguchi technique requires that a characteristic equation be solved that is written in a form requiring 
conservation of slope. More specifically, if given a discontinuity in the surface normal at a cell edge, the surface normal that 
persists at the cell edge when the surface is advanced is the true normal at that edge. The velocity is then given as the component 
of the normal perpendicular to the cell edge times the etch rate in the center of the cell. The surface normal at the edge is 
computed as follows, assuming a unit etch rate and that the face between two cells is perpendicular to the x direction The normal 
components on either side of the cell face are labeled nL and nR• where the left hand cell is in the direction oflower x: 

Table 1: Riemann Problem 

Condition Velocity 

~ >Oand nR >0 
..:. 
nL 

n L < 0 and n R < 0 
.... 
nR 

nL <0 < nR 0 

nL > 0 and nR < 0 and nL <-nR 
.... 
nR 

nL > 0 and nR < 0 and nL>-nR 
...... 

nL 

4.2.3. Flux calculation and volume fraction uPdate 

Once the velocities are calculated, the flux of the material across the faces must be calculated. This is performed by finding 
the volume of the intersection of the interpolated surface with the rectangular prism that extends into the cell a distance it X'~ t. 
Once all the fluxes of material are computed across the faces (in only one coordinate direction at a time), the updated values are 
calculated by the formula: 

.r: + 1 
i,), k 

ilt 
fi,}, k + ilx (flux; - f1uxi + 1) 

t ...... .... 
1- -:\ «nR) "+1 . k- (nR) . . k) LlX l ,), I,), 

(29) 



The numerator of the expression solves the advection part of equation (28) while the denominator solves the right hand side. 

5.COMPARISON 

The steady level-set algorithm has been compared against the Develop, Crater and Advect programs from the SAMPLE-
3D suite of tools. The example on which the comparison was performed is from Section 7.3. Table 1 of the thesis of J. Helmsen. 
This example is a nearly radially symmetric contact cut with standing waves. Each program was compared on two criteria. First, 
the accuracy of the methods was compared by examining the time at which the surface of the photoresist encountered the 
substrate, otherwise known as the "break time". This value is compared against an exact value which was computed using 
analytic methods. The second criteria is the amount of CPU time on a Sun Sparcstation 10 to execute 13 simulated seconds of 
development. 

Table 2: Real Break Time: 12.79 

Method i Grid Break Time 

~ Advect I 81x81x51 10.13 . 1 

Advect 81x81xl01 10.90 1\ I\AI\ 4080 'V.'Ur c'V 

Advect 81x81x201 11.49 +0.020 1£,,)~(\ 

Advect Iter. 81x81x51 12.52 +O.I\A(\ 

Advect Iter. 81x81xl01 12.54 +0.020 7830 

Advect Iter. 81x81x201 12.70 +0.010 30866 

Crater 80x80x50 12.045 +0.033 367 

Crater 80x80xl00 12.542 +0.017 791 

Crater SOxSOx200 12.549 +0.008 2174 

Develop 21x21 12.S27 +0.097 202 

Develop 31x31 12.S9 +0.065 587 

Develop 41x41 12.865 i\ i\A () 1344 

steady 81xSlx51 12.53 ..... TJA 42 ... 
steady 81x81xlOI 12.55 ... T I A 72 

steady 81x81x201 12.70 ... T I 134 .. 

The variation column represents the size of the time step. Break TIme values are given for the beginning of the time step 
when the break through occurred. It is clear from this example that the steady level-set method is both accurate and fast. It is 
also known to require a reasonable amount of memory. is easy to program and maintain, and has no difficulty with topological 
changes or faceting. It is sufficiently fast that a major bottleneck in the steady level-set method is the time that the computer 
requires to load the rate fiJe from the hard drive and write the computed etch times. Only approximately half of the CPU seconds 
used above for the steady level-set method were for actual etching, the rest were for bookkeeping functions. J. Sethian reports 
similar results8. 



The 3D volume-of-fluid method cannot be employed in the comparison. because at the time of this writing, full 
functionality has not been achieved. Full functionality has been achieved, however, in two dimensions. It has been noted that 
the present implementation of the three-dimensional volume-of-fluid executes at a rate of approximately 1000 border cells per 
minute. To do the above example, therefore would require a time of about 10 CPU hours. Because diffusive error accumulates 
as well, it is expected to be somewhat less accurate than the steady level-set method. Two items, however, must be noted. The 
slowness of interface calculation in volume-of-fluid is a problem which is expected to be extremely tractable, since the existing 
interface calculation method is a first past implementation and was not created with efficiency in mind. Second, volume-of-fluid 
techniques in fluid mechanics typically come into their own when more complicated physics exists, such as simulating the 
transport of dissolved photoresist through the developer. It is expected that more complicated topography problems than the 
photoresist problem will be more appropriate for volume-of-fluid, such as problems with simultaneous deposition and etching, 
where the eikonal transformation that leads to the steady level-set method is wholly inappropriate. 

6. CONCLUSIONS 

Two new methods have been introduced for simulation of photoresist dissolution. The first, the steady level-set method has 
shown excellent performance in every category when applied to this problem, and has demonstrated that it can have significant 
advantages over other photolithography dissolution methods. The steady level-set method, however, is optimized for 
photolithography dissolution and it is unclear that it's concepts can be applied to other physical models. The second method is 
the volume-of-fluid technique, which, while being slower when applied to photolithography dissolution, is intended to be a 
more general method. The interface calculation routine also has significant room for improvement in terms of CPU cycles 
consumed. Volume-of-fluid is expected to have greater performance when applied to other topography problems, such as 
simultaneous deposition and etching, and problems involving non-convex behavior, such as RIE etching and ion-milling. 
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