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a b s t r a c t 

We describe the implementation of a second-order accurate Volume-of-Fluid interface tracking algorithm 

in the open source finite element code ASPECT that is designed to model convection and other processes 

in the Earth’s mantle. This involves the solution of the incompressible Stokes equations coupled to 

an advection diffusion equation for the temperature, a Boussinesq approximation that governs the 

dependence of the density on the temperature, and an advection equation for a marker indicating 

two initial (constant) density states, that are passively advected in the underlying flow field. The 

Volume-of-Fluid method in ASPECT is fully parallelized and fully integrated with ASPECT’s adaptive 

mesh refinement algorithm. We present the results of several interface tracking benchmarks in order to 

demonstrate the accuracy of the method, as well as the results of several benchmarks commonly used in 

the computational mantle convection community. Finally, we present the results of computations with 

and without adaptive mesh refinement of a model problem involving thermochemical convection in a 

computationally stratified fluid designed to provide insight into how thermal plumes, that eventually 

reach the Earth’s surface as ocean island basalts, originate at structures near the core-mantle boundary 

known as Large Low Shear wave Velocity Provinces or “LL SVPs”. LL SVPs are structures in parts of the 

lowermost portion of the Earth’s mantle, characterized by slow shear wave velocities and higher density 

than the surrounding mantle, which were discovered by seismic tomography of the deep Earth. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Over more than the past four decades there have been many

umerical methods developed to study convection and other

rocesses in the Earth’s mantle. In particular, there have been

 sequence of codes developed over this period of time that

re now freely available to any individual who wishes to study

antle dynamics. They include HC [25,26,71] , ConMan [38] ,

itCom S [48,75,85] , Citcom CU [51,84] and ASPECT [29,41] .

hese codes, as well as others, can be downloaded from the

omputational Infrastructure for Geodynamics (CIG) at U.C. Davis. 1 

There are a large number of problems associated with the

arth’s mantle that contain one or more interfaces in some form

r another. Although there have been some very specialized com-

utational models of interfaces in the mantle, for example, the
∗ Corresponding author. 

E-mail address: egpuckett@ucdavis.edu (E.G. Puckett). 
1 CIG is an NSF funded, community driven organization that advances Earth sci- 

nce by developing and disseminating software for geophysics and related fields. 
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ynamics of bubbles and plumes [45–47] , it is only recently that

esearchers have begun to implement interface tracking algorithms

n codes designed to model convection and other processes in

he entirety of the Earth’s mantle; e.g., [66] . However, to our

nowledge, the Volume-of-Fluid (VOF) method has not yet been

mplemented in a code designed to model convection in the

arth’s mantle or, more generally, used by researchers to model

eodynamic flows. 

In this article we describe the implementation of a second-

rder accurate VOF interface tracking algorithm in the open source

nite element code ASPECT, which is an acronym for “Advanced

olver for Problems in Earths ConvecTion” [29,41] . ASPECT is a

arallel, extensible finite element code designed to model thermal

onvection and other processes in the Earth’s mantle in two

nd three dimensions. It is built on the deal.II Finite Element Li-

rary [2,6] , which includes adaptive mesh refinement (AMR) [10] ,

nd has been shown to scale to thousands of processors [22] . AS-

ECT has been extended to model other processes that occur in the

antle, such as modeling grain size evolution in the mantle [17] ,

elt generation and migration [18] , as well as other problems.

https://doi.org/10.1016/j.compfluid.2019.05.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2019.05.015&domain=pdf
mailto:egpuckett@ucdavis.edu
https://doi.org/10.1016/j.compfluid.2019.05.015
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Table 1 

A list of symbols used in this paper. 

Symbol Quantity Units Symbol Quantity Units 

u Velocity m/s C Composition –

p Dynamic pressure Pa D Compositional diffusivity m 

2 /s 

T Temperature K α Coefficient of thermal expansion 1/K 

T 0 Temperature at the top K d Vertical height of fluid layer m 

T 1 Temperature at the bottom K h e Characteristic size of cell e m 

�T Temperature difference K Pr Prandtl number μ
ρ κ

μ Viscosity Pa · s Le Lewis number κ
D 

κ Thermal diffusivity m 

2 /s Ra Rayleigh number ρ0 gα �T d 3 

μκ

ρ Density kg · m 

−3 B Buoyancy ratio �ρ
ρ0 α �T 

ρ0 Reference density kg · m 

−3 Pe e local Péclet number on cell e h e ‖ u ‖ ∞ 
κ

�ρ Density difference kg · m 

−3 
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There is currently a very active community of researchers ex-

tending ASPECT to new problem areas and improving existing

algorithms. Our VOF algorithm is fully parallelized and is designed

to work efficiently with ASPECT’s AMR algorithm. The User Manual

for the most recent stable release of ASPECT can be found here [5] .

Recent studies utilizing seismic imaging have revealed large

regions with anomalous seismic properties in the lower mantle.

In particular, there are two dome-like regions beneath Africa and

the Pacific Ocean with low shear-wave velocities that extend some

10 0 0 km above the core-mantle boundary and have horizontal

dimensions of several thousand kilometers [15,21] . Most interpre-

tations propose that these heterogeneities are compositional in

nature, differing from the surrounding mantle, an interpretation

that would be consistent with chemical geodynamic models. Based

on geological and geochemical studies it has been argued that

these so-called ‘Large Low Shear wave Velocity Provinces’ (LLSVPs)

have persisted for billions of years [9] . In this article we use the

VOF method that we have recently implemented in ASPECT to

compute solutions to a model problem designed to understand the

dynamics of plumes that form on the LLSVPs, entrain some of the

material in the LLSVP that differs from the surrounding mantle,

and brings it to the Earth’s surface. The model problem consists

of two horizontal layers, equal in height, in a rectangle, with a

density difference of �ρ = ρ − ρ0 ≥ 0 , where ρ0 is the density

of the upper layer. The initial condition for the temperature is

a perturbation from the well-known static temperature field,

connecting the temperature boundary conditions T 0 at the top of

the rectangle and T 1 at the bottom of the rectangle [78] . We study

of a range of density differences �ρ that we characterize by the

non-dimensional buoyancy number B, which is the ratio of �ρ to

ρ0 α �T , where �T = T 1 − T 0 , and α is the volumetric coefficient

of thermal expansion. The temperature perturbation initially drives

the convection and, depending on the value of B, determines the

dynamics and structure of the resulting flow field ( Table 1 ). 

In Section 2 we begin by describing the equations that govern

thermochemical convection in the mantle and the modification to

these equations that we use to model density stratification in such

flows. Then, in Section 3 we describe the numerical methodology,

including the underlying Finite Element Method (FEM) and the

coupling of our VOF method to this FEM. In Section 4 we begin in

Section 4.2 by presenting two standard interface tracking bench-

marks, each in a (different) stationary velocity field, in order to

demonstrate that our VOF method attains its design rate of second

order accuracy on simple flows. In Section 4.3 we then present a

sequence of computations of a time-dependent problem; namely,

a falling circular region of greater density than the surrounding

fluid and measure the convergence rate of the VOF method in this

time-dependent flow field with an interface across which there

is a jump in density. In Section 4.4 we present the results of two
enchmarks commonly used by researchers in the computational

antle convection community. Finally in Section 4.5 we present

omputational results of a model problem first proposed in [64] ,

hich is designed to provide insight into how thermal plumes,

hat are thought to eventually reach the Earth’s surface as ocean

sland basalts, originate at structures on the core-mantle boundary

nown as LLSVPs. We discuss these latter computational results in

ection 5 and, in Section 6 , we present our conclusions. 

. Thermochemical convection with density stratification 

In this section we present in detail the equations associated

ith the model problem, which we briefly described above. After

iving an overview of the numerical methodology we use to

pproximate solutions of these equations in Section 3 and, in

articular, an in depth description of how we implementation of

he VOF algorithm in ASPECT in Section 3.4 we present a sequence

f computations of the model problem using the VOF methodology

n Section 4.5 . 

.1. The dimensional form of the equations 

In order to study the efficacy of our implementation of a VOF

lgorithm in ASPECT to model processes that occur in the Earth’s

antle, we compute a problem that emphasizes the effect of

 compositional density difference on thermal convection. We

onsider a two-dimensional flow in a horizontal fluid layer with a

hickness or height d . Our problem domain � has width 3 d and

eight d . At a given reference temperature T 0 the region d /2 < y ≤ d

as a compositional density of ρ0 and the region 0 ≤ y < d /2 has a

ompositional density of ρ0 + �ρ where �ρ � ρ0 . 

We also introduce a composition variable C ( x, y, t ) defined by 

 = 

ρ − ρ0 

�ρ
. (1)

The composition C is the concentration of the dense fluid as a

unction of space and time. The initial condition for C is 

(x, y, t = 0) = 

{
1 for 0 ≤ y ≤ d/ 2 , 

0 for d/ 2 < y ≤ d . 
(2)

The upper boundary, at y = d, has temperature T 0 and the

ower boundary at y = 0 has temperature T 1 . The fluid is assumed

o have a constant viscosity μ, which is large. The Prandtl number

s assumed to be very large, 

r = 

μ

ρ0 κ
� 1 , (3)

here κ is the thermal diffusivity, so that inertial effects can be

eglected. The fluids in the high density and low density layers are
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Fig. 1. The geometry of the (nondimensional) computational domain � shown with 

the temperature boundary conditions on the four side walls. The velocity boundary 

conditions on the side walls are u · n = 0 (no flow) and ∂ u /∂ τ = 0 (free slip) where 

n and τ are the unit normal and tangential vectors to the boundary respectively. 
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mmiscible; i.e., they cannot mix by diffusion. Similarly, the Lewis

umber is also assumed to be large, 

e = 

κ

D 

� 1 , (4) 

here D is the diffusion coefficient for the compositional variable

 . Thus, the discontinuous boundary between the high density and

ow density fluids is preserved indefinitely. 

The problem we have posed requires the solution of the stan-

ard equations for thermal convection with the addition of an

quation for the compositional field C that tracks the density field.

he governing equations are described in detail in [69,78] . 

We make the assumption that the Boussinesq approximation 

(x, y, t) = ρ0 (1 − α (T − T 0 )) + �ρ C . (5)

olds; namely, that density differences associated with convection

0 α (T 1 − T 0 ) and �ρ are small compared with the reference den-

ity ρ0 . 

Conservation of mass requires 

∂u 

∂x 
+ 

∂v 
∂y 

= 0 (6) 

here x and y denote the horizontal and vertical spatial coordi-

ates, oriented as shown in Fig. 1 , and u and v denote the hori-

ontal and vertical velocity components, respectively. We use the

tokes equations 

 = 

−∂P 

∂x 
+ μ

(
∂ 2 u 

∂x 2 
+ 

∂ 2 u 

∂y 2 

)
, (7) 

 = 

−∂P 

∂y 
+ μ

(
∂ 2 v 
∂x 2 

+ 

∂ 2 v 
∂y 2 

)
+ ρ0 α(T − T 0 ) g − �ρ C g , (8) 

here α is the coefficient of thermal expansion, g is the grav-

tational acceleration in the negative (downward) y direction as

hown in Fig. 1 , and 

 = p + ρ0 g y 

here p is the dynamic pressure and ρ0 g y is the isostatic pres-

ure. Conservation of energy requires 

∂T 

∂t 
+ u 

∂T 

∂x 
+ v 

∂T 

∂y 
= κ

(
∂ 2 T 

∂x 2 
+ 

∂ 2 T 

∂y 2 

)
, (9)

here κ is the thermal diffusivity. 

When there is no compositional diffusion, i.e., D = 0 , the com-

osition variable C satisfies the advection equation 

∂C + u 

∂C + v 
∂C = 0 . (10)
∂t ∂x ∂y w
.2. The nondimensional form of the equations 

We introduce the nondimensional variables 

 

′ = 

x 

d 
, y ′ = 

y 

d 
, t ′ = 

κ

d 2 
t, 

 

′ = 

d 

κ
u, v ′ = 

d 

κ
v , ρ ′ = 

ρ

ρ0 

, 

 

′ = 

T − T 0 
T 1 − T 0 

, P ′ = 

d 2 P 

μκ
, 

(11) 

nd the two nondimensional parameters, the Rayleigh number Ra

nd the buoyancy ratio B 

a = 

ρ0 g α (T 1 − T 0 ) d 
3 

μκ
, (12) 

 = 

�ρ

ρ0 α (T 1 − T 0 ) 
. (13) 

here g = 9 . 80 6 65 m/s 2 is the acceleration due to gravity. 

Substitution of Eqs. (11) –(13) into Eqs. (6) –(10) gives 

∂u 

′ 
∂x ′ + 

∂v ′ 
∂y ′ = 0 , (14) 

 = 

−∂P ′ 
∂x ′ + 

∂ 2 u 

′ 
∂x ′ 2 

+ 

∂ 2 u 

′ 
∂y ′ 2 

, (15) 

 = 

−∂P ′ 
∂y ′ + 

∂ 2 v ′ 
∂x ′ 2 

+ 

∂ 2 v ′ 
∂y ′ 2 

+ Ra T ′ − Ra B C , (16) 

∂T ′ 
∂t ′ + u 

′ ∂T ′ 
∂x ′ + v ′ ∂T ′ 

∂y ′ = 

∂ 2 T ′ 
∂x ′ 2 

+ 

∂ 2 T ′ 
∂y ′ 2 

, (17) 

∂C 

∂t ′ + u 

′ ∂C 

∂x ′ + v ′ ∂C 

∂y ′ = 0 . (18) 

This is the superposition of a Rayleigh-Taylor problem and a

ayleigh–Bénard problem [11,78] . In the isothermal limit, T 0 = T 1 ,

t is the classic Rayleigh-Taylor problem. If C is positive, a light fluid

s above the heavy fluid and in a downward gravity field the fluid

ayer is stable. If �ρ is negative, a heavy fluid lies over a light fluid

nd the layer is unstable. Flows will transfer the heavy fluid to the

ower half and the light fluid to the upper half and the density

ayer will overturn. If �ρ = 0 and hence, B = 0 , this is the classic

ayleigh–Bénard problem for thermal convection. The governing

arameter is the Rayleigh number Ra. If 0 < Ra < Ra c , the critical

ayleigh number, no flow will occur; e.g., see [78] . If Ra c < Ra < Ra t ,

here Ra t is the Rayleigh number beyond which thermal turbu-

ence develops, steady cellular flow will occur. If Ra > Ra t , the flow

ecomes unsteady and thermally turbulent. 

If Ra > Ra c and B is small, the boundary between the density

ifferences will not block the flow driven by thermal convection.

inematic mixing will occur and the composition will homogenize

o that the density is constant. Whole layer convection will occur.

f B is large, the density difference boundary will block the flow

riven by thermal convection. The compositional boundary will be

isplaced vertically but will remain intact. Layered convection will

ccur with the compositional boundary, the boundary between the

onvecting layers. In this work the Rayleigh number Ra defined in

q. (12) is based on the domain thickness d and this is the case for

hich we will show numerical computations. 
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3. The numerical methodology 

In the following discussion of the numerical methodology, we

will only consider the dimensionless Eqs. (14) –(18) and drop the

primes associated with the dimensionless variables. The vector

form of the dimensionless equations on the two dimensional rect-

angular domain � = [0 , 3] × [0 , 1] shown in Fig. 1 are given by 

−∇ 

2 u + ∇P = (−Ra T + Ra B C) g (19)

∇ · u = 0 (20)

∂T 

∂t 
+ u · ∇T = ∇ 

2 T (21)

∂C 

∂t 
+ u · ∇C = 0 , (22)

where u = (u, v ) is the velocity and g = (0 , −1) is the unit vector

pointing downward. 

Note that the composition Eq. (22) is equivalent to 

DC 

Dt 
= 

∂C 

∂t 
+ u 

∂C 

∂x 
+ v 

∂C 

∂y 
= 0 , (23)

where 

D 

Dt 
≡ ∂ 

∂t 
+ u 

∂ 

∂x 
+ v 

∂ 

∂y 
(24)

is the material derivative . Eq. (23) implies that the composition C is

constant on particle paths in the flow [13] . Furthermore, since by

(20) the velocity u is divergence free, the composition Eq. (22) can

be written in conservation form 

∂C 

∂t 
+ ∇ · ( u C ) = 0 , (25)

implying that the composition C is a conserved quantity - it is nei-

ther created nor destroyed as it is advected in the flow field. 

We assume no-flow and free-slip velocity boundary conditions

on all boundaries, 

u · n = 0 (no-flow) , (26)

∂u 

∂ τ
= 0 (free slip) , (27)

where n and τ are the unit normal and tangential vectors to the

boundary respectively. We impose Dirichlet boundary conditions

for the temperature on the top and bottom of the computational

domain and Neumann boundary conditions (no heat flux) on the

sides of the computational domain, 

T (x, 0 , t) = 1 , (28)

T (x, 1 , t) = 0 , (29)

∂ x T (0 , y, t) = 0 , (30)

∂ x T (0 , y, t) = 0 . (31)

The geometry of the computational domain together with the

boundary conditions on the temperature are shown in Fig. 1 . In

this work we only consider no-flow boundary conditions (26) .

Therefore, we do not need to specify boundary conditions on the

compositional field C , since there can be no flow of the composi-

tion through the boundaries. 
.1. Decoupling of the nonlinear system 

The incompressible Stokes equations can be considered as a

onstraint on the temperature and composition at any given time

eading to a nonlinear system of equations. To solve this nonlinear

ystem, we apply the Implicit Pressure Explicit Saturation (IM-

ES) approach, originally developed for computing solutions of

quations for modeling problems in porous media flow [35,70] ,

o decouple the incompressible Stokes Eqs. (14) –(16) from the

emperature and compositional Eqs. (17) –(18) . This leads to three

iscrete systems of linear equations, the Stokes equations, the

emperature equation, and the composition equation, thereby

llowing each equation to be solved easily and efficiently. 

.2. Discretization of the Stokes equations 

Let t k denote the discretized time at the k th time step with a

ime step size of �t k = t k − t k −1 , k = 0 , 1 , . . . Given the tempera-

ure T k and composition C k at time t = t k , we first solve for our

pproximation to the Stokes Eqs. (14) –(16) to obtain the velocity

 

k = (u k , v k ) and pressure P k 

∇ 

2 u 

k + ∇P k = 

(
−Ra T k + Ra B C k 

)
g , (32)

 · u 

k = 0 . (33)

For the incompressible Stokes Eqs. (32) and (33) , we use the

tandard mixed FEM method with a Taylor–Hood element [20] for

he spatial approximation. We refer the interested reader to

41] for a more detailed discussion of the spatial discretization and

he choice of Stokes preconditioners and solvers. 

.3. The discretization of the temperature equation 

In mantle convection the thermal diffusivity κ is very small

ompared to the magnitude of the velocity. Thus, if we let ‖ u ‖ ∞ , e 

enote the maximum magnitude of the velocity on cell e and h e 
enote the characteristic size of this cell, in some computations,

ven for very fine meshes (i.e., small h e ), the local Péclet number

n cell e , 

e e 
def = 

h e ‖ u ‖ ∞ ,e 

κ
, (34)

s usually in the range 10 2 to 10 4 . For such high local Péclet num-

er problems, standard finite element discretizations introduce

purious oscillations in the vicinity of steep gradients of advected

uantities, even in the presence of some (relatively small) diffu-

ion [20] . Therefore, some form of stabilization must be added to

he discrete formulation of the advection-diffusion equation for

he temperature. 

In all of the computations presented here we use the algorithm

urrently implemented in ASPECT to approximate the spatial and

emporal terms in the temperature Eq. (21) only . This algorithm

s based on the so-called ‘entropy viscosity’ method, which is

escribed in detail in [24,41] . The entropy-viscosity stabilization

ethod adds additional (i.e., artificial) ‘viscosity’ where the local

éclet number is large and the solution is not smooth. In other

ords, we approximate solutions of the modified temperature

quation 

∂T 

∂t 
+ u · ∇T = ∇ · ( κ + νh (T ) ) ∇T , (35)

ith an artificial diffusion term νh ( T ) added to the equation. Here

he entropy viscosity function νh ( T ) is a non-negative constant

ithin each cell, which can vary from cell to cell. 
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Note that we have written Eq. (35) in the dimensional form

9) in order to make our discussion of the entropy-viscosity sta-

ilization technique consistent with the discussion in [41] . 2 Also

ote that in all of the computational results shown in this article

he thermal diffusivity κ is constant, but that in general this need

ot be the case. Hence, we have written the advection diffusion

quation for the temperature in (35) in a more general form. 

Conceptually, in regions where the temperature field T is

mooth νh should be small, and in regions with significant vari-

bility νh should be of a size that is roughly the same as the diffu-

ive flux in a first-order upwind method. This nonlinear definition

f the artificial viscosity ensures that the dissipation is as small

s possible, while still large enough to prevent oscillations in the

emperature field. In particular, the global approximation property

f the method will not be affected, as would be the case with the

ddition of a simple linear artificial diffusion with a constant value

h . 

The details concerning how νh is determined on cell e , which is

enoted νh | e , are as follows. As in [24] and [41] we let 

h | e = min 

(
νmax 

h | e , νE 
h | e 

)
(36) 

In Eq. (36) the maximum viscosity νmax 
h 

| e is defined by 

max 
h | e = β h e ‖ u ‖ ∞ ,e , (37)

here the parameter β = 0 . 078 is the (current) default value in

SPECT. This parameter controls the maximum dissipation of the

ntropy viscosity, which is the part that only scales with the cell

iameter h e and the maximum velocity ‖ u ‖ ∞ , e in cell e , but does

ot depend on the solution field itself or its residual. 

The entropy viscosity νE 
h 
| e in Eq. (36) is defined by 

E 
h | e = c R 

h 

2 
e ‖ r E (T ) ‖ ∞ ,e 

‖ E(T ) − E avg ‖ ∞ , �
, (38) 

here c R = 0 . 33 is the (current) default value in ASPECT. This pa-

ameter controls the part of the entropy viscosity that depends on

he solution field itself and its residual in addition to the cell diam-

ter and the maximum velocity in the cell. See the ASPECT man-

al [5] for additional information. 

Now, if we let 

 m 

= 

1 

2 

( T min + T max ) , 

hen the function E ( T ) in (38) is defined by 

(T ) = 

1 

2 

(T − T m 

) 2 . 

The entropy viscosity in (38) is scaled globally by the term 

 E(T ) − E avg ‖ ∞ , � , 

hich is the maximum deviation of E ( T ) from its spatial average, 

 avg = 

1 

| �| 
∫ 
�

E(T ) . 

Also, the residual r E ( T ) in (38) is defined by 

 E (T ) = 

∂ E(T ) 

∂t 
+ (T − T m 

) 
(
u · ∇ T − κ ∇ 

2 T 
)
. 

This residual is zero if applied to the true solution T of the tem-

erature Eq. (9) , leading to no artificial diffusion. However, it is

on-zero when applied to the numerical approximation of the true

olution T and will be large in areas where the numerical approxi-

ation is poor, such as close to strong gradients. 
2 There are only three differences in our notation from that in [41] . First, 

n [41] the authors use the letter ‘ K ’ to denote a specific cell rather than the letter 

 e ’ as we do here. In addition, we use c R and β instead of αE and αmax , respectively, 

hich are used in [41] but are now also denoted c R and β , in the ASPECT man- 

al [5] , which is the definitive source for information concerning these parameters. w
There is a detailed explanation of how the default values of

he parameters β and c R were chosen in the section entitled

Numerical experiments to determine optimal parameters” of the

eference documentation for deal.II [40] . The exact value of these

arameters may have been modified since this documentation

as written. However, the manner in which they were chosen is

imilar to the procedure discussed in the above reference. As of

his writing the values β = 0 . 078 and c R = 0 . 33 are the default

alues in ASPECT. More importantly, these are the values we

sed in all of the computations of the model problem defined

n Section 2 that are shown in Section 4.5 . These are the only

omputations in this article that involve approximating solutions

f the temperature Eq. (35) . 

In addition, we have studied the effect the entropy-viscosity

lgorithm has on the computed solution as a function of the local

éclet number in a problem that involves a rising square, which

s about one-fifth the size of a larger two dimensional square in

hich the smaller square is hotter than the surrounding fluid [27] .

n this work we demonstrated that on a 100 × 100 grid the local

éclet number had to be Pe e > 10 2 in order for the approximate

olution of the temperature equation without entropy viscosity to

ause oscillations in the flow field, while the approximate solution

f the temperature equation with entropy viscosity did not allow

hese oscillations. Furthermore, for computations with Pe e ≤ 10 2 

he approximate solution of the temperature equation with and

ithout entropy viscosity were visually identical, suggesting that

he entropy viscosity was zero or near zero in most if not all of

he cells. In summary, we confirmed that the additional diffusion

dded by the entropy-viscosity algorithm for approximating solu-

ions of the temperature equation is sufficiently small that it does

ot adversely affect our computed solutions until the local Péclet

umber was Pe e > 10 2 . 

We compared these computational results with results obtained

ith the Bound Preserving Discontinuous Galerkin (DGBP) advec-

ion method [28] mentioned earlier. See Section 3.5 below for a

rief description of the DGBP method and Section 4.3 for a com-

arison of DGBP with VOF on the “sinking ball” test problem. 

In all of our computations in Section 4.5 of the model problem

efined in Section 2 above, the local Péclet number is Pe e < 10 for

he entire time of the computation. Furthermore, in computations

f this same model problem (but with different initial conditions)

ith all four of the advection methods that are implemented in

SPECT, including the VOF method, at the end time the temper-

ture fields are visually indistinguishable for the VOF, DGBP, and

article methods. In this work the computational results for the

ompositional field C were also nearly visually identical, modulo

mall numerical artifacts associated with the DGBP and Particle

ethods, for all values of B that did not yield unstable results [64] .

See Section 3.5 below for a brief description of the other three

dvection methods in ASPECT.) 

Now let 

(ψ, φ) � = 

∫ 
�

φ(x, y ) ψ(x, y ) dx dy (39) 

e the inner product of two scalar functions φ and ψ on the do-

ain � and let �D = { (x, y ) : y = 0 } denote the bottom boundary

f �. Multiplying Eq. (35) by the test function ψ( x, y ) and integrat-

ng over � we obtain the weak form of the spatial discretization

f (35) 

∂T 

∂t 
, ψ 

)
�

+ (u · ∇ T , ψ) � = −(∇ T , ∇ ψ) �

− ( ( κ + νh (T ) ) ∇ T , ∇ ψ ) � + ( 
∂T 

∂n 

, ψ ) �D 
(40) 

here ν ( T ) is the entropy viscosity function defined above. 
h 
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3 In Eq. (42) and in much of what follows, depending on the context, we will use 

the symbol f, f i,j , or f e , for the fraction of the fluid or composition denoted by C = 1 

that occupies the cell �i,j or cell �e . 
4 Throughout this section and beyond we will use the terms “volume” and “vol- 

ume fraction” of C 1 , etc., although it is to be understood that in two dimensions the 

quantity in question is an area. 
We use the fully implicit adaptive Backward Differentiation For-

mula of order 2 (BDF2) [29,80] to discretize the weak form of the

temperature equation with entropy-viscosity in time. Thus, the full

discretization of the temperature equation is 

1 

�t k +1 

(
2�t k +1 + �t k 

�t k +1 + �t k 
T k +1 − �t k +1 + �t k 

�t k 
T k 

+ 

(�t k +1 ) 2 

�t k (�t k +1 + �t k ) 
T k −1 , ψ 

)
�

= −
(
u 

k · ∇T k +1 , ψ 

)
�

−
(∇ T k +1 , ∇ ψ 

)
�

−
((

κ + νk 
h (T ) 

)∇ T k +1 , ∇ ψ 

)
�

+ 

(
∂T k +1 

∂n 

, ψ 

)
�D 

. (41)

3.4. The Volume-of-Fluid interface tracking method 

The Volume-of-Fluid (VOF) method is an interface tracking

method in which, at each time step, there are two distinct steps.

In the first step the interface between two fluids or compositions

is explicitly reconstructed with an interface reconstruction method

in every cell that contains a portion of the interface. For ex-

ample, in our computations of the model problem described in

Section 2 above, the compositional variable C will have a value

of C = 1 in cells completely occupied by the fluid with density

ρ = ρ0 + �ρ and a value of C = 0 in cells completely occupied by

the fluid with density ρ = ρ0 . Thus, cells in which 0 < C < 1 con-

tain a portion of the interface. Given the explicit (but approximate)

reconstructed interface in each cell with 0 < C < 1 at the current

time step one then uses this information to advance the interface

in time with an advection method . In this sense the VOF method

approximates the compositional interface on a subgrid scale. 

3.4.1. Background 

There are a wide variety of possible VOF interface recon-

struction and advection algorithms; e.g., see [57,65,68] and the

references therein. The VOF method was first developed at the

U.S. National Labs in the 1970s [53] and have continued to be used

and developed by researchers at the National Labs [34,52,76,77] as

well as around the world. 

VOF methods can and have been used effectively to model a

wide variety of moving interface problems, including interfaces in

compressible flow with shock waves [32] , interfaces with shock

waves in materials in the limit of no strength effects [49,50] ,

jetting in meteorite impacts [63] , nonconservative interface motion

such as photolithography [30,31] , the transition from deflagration

to detonation [56] and more than two materials; i.e., more than

one interface in a cell [1,33] . 

An advantage that VOF methods have over other interface

tracking methods is that they can readily (or naturally) be de-

signed to approximate solutions of a conservation equation such

as Eq. (25) for the composition C . Thus, materials that should be

conserved as they move with the flow are ( theoretically ) conserved.

However, in practice, i.e., when the algorithm is implemented on

a computer, some VOF advection algorithms - including the one

we use here - will only conserve the volume of the composition

or fluid that is being tracked up to some numerical error that

typically depends on the grid size h . This will depend on the

design of the VOF advection algorithm. There has been consider-

able research into how to design VOF advection algorithms that

conserve volume to machine zero; e.g., see [4,68,81] . (In this

article, machine zero, also known as machine precision, will be

denoted by εmach and we will assume εmach = O (10 −16 ) ). 

In Section 4.3 below we examine the degree to which the

VOF advection algorithm we use in this work conserves volume

and compare the results with a Bound Preserving Discontinuous
alerkin (DGBP) advection method [28] , which is also imple-

ented in ASPECT. See Section 3.5 below for a brief description of

he DGBP method and Section 4.3 for the computational results. 

.4.2. Overview 

In this article we use a two-dimensional VOF algorithm to dis-

retize the conservation Eq. (25) , which - when describing the VOF

ethod - we will usually write in the following form, 3 

∂ f 

∂t 
+ ∇ · F ( f ) = 0 . (42)

ere u = (u, v ) is the velocity field, f is the volume fraction of one

f the compositional fields, say C = 1 , the field with density ρ0 +
ρ, which we will refer to as ‘Composition 1’, or C 1 for short, and

 ( f ) = ( F ( f ) , G ( f ) ) = ( u f, v f ) = u f , (43)

s the volume fraction flux associated with C 1 . 
4 Since ∇ · u = 0 one

an rewrite Eq. (42) as a pure advection equation for f , 

∂ f 

∂t 
+ u 

∂ f 

∂x 
+ v 

∂ f 

∂y 
= 0 . (44)

his equation is equivalent to Eq. (23) . 
From a mathematical point of view the variable f ( x, y, t ) in the

onservation Eq. (42) with fluxes (43) may be regarded as the char-
cteristic function (sometimes denoted χ ( x, y, t )) associated with
he composition C 1 . In other words, 

f (x, y ) = 

{
f (x, y ) = 1 if (x, y ) is occupied by Composition 1 , 

f (x, y ) = 0 if (x, y ) is not occupied by Composition 1 .

(45)

This implies 1 − f (x, y ) is the characteristic function associated

ith C 2 , the composition with density ρ = ρ0 . 

Our use of the variable f to represent the quantity that is

dvected in a VOF method is historical. In particular, in the pre-

entation of our VOF method the variable C and f can be used

nterchangeably. However, in Section 3.5 below we will describe

ther methods in ASPECT for advecting the quantity C and in

ection 4.3 we will use one of these other advection methods

o compute a test problem in order to compare the results of an

ntirely different advection method with the results we obtain

ith the VOF method presented here. In these sections, as well as

n Section 4.5 where we show the results of our computations of

he model problem presented in Section 2 , our use of the variable

 is typical of the notation researchers use in the computational

eodynamics literature. 

In our VOF implementation in ASPECT we use the ‘Efficient

east Squares VOF Interface Reconstruction Algorithm’ (ELVIRA),

hich is described in detail in [57] and is based on the ideas

n [58] and [54] . The ELVIRA interface reconstruction algorithm re-

onstructs lines on a uniform grid with square cells exactly ; i.e., to

achine zero. We explain this in more detail in Section 3.4.3 and

ig. 4 , and also demonstrate it with a computational example

n Section 4.2.1 below. Since the ELVIRA algorithm reconstructs

ines in square cells exactly it is natural to assume that the algo-

ithm is second-order accurate on a uniform grid with identical

quare cells. This has been proven to be true [59,61] . We use

 second-order accurate dimensionally split advection method,

hich is described in Section 2.2.1 of [62] , to update the values of

he volume fractions in time. For simplicity of exposition we will
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Fig. 2. In our implementation of the VOF interface reconstruction algorithm the 

true interface, which in this example is g(x ) = tanh (x ) , is approximated as a line 

segment ˜ g e (x ) = m e x + b e in each cell �e that has a volume fraction f e with 

0 < f e < 1. The approximate interface in �e is depicted as the solid red line seg- 

ment in the center cell �e . In this example, as with all VOF methods, the vol- 

ume h 2 f true 
e beneath the true interface in �e is exactly equal to the volume h 2 f e 

beneath the approximate interface ˜ g in �e ; i.e., f true 
e = f e . Note that, for conve- 

nience, we have used the notation ( x i , y j ) to denote the center of the cell �e , 

[ x i −1 / 2 , x i +1 / 2 ] × [ y i −1 / 2 , y i +1 / 2 ] to denote the cell �e , etc. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 3. The volume V k 
i +1 / 2 , j, 1 

= δx ̃  g (δx ) where δx = u k 
i + i/ 2 , j 

�t k of C 1 in the quadri- 

lateral outlined in green on three sides and by a portion of the solid red line on 

top is the flux of C 1 that will cross the right-hand edge of �e during the time step 

from time t k to t k +1 . Here �t k = t k +1 − t k and we have dropped the superscript k 

from u k 
i + i/ 2 , j 

and �t k in the diagram for clarity. The solid red line in �e is the re- 

constructed interface ˜ g (x ) that approximates the true interface g(x ) = tanh (x ) in 

�e at time t k as shown in Fig. 2 . (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
ssume the finite element grid consists entirely of square cells �e ,

f side h , indexed by the variable e , and aligned parallel to the x

nd y axes. This is the case for all of the computations we present

n this article. 

However, we emphasize that VOF algorithms have been devel-

ped and applied to problems on a wide variety of unstructured

rids in three dimensions [39] , including tetrahedral [82] , hex-

hedral [83] and general convex grids [44] , as well as having

een developed and applied to great many applications on non-

ectangular grids in two dimensions. However, the interface

econstruction algorithm and advection algorithm on irregular

rids in two and three dimensions must be modified or com-

letely redesigned for such grids. This has been the focus of much

esearch over the past 20 or 30 years. For example, one approach

s to minimize the difference, say in the least-squares sense (i.e.,

he discrete two norm), between the given volume fractions and

he volume fractions due to a linear interface in two dimensions

r planar interface in three dimensions in a neighborhood of the

ell of interest with a minimization algorithm such as Brent’s

ethod; e.g., see [55,57,58,65] for examples and comments on this

pproach and [81] for alternate approaches. 

The discretization of Eq. (42) proceeds as follows. Let �e denote

n arbitrary cell in the computational domain � and let f k e denote

he discretized volume fraction in �e at time t k . The variable f k e is

 scalar that satisfies 0 ≤ f k e ≤ 1 such that 

f k e ≈ 1 

h 

2 

∫ 
�e 

f (x, y, t k ) dx dy . (46)

Thus, the discretized volume, V k e , of C 1 in �e at time t k is 

 

k 
e = 

∫ 
�e 

f k e d x d y = h 

2 f k e . (47)

Note that for an incompressible velocity field u = (u, v ) we have

 · u = 0 and hence, for the true solution the volume of ‘parcels’ or

egions of C 1 are constant as they evolve in time. 

Cells that contain a portion of the interface (i.e., 0 < f k e < 1 ) will

ave a value of 

= f k e ( ρ0 + �ρ) + 

(
1 − f k e 

)
ρ0 . (48) 

In other words a weighted average of the two compositions C 1 
nd C 2 with weights f k e and (1 − f k e ) . In most of our work with the

OF method to track the interface between two compositions we

se the weighted average in Eq. (48) , with C 1 replacing (ρ0 + �ρ)

nd C 2 replacing ρ0 . This is common practice among researchers

ho use VOF methods; e.g., see Eq. (2) of [81] . 

In this article we restrict ourselves to modeling the interface

etween two compositions. However, there is currently a great

eal of research into modeling two or more interfaces in one cell

ith a VOF method; e.g., see [36] and the references there. 

In its simplest form our implementation of the VOF algorithm

n ASPECT proceeds as follows. Given the values f k e at time t k and

he velocity field at time t k we do the following to obtain the vol-

me fractions f k +1 
e at time t k +1 . 

For convenience and clarity of exposition, in the remainder of

his section we will usually use the index notation ( i, j ), as shown

n Figs. 2–4 . Thus, we have nine cells with centers (x i ′ , y j ′ ) for i ′ =
 − 1 , i, i + 1 and j ′ = j − 1 , j, j + 1 with edges x = x 

i ± 1 
2 

= x i ± h 
2 

nd x = x 
i ± 3 

2 
= x i ± 3 h 

2 and similarly for y as shown in Fig. 2 . In the

LVIRA interface reconstruction algorithm we use the information

n the 3 × 3 block of cells �i ′ j ′ immediately adjacent to the cell

e ≡�ij in which we wish to reconstruct the interface. Note that

e use both �e and �ij to denote the center cell of the 3 × 3 block

f cells. The reason for this is that in peer reviewed and technical

i.e., the manual, etc.) literature that describes ASPECT the notation

e is often used to denote cells, while the notation �ij is com-
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Fig. 4. In this example the true interface is the line l(x ) = m x + b Note that that the 

volumes V i −1 and V i under the line in the first two columns i − 1 and i are exactly 

equal to the volumes due to the column sums ˜ V i −1 = h 2 S i −1 and ˜ V i = h 2 S i in the 

first and second columns of the 3 × 3 block of cells B ij centered on the center cell 

�e (= �i j ) . In this case the slope ˜ m = S i − S i −1 is exactly equal to the slope m of the 

interface as shown in (56) . It is always the case that if the true interface is a line, 

then one of the four standard rotations of B ij by a multiple of 90 degrees about its 

center will orient the block so at least one of the divided differences of the column 

sums in (59) or (60) is exact and hence, one of the linear approximations to the 

interface in the center cell �e defined in (62) will always equal the interface in 

that cell, exactly , ˜ g i j (x ) = m i j x + b i j = m x + b = l(x ) . In other words, the piecewise 

linear VOF approximation to l ( x ) will always reconstruct the linear interface exactly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

algorithms; e.g., see [57,62,65] . 
monly used in VOF literature, especially when coupled to a finite

volume or finite difference method. 

1. The interface reconstruction step: Given a cell �ij that

contains a portion of the interface, so 0 < f k e < 1 where f k e 

is the volume fraction in �e at time t k , we use the volume

fractions f k 
e ′ in the 3 × 3 block of cells �e ′ centered on the

cell �e to reconstruct the interface in �e . The reconstructed

interface will be a piecewise linear approximation to the

true interface as shown in Fig. 2 that preserves the given

volume h 2 f k e of C 1 in �e . We give a brief description of how

we determine the linear approximation ˜ g e (x ) = m e x + b e ,

to the true interface in cells �e for which 0 < f k e < 1 in

Section 3.4.3 below. 

2. Computation of the fluxes: In the computations presented

in this article we use a second-order accurate dimensionally

split (also known as “operator split”) advection algorithm

in order to advance the interface in time. However, for

clarity and simplicity of exposition, in this section we will

only describe the simplest possible version of a dimension-

ally split advection algorithm for updating the location of

the interface. In Section 3.4.5 below we will describe an

important modification to the dimensionally split advection

algorithm described here. We use this modified dimensionally

split advection algorithm described in Section 3.4.5 in all of

the computations shown in this article. 

Given the reconstructed interface ˜ g e = ˜ g i j (x ) in 

�e ≡ �i j = [ x i −1 / 2 , x i +1 / 2 ] × [ y j−1 / 2 , y i +1 / 2 ] 

as shown in Fig. 3 and the velocity u k 
i ±1 / 2 , j 

normal to the

right and left edges of �ij at time t k , we wish to determine
the volumes V k 
i ±1 / 2 , j 

of C 1 that cross the right and left edges

of �e in the time interval [ t k , t k +1 ] . These volumes are de-

termined geometrically . Since we are using a dimensionally

split advection method, the total volume of both composi-

tions C 1 and C 2 that crosses each cell edge will be that of

a rectangle. This is illustrated in Fig. 3 for the right edge of

the cell �e where we have assumed that u k 
i ±1 / 2 , j 

> 0 . The

rectangle is shown in green and pink and the volume of

the rectangle is u i + i/ 2 , j �t h . We then determine the volume

V k 
i +1 / 2 , j 

of C 1 that crosses the right-hand edge of �ij in the

time interval [ t k , t k +1 ] is outlined in green on three sides

and by a portion of the solid red line on top in Fig. 3 . 

3. The volume fraction update: Now we describe the unmod-

ified dimensionally split VOF advection method, which we

are referring to as here as the “Volume Fraction Update”.

One may also think of this as a “Volume Update”; i.e., the

update V k 
e, 1 

→ V k +1 
e, 1 

of the volume of C 1 in cell e , which is

how we have chosen to present the algorithm here. This

is the simplest possible dimensionally split VOF advection

method. However, a simple modification, which we will de-

scribe in Section 3.4.5 below, greatly improves the volume

conservation of the method. The update proceeds in two

steps. 

Step I Given the volume V k 
i j, 1 

= h 2 f k 
i j 

of C 1 in �ij at time t k 

and the volumes V k 
i ±1 / 2 , j, 1 

of C 1 that cross the left and

right-hand edges, respectively, of �ij in the time interval

[ t k , t k +1 ] we use the following equation to determine an

intermediate volume ˜ V k 
i j, 1 

of C 1 in �ij for the first step of

the two step dimensionally split algorithm, 

˜ V 

k 
i j, 1 = V 

k 
i j, 1 + V 

k 
i −1 / 2 , j, 1 − V 

k 
i +1 / 2 , j, 1 . (49)

We do this in every cell �ij before advancing to Step

II below. In Fig. 3 we illustrate how we determine the

volume V k 
i +1 / 2 , j, 1 

that crosses the right edge of �ij . 

Step II Now, given the nine intermediate volume fractions 

˜ f k i ′ j ′ = 

1 

h 

2 
˜ V 

k 
i ′ j ′ , 1 

in �ij and the 3 × 3 block of cells �i ′ j ′ surrounding �ij ,

together with all of the intermediate volume fractions

in the 3 × 3 block of cells surrounding each of the cells

�i ′ j ′ , we reconstruct an intermediate interface ˆ g i ′ j ′ (x ) in

each cell �i ′ j ′ . We then use this intermediate interface to

geometrically determine the volumes ˜ V k 
i, j±1 / 2 , 1 

of C 1 that

cross the top and bottom edges of �ij in the time interval

[ t k , t k +1 ] in the same manner as illustrated in Fig. 3 , but

this time in the y -direction. Now the volume V k +1 
i j, 1 

of C 1 

in �ij at the new time t k +1 is, 

V 

k +1 
i j, 1 

= 

˜ V 

k 
i j, 1 + 

˜ V 

k 
i, j−1 / 2 , 1 − ˜ V 

k 
i, j+1 / 2 , 1 (50)

and the new volume fraction in �ij is 

f k +1 
i j 

= 

1 

h 

2 
V 

k +1 
i j, 1 

. (51)

This is the simplest of all dimensionally split volume

fraction advection algorithms. It can be made to be

second-order accurate by alternating the direction of the

first volume update at each time step, a procedure that

is known a ‘Strang splitting” in the numerical methods

community [72] . There are also unsplit VOF advection
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.4.3. The ELVIRA interface reconstruction algorithm 

Here we describe the ELVIRA interface reconstruction algo-

ithm [57] in more detail. In this example we present the simplest

ossible case; namely, when the true interface is a line that passes

hrough the center cell of the 3 × 3 block B ij of cells �i ′ j ′ centered

n the cell �ij as shown in Fig. 4 . The following description is

ntended to be easy to understand. However, the reader should

e aware that there are many VOF interface reconstruction algo-

ithms in both two [76] and three dimensions [77] and on every

onceivable grid; e.g., [39] 

In the ELVIRA algorithm the approximate interface will be

 piecewise linear approximation ˜ g i j (x ) = m i j x + b i j to the true

nterface in �ij as depicted in Fig. 2 . Furthermore the approximate

nterface is subject to the constraint that the volume fraction in

he center cell due to the true interface g ( x ) and the approximate

nterface ˜ g i j are equal; i.e., f true 
i j 

= f i j . 

Consider the example shown in Fig. 4 . In this example the true

nterface is a line l(x ) = m x + b. Assume we are given the exact

olume fractions f i ′ j ′ associated with the line l ( x ), which is the true

nterface, in each cell �i ′ j ′ of the 3 × 3 block. Then in this example

he first two column sums 

 i −1 
def = 

j+1 ∑ 

j ′ = j−1 

f i −1 , j ′ and S i 
def = 

j+1 ∑ 

j ′ = j−1 

f i, j ′ (52) 

re exact in the sense that 

 i = 

1 

h 

2 

∫ x i +1 / 2 

x i −1 / 2 

(
l(x ) − y j−3 / 2 

)
dx (53) 

nd similarly for S i −1 , but not for S i +1 , since the line leaves the

 × 3 block B ij of cells �i ′ j ′ centered on the cell �ij through the

op edge, thereby rendering the sum S i +1 inexact in the sense that

 i +1 � = 

1 

h 

2 

∫ x i +3 / 2 

x i +1 / 2 

(
l(x ) − y j−3 / 2 

)
. (54) 

Thus, using (53) we find the difference in the column sums S i 
nd S i −1 is 

 

2 ( S i − S i −1 ) = 

∫ x i +1 / 2 

x i −1 / 2 

( m x − b ) − y j−3 / 2 dx 

−
∫ x i −1 / 2 

x i −3 / 2 

( m x − b ) − y j−3 / 2 dx 

= 

∫ x i +1 / 2 

x i −1 / 2 

m x dx −
∫ x i −1 / 2 

x i −3 / 2 

m x dx 

= m 

x 2 

2 

∣∣∣x i +1 / 2 

x i −1 / 2 

− m 

x 2 

2 

∣∣∣x i −1 / 2 

x i −3 / 2 

= 

m 

2 

[ (
x i +1 / 2 

)2 −
(
x i −3 / 2 

)2 
] 

− m 

2 

[ (
x i +1 / 2 

)2 −
(
x i −1 / 2 

)2 
] 

= 

m 

2 
h 
(
x i +1 / 2 − x i −3 / 2 

)
= m h 2 . (55) 

nd hence, 

 = S i − S i −1 . (56)

Thus, we have recovered the exact slope m of the true interface

 ( x ) in the center cell simply by differencing the correct pair of col-

mn sums of volume fractions. Note that this would not have been

rue if we had used S i +1 − S i instead, since the expression on the

HS of (54) is not identically equal to S i +1 . 

A little thought will show that the constraint 

f i j = f true 
i j (57) 

etermines b uniquely, thus determining the linear approximation

 i j (x ) = m x + b (58)
hich is exactly equal to the true interface l ( x ). In actual fact one

eeds to know whether the region containing the composition C 1 
s above, below, or to the left or right of C 2 . However, there are

 variety of algorithms for doing this; e.g., see [12,57,59–61] . This

lways works on a uniform grid of square cells with sides of side

 . 

However, there are a few caveats: There are three ways to dif-

erence the column sums, 

m 

x,l = ( S i − S i −1 ) 

 

x,c = 

( S i +1 − S i −1 ) 

2 

m 

x,r = ( S i +1 − S i ) (59) 

nd three ways to difference the row sums 

 

y 

l 
= 

(
R j − R j−1 

)
 

y 
c = 

(
R j+1 − R j−1 

)
2 

 

y 

l 
= 

(
R j+1 − R j 

)
(60) 

here the row sums are defined by 

 j−1 ≡
i +1 ∑ 

i ′ = i −1 

f i ′ , j−1 , R j ≡
i +1 ∑ 

i ′ = i −1 

f i ′ , j and R j+1 ≡
i +1 ∑ 

i ′ = i −1 

f i ′ , j+1 

(61) 

In order to determine the best linear approximation to the true

nterface we compare the volume fractions f x,l 
i ′ j ′ , f x,c 

i ′ j ′ , f x,r 
i ′ j ′ , . . . f 

y,r 

i ′ j ′ 
ue to each of the six lines 

g x l = m 

x 
l x + b x l g y 

l 
= m 

y 

l 
x + b y 

l 

g x c = m 

x 
c x + b x c g y c = m 

y 
c x + b y c 

 

y 
r = m 

x 
r x + b x r g y r = m 

y 
r x + b y r (62) 

e obtain from each of the six slopes in (59) and (60) in the 3 × 3

lock B ij centered on the cell of interest �ij and use the line that

inimizes the difference between the given volume fractions and

he volume fractions due to the lines in (62) . We now explain this

rocedure in a bit more detail. 

.4.4. Approximating an unknown interface from the volume fractions

Suppose g ( x ) is an unknown interface that passes through the

enter cell �ij of a 3 × 3 block of cells B ij containing nine square

ells �i ′ j ′ , each of side h , centered on �ij . Furthermore, assume

he only information we have are the nine exact volume fractions

f i ′ j ′ in the cells �i ′ j ′ due to g ( x ). For example, in Fig. 2 the ‘un-

nown’ interface is g(x ) = tanh (x ) , which is the blue curve, and

he volume fractions are nonzero only in cells that either con-

ain the curve or are below it. We want to find a line segment

˜  i j (x ) = m i j x + b i j that is a second-order accurate approximation to

 ( x ), in the following sense, 

ax 
∣∣g(x ) − ˜ g i j (x ) 

∣∣ ≤ ˜ C h 

2 for all x ∈ [ x i −1 / 2 , x i +1 / 2 ] , (63)

here ˜ C is a constant that is independent of h . 

First we define a way to measure the error E( ̃  m ) between the

olume fractions f i ′ j ′ we are given that are due to the unknown

nterface and the approximate volume fractions ˜ f i ′ j ′ due to a line

egment ˜ g (x ) = ˜ m x + ̃

 b that passes through the center cell �ij and

he 3 × 3 block B ij centered on �ij , 

( ̃  m ) = 

i +1 ∑ 

i ′ = i −1 

j+1 ∑ 

j ′ = j−1 

(
f i ′ j ′ − ˜ f i ′ j ′ 

)2 
. (64) 

Note that this is the square of the two norm on vector spaces

 

n from linear algebra, where in our case n = 9 , [73] . 
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Now take the volume fractions we are given, namely f i ′ j ′ , and

form all six of the slopes in (59) and (60) and the six candidate

lines in (62) from these slopes. Remember that the ‘ y intercept’

b for each of the lines in (62) is determined by the constraint

f true 
i j 

= f i j . Each of the six lines produces nine volume fractions in

the 3 × 3 block B ij . For example, given the slope m 

x,c defined in

(59) we obtain the line g x c = m 

x 
c x + b x c defined in (62) , which in

turn gives us nine volume fractions f x,c 
i ′ j ′ for i ′ = i − 1 , i, i + 1 and

j ′ = j − 1 , j, j + 1 . Now compute E(m 

x 
c ) and repeat this procedure

for each of the other lines in (62) with slopes computed as in

(59) and (60) . Finally, take the line from (62) that minimizes the

error defined in (64) ; i.e., pick the slope from (59) and (60) , call it

˜ m , that satisfies 

E( ̃  m ) = min 

{
E(m 

x 
l ) , E(m 

x 
c ) , . . . , E(m 

y 
r ) 

}
. (65)

The line 

˜ g = 

˜ m x + 

˜ b (66)

is the linear approximation to the true interface g ( x ) in �ij that

we use in the VOF algorithm in this article. In [59] and [61] it is

proven that this algorithm produces a second-order accurate ap-

proximation to the true interface in the sense of (63) provided that

h ≤ 2 

33 σmax 
(67)

where σmax denotes the maximum curvature of the true interface,

h is the grid size of a square grid, and the volume fractions due to

the true interface are exact. 5 

As mentioned in Section 3.4.2 above, our current implemen-

tation of the VOF advection method in ASPECT is a dimensionally

split advection method. However, as we emphasized in Item 3

of Section 3.4.2 there is an important modification we make to

the algorithm described there that is necessary in order to more

nearly satisfy the conservation of the (total) volumes of C 1 and

C 2 . We now describe this modification. (A different, yet equivalent

description is given in Section 2.2.1 of [62] , which the interested

reader may wish to consult for a description of this algorithm

from a slightly different point of view.) 

To begin, recall that the advection of the volume fraction func-

tion f is governed by Eq. (44) which, in order to improve the ease

of exposition, we rewrite here, 

∂ f 

∂t 
+ u · ∇ f = 0 . (68)

Using Eq. (20) ; i.e., the divergence free constraint on the veloc-

ity u = (u, v ) , 

∇ · u = 0 , (69)

we obtain a modified, but equivalent, form of (68) , 

Conservation ︷ ︸︸ ︷ 
∂ f + ∇ · (u f ) −

Correction ︷ ︸︸ ︷ 
f (∇ · u ) = 0 . (70)
∂t 

5 This result has only been proven for the stationary interface reconstruction 

problem. In other words, given a smooth (e.g., two times continuously differen- 

tiable) interface and the true volume fractions due to this interface on a square grid 

of side h , then the approximate interface is second-order accurate in the max norm; 

i.e., the bound in (63) holds. This bound is much stronger than a bound in the L 1 or 

L 2 norms that we use to examine convergence rates in Section 4 . The second author 

thinks it should be possible to prove that, given the assumptions just stated above 

on the initial data and assuming the interface stays smooth as it moves in some 

flow and that (67) holds at each time step, then numerical approximation will re- 

main second-order accurate in some norm; e.g., L 1 or L 2 . Although this is only a 

conjecture, we use it as a ‘rule of thumb’. It appears to work for the results shown 

in Section 4.3 below. 

 

w  

u  

c  

fl  

U  
It will be instructive to write this equation in the following

orm 

∂ f 

∂t 
+ ∇ · (u f ) = f 

∂u 

∂x 
+ f 

∂v 
∂y 

. (71)

Note that in Eq. (70) the first term is the conservation

q. (42) for f . The key point is that if (69) is satisfied exactly , then

he correction term in (70) will be zero and hence, the advection

quation in (68) for f is equivalent to the conservation equation for

 , which here we write in the following form, 

∂ f 

∂t 
+ 

∂(u f ) 

∂x 
+ 

∂(v f ) 
∂y 

= 0 . (72)

In the dimensionally split advection algorithm that we

escribed in Step II of the Volume Fraction Update in

ection 3.4.2 above we approximated solutions of following

wo step dimensionally split advection method, 

∂ f 

∂t 
+ 

∂(u f ) 

∂x 
= 0 , 

∂ f 

∂t 
+ 

∂(v f ) 
∂y 

= 0 . (73)

However, unless each component of 

 · u = u x + v y , 

quals zero separately (i.e., u x = 0 and v y = 0 ) numerical solutions

f the equations in (73) above will fail to be adequate approximate

olutions of the advection equation (68) for f . The reason for this

s that in passing from (68) to (70) and thence to (72) we assumed

hat the velocity u was divergence free (69) . 

In short, we need to approximate solutions of the dimensionally

plit version of the modified Eq. (71) , 

∂ f 

∂t 
+ 

∂(u f ) 

∂x 
= f 

∂u 

∂x 
, 

∂ f 

∂t 
+ 

∂(v f ) 
∂y 

= f 
∂v 
∂y 

. (74)

In the dimensionally split algorithm that we use in this article

e approximate solutions of (74) as follows, 

˜ f e = f k e − �t 
∂(u f ) 

∂x 
+ �t ˜ f e 

∂u 

∂x 
, 

f k +1 
e = 

˜ f e − �t 
∂(v ˜ f ) 

∂x 
+ �t ˜ f e 

∂v 
∂y 

. (75)

Note that we have written these equations in semi-discrete

orm; i.e., discretized in time but not in space. In (75) ˜ f e is the

ntermediate volume fraction of C 1 in �e and (v ˜ f ) is the inter-

ediate volume fraction flux in the y direction obtained from the

ntermediate interface ˆ g that has been reconstructed from the vol-

me fractions ˜ f e ′ surrounding �e as explained in Step II of 3 “The

olume Fraction Update”in Section 3.4.2 above. We have written

he equations in (75) in this semidiscrete form in order to empha-

ize that in the first equation 

˜ f e is treated implicitly while in the

econd equation 

˜ f e is treated explicitly. 

Our complete discretization of (75) is as follows, 

˜ f e V e = f k e V e − �t ( f R U R − f L U L ) + �t ˜ f e ( U R − U L ) , 

f k +1 
e V e = 

˜ f e V e − �t 
(

˜ f T U T − ˜ f B U B 

)
+ �t ˜ f e ( U T − U B ) , (76)

here e is an index that ranges over all cells �e , V e is the vol-

me of �e , r = L, R, B, T denotes the left, right, bottom, and top

ell edges, respectively, f r is the volume fraction of C 1 that will be

uxed across the r th edge as described in the caption to Fig. 5 , and

 r = 

∫ 
∂�e,r 

˜ u r · n r ds , (77)
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Fig. 5. A diagram of the mapping of the region (in purple) containing the compo- 

sitional field C 1 in the real cell �e to its associated unit cell ˜ �e . In this diagram 

we have assumed that the velocity field u = (u, 0) points in the x direction only so 

that the flux of C 1 across the right edge of ˜ �e is a rectangular region. This allows 

us to compute the total volume V F of C 1 and C 2 that is fluxed across the right edge 

of ˜ �e ; namely, the rectangle on the right edge of ˜ �e . We then map this rectangle 

to another unit cell ˜ �I in order to compute the volume fraction f r of the (mapped) 

rectangle that contains the composition C 1 . Since in this article, linear interfaces 

map to linear interfaces, we can use the unit normal n I and distance d I to calcu- 

late the volume fraction f r of C 1 in this rectangle. Note that, since this diagram has 

been chosen to correspond exactly to the one in Fig. 3 in which the interface and 

reconstructed interface both pass through the cell center, we have d ˜ e = 0 . However, 

in general, d ˜ e � = 0 . (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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here ˜ u r is a time centered approximation to the velocity u on the

 th edge, 

˜ 
 r = 

u 

k +1 + u 

k 

2 

. 

Again, note that in the dimensionally split algorithm in (76) the

ntermediate value ˜ f e in the first equation is determined via an

mplicit discretization, while ˜ f e is treated explicitly in the second

quation. 

There are a number of versions of VOF advection methods in

he peer reviewed VOF literature that are similar - or in at least

ne case - identical to our modified algorithm (76) . For example,

n a grid of square cells of side h our method is identical to the

ethod in Section 2.2.1. of [62] ; i.e., Eqs. (22) and (23) . Our al-

orithm is similar to the one presented in Section “4.2 Eulerian

cheme ” in [68] and attributed to the authors of [65] , except in

oth papers the first step of the algorithm is explicit while the sec-

nd step is implicit, which is the opposite of our algorithm in (76) .

e also note that - assuming we understand the authors notations

orrectly - the monodimensional Eulerian-implicit (EI) scheme in

q. (18) of [4] is identical to our first (implicit) step in (76) and

he first (implicit) step in Eq. (22) of [62] . 

Finally, since we are using Strang splitting, [72] we evaluate

76) once for each spatial dimension in the problem at each time

tep, alternating the order of the dimensions in the subsequent

ime step. 

.4.5. The implementation of the VOF method in ASPECT 

We now describe our implementation in ASPECT of the VOF

lgorithm described above on square, two-dimensional cells �e 

n physical space ( �e is often referred to as the ‘real’ cell). In a

OF method it is natural to use the method of characteristics to

alculate the flux of C 1 through each of the cell edges. This is

one by tracing backward in time along a linear approximation to

ach characteristic that crosses the cell edge in the time interval

 t k , t k +1 ] in order to identify the total volume V F of both compo-

itions C 1 and C 2 that will cross a given edge in the time interval

 t k , t k +1 ] . We then compute that portion of the volume associated

ith the composition C 1 that is being tracked; i.e., by computing

he volume of C 1 in the total volume V F . This procedure is de-

icted in Fig. 3 for a one-dimensional sweep in the x -direction,
n which case the linear approximation to the characteristics

hat cross the right edge of �e are horizontal lines of length

 i + i/ 2 , j �t that fill out the rectangle (shown in green and pink) of

olume V F = u i + i/ 2 , j �t h . See [14,43] for examples of computing

 second-order accurate flux in this manner in a finite volume

iscretization of (25) , rather than a VOF discretization of (25) or,

quivalently, (42) , as well as higher resolution versions of these

lgorithms. In our computation of the volume and volume fraction

ux we make use of several algorithms that we developed for the

nterface reconstruction step. We will describe these algorithms is

ore detail below. 

There are a number of approaches one can consider for obtain-

ng the velocities on the r th edge from the approximate FEM solu-

ion of the incompressible Stokes equations. Two such approaches

re: 

1. A point sample of the velocity normal to the r th edge ∂�e,r 

taken at some point on ∂�e,r , 

2. The velocity integrated along the r th edge ∂�e,r of �e , ∫ 
∂�e,r 

u · n r ds , (78) 

where n r denotes the (outward facing) unit normal to ∂�e,r 

and k = 1 , 2 , 3 , or 4 . 

For a finite volume method (1) and (2) are both reasonable ap-

roximations to the edge velocities. However, the latter method

78) is a closer analogue to the type of procedure one would typi- 

ally choose for a finite element method. 

We now describe our implementation of the computation of the

olume flux of C 1 into or out of a square cell �e of side h . (When

e employ AMR, h denotes the length of each side of the most

nely resolved cells in the FEM grid.) First note that all of the in-

ormation that describes interface; namely, its distance d e to the

enter of the cell and the unit normal n e to the interface, is stored

ith respect to the center of the unit cell ˜ �e as depicted in Fig. 5 .

n particular, the interface in the unit cell ˜ �e is given by 

 ˜ e · (x − x 

c 
˜ e ) = d ˜ e (79)

here x c 
˜ e 

is the center of ˜ �e , d ˜ e is the distance of the (mapped)

nterface from the center x c 
˜ e 

of ˜ �e , and n ˜ e is a unit vector that is

erpendicular to the reconstructed linear interface in 

˜ �e , with the

onvention that n ˜ e always points away from the region containing

 1 . The location of the interface is stored by recording n ˜ e and d ˜ e 

or each cell �e that contains a portion of the interface. For the

ase when the velocity field is perpendicular to a cell edge, say

�e,r , for some k = 1 , 2 , 3 , 4 , let ˜ n r be the outward facing unit

ormal vector to the r th edge ∂ ˜ �e,r of the unit cell ˜ �e , and, as

bove, let V F denote the total volume flux that will cross ∂�e,r ; i.e.,

he volume flux of C 1 plus the volume flux of C 2 . 

As shown in Fig. 5 , with only a few computationally inexpen-

ive transformations we can use the same algorithm we used to

ompute the volume fraction on a cell �e in the reconstruction

tep to compute the volume flux of C 1 across each of the edges of

e . If we map V F from 

˜ �e to another unit cell ˜ �I and assuming

he velocity is perpendicular to the r th cell edge ∂ ˜ �e,r of �e , we

nd that the interface within the unit cell ˜ �I is given by 

 I · (x − x 

c 
I ) = d I 

here x c 
I 

is the center of ˜ �I as shown in Fig. 5 . The values of n I 

nd d I in terms of n e , n k , and d e are given by 

 I = n ˜ e + 

(
V F 

V e 
− n ˜ e · n k 

)
n k , 

d I = d ˜ e −
(

1 

2 

+ 

V F 

2 V e 

)
(n ˜ e · n k ) . 
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where V e is the volume of �e (the upwind cell for this edge), and

n k is the outward pointing unit normal to the cell edge ∂ ˜ �e,r . 

Since we are computing on a uniform square grid, we have a

constant Jacobian and hence, the volumes on the unit cell and the

volumes in physical space are related by a constant multiple. For a

given interface, there is a simple formula to calculate the volume

of C 1 on the side opposite the unit normal n ; e.g., see [67] . In our

notation this formula is, 

f (n , d) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 

1 
2 

≤ d̄ 

1 − ( ̄d − 1 
2 ) 

2 

2 m (1 −m ) 
1 
2 

− m < d̄ < 

1 
2 

1 
2 

+ 

d̄ 
(1 −m ) 

m − 1 
2 

≤ d̄ ≤ 1 
2 

− m 

( ̄d + 1 2 ) 
2 

2 m (1 −m ) 
− 1 

2 
< d̄ < m − 1 

2 

0 d̄ ≤ − 1 
2 

(80)

where m = 1 − ‖ n ‖ ∞ 

‖ n ‖ 1 and the components of n are parallel to sides

of the unit cell ˜ �e , and d̄ = 

d 
‖ n ‖ 1 . We use (80) to compute the vol-

ume flux of C 1 across the right edge, which is f ( n I , d I ) V F . We use

an analogous procedure to compute the flux of C 1 across the other

three edges �e,r of �e . 

Now let V F,r and f r V F,r denote the total volume flux and the vol-

ume flux of C 1 across the r th edge �e,r of �e , respectively. We can

now use these quantities to write our modified dimensionally split

update f k e → f k +1 
e of the volume fraction of C 1 in �e in a slightly

different form than we did in Eq. (76) , 

˜ f e 

(
V e −

∑ 

r 

V F,r 

)
= f k e V e + 

∑ 

r 

f r V F,r 

f k +1 
e V e = 

˜ f e V e + 

∑ 

r 

f r V F,r + 

˜ f e 
∑ 

r 

V F,r . (81)

where r only runs over the cell faces on the unit cell that are

perpendicular to the direction of that particular sweep. Further-

more, as mentioned before, the order of the sweep directions are

alternated at each time step in order to achieve second-order ac-

curacy. Finally, note that the simplified version of these equations;

i.e., without the terms ˜ f e 
∑ 

r V F,r in each equation of (81) , are

essentially identical to the Eqs. (49) –(51) , although with a slightly

different notation. 

3.4.6. The model coupling procedure 

Having now described our implementation the VOF method in

ASPECT, it is necessary to establish how the computed fluid in-

terface is presented as a so-called compositional field C in ASPECT,

which will be used by the Finite Element methodology in cases

where the tracked fluid is an active part of the problem, such as

the density, or the viscosity, or both. For example, see [64] where

thee density is tracked in ASPECT by placing its values on active

tracer particles. 

In order to be compatible with the existing infrastructure for

advecting compositional fields in ASPECT, it proved to be most

efficient to present the results of the VOF method as a traditional

continuous or discontinuous Galerkin FEM field to the rest of the

software. Therefore, the location of the tracked composition is

presented as a finite element approximation to the characteristic

function implied by the reconstructed interface (i.e., χ(d e − n e ·
( ̃ x − ˜ x c )) ), as one of the “compositional fields” in ASPECT. 

In order to avoid additional complexity due to interfering with

the field values on neighboring cells, we require that the finite-

element field used for the approximation use a discontinuous

finite-element discretization; e.g., discontinuous P q or discontin-

uous Q q elements, which are typically denoted as P −q and Q −q 

elements. In this paper we explicitly consider cases suitable for

use with discontinuous P and discontinuous Q elements, and
0 1 
ake use of the latter approach. For a number of reasons, often

elating to the physical interpretation of the quantity C , it is also

esirable to ensure that the generated approximation will always

e bounded; i.e., 0 ≤ C ≤ 1. Among the more obvious reasons for

his requirement are physical constraints, such as the density must

atisfy ρ > 0. 

A basic implementation can be done by directly copying the

olume fraction data to a discontinuous P 0 element (i.e. the

alue of the discretized variable is constant on each cell). This

s equivalent to a minimum L 2 error approximation when using

he discontinuous P 0 element to approximate the indicator field

mplied by the reconstructed interface. 

However, attempting to obtain an ideal (minimum L2 error)

pproximation using a higher order element such as DG Q 1 or

G P 1 is more difficult, especially when we wish to respect the

ounds on the compositional fields 0 ≤ C ≤ 1, since the result of a

inimum L 2 error approximation for such an element is almost

ertain to violate the 0 ≤ C ≤ 1 bounds in all non-trivial cases. Also,

 basic minimum L 2 error approximation for the indicator function

ould require significant additional computational expense and

ode complexity. Thus, any approximation using a non-constant

lement would best be done using a heuristic approach. 

In our implementation, in order to generate a DG Q 1 element

pproximation to the C field that is implied by the reconstructed

nterface, we apply the following constraints. 

1. The gradient of the element is in the same direction as the

normal of the interface. 

2. The gradient is as large as possible while maintaining

0 ≤ C ≤ 1 everywhere. 

3. In order to conserve the mass in this step, the volume frac-

tion implied by the DG Q 1 element approximation to the C

field must match the volume fraction f e in the VOF approxi-

mation to the C field; i.e., ∫ 
�e 

C(x ) dx = f e V e 

where V e is the volume of �e . 

On a square mesh, for a cell with the reconstructed interface 

 ˜ e · (x − x 

c 
˜ e ) = d ˜ e (82)

he above constraints result in the approximation on the unit cell

eing 

(x ) = f ˜ e − 1 − | 2 f ˜ e − 0 . 5 | n ˜ e 

‖ n ˜ e ‖ 1 

· (x − x 

c 
˜ e ) (83)

Since we use a DG Q 1 element the above equation produces a

ilinear approximation to the VOF method’s reconstructed indica-

or function, with little additional computational cost as compared

o using a P 0 approximation. 

.4.7. Coupling with the AMR algorithm 

The deal.II library [3] upon which ASPECT is built manages

he AMR algorithm through the p4est library [10] . Deal.II, and

ence, ASPECT provides a mechanism for setting the refinement

riteria; both when to refine a cell and when to coarsen a cell.

ince reconstructing and advecting the interface across different

evels of refinement both increases algorithm complexity and

ecreases the accuracy with which the interface is resolved, in

his work we ensure that the interface is always on the finest level

f refinement. This approach requires that the cells that contain

he interface, including the case where the interface is on a cell

oundary, and any cell that shares a vertex with any of those cells

ust also be at the finest level of refinement. 

The criteria for refining a cell that we have adopted is a two

tep algorithm that requires one pass over the entire mesh and one
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6 This is true albeit with one caveat; namely, in the benchmark problem in 

Section 4.3 below we compare the computational results obtained with the VOF 

method to those obtained with the Bound Preserving Discontinuous Galerkin 

(DGBP) advection method described in this section. 
ass over a subset of the entire mesh. In the first step we check

very cell in the entire mesh making a list of all cells that contain

 part of the interface. More specifically, we regard all cells �e 

hat satisfy εv of < f e < 1 − εv of , where εv of is a small parameter,

o contain a portion of the interface. In addition, all cells �e that

ave a neighboring cell �′ 
e that shares a face with �e and differ in

olume fraction sufficiently (e.g., | f e − f ′ e | > εv of ) are also added to

his list. In the computational results shown in Section 4 we use

he value εv of = 10 −6 . In the second pass over a subset of the en-

ire grid we make a list of all cells that share a vertex with any cell

lready in the list of cells that contain a portion of the interface

nd also flag each of these cells for refinement. These flags are

hen passed to deal.II and thus on to p4est [10] , which handles the

etails of the refinement of these cells and the coarsening of those

ells that no longer need to be at the finest level of refinement. 

Recall that the CFL (Courant–Friedrichs–Lewy) condition is a

onstraint on the time step �t that is typically given by 

t ≤ σ
h e 

‖ u ‖ ∞ 

for all cells e in the computation . (84) 

Here the dimensionless constant σ ≤ 1 is the CFL number, h e is

he characteristic size of cell e , and ‖ u ‖ ∞ 

is the maximum value

f the velocity over the entire domain �. (See [16,37,42] for more

etails and, in particular, for an explanation as to why σ ≤ 1 for

umerical approximations to the solution of advection equations.)

he constraint in (84) is required to hold at each time step t k ,

hich implies that in most computations �t must be recomputed

t each time step, since the magnitude of the velocity u may have

hanged from time t k to time t k +1 . In addition, when AMR is a

art of the computation, the minimum or maximum value of h e 
ay also have changed during the time step. 

In ASPECT the constraint in (84) is modified by dividing the

ight-hand side by the order p of the polynomial basis functions

hat are used to discretize the velocity field 

t ≤ σ
h e 

p ‖ u ‖ ∞ 

for all cells e in the computation . (85) 

The rational behind this formula is that the number of nodes

n a given cell at which a value of the velocity is specified de-

ends on the degree of the polynomial. In other words, in a finite

lement method the nodes are locations at which the unknowns,

uch as velocity, are specified just as the corners or centers of a

ell in a finite difference or a finite volume method are locations

t which the unknowns are specified. Thus, the distance between

he nodes h e 
p is analogous to the distance, say �x , between grid

oints in a finite difference or finite volume method, for which

ne would use the formula in (84) . (See the section entitled

Numerical experiments to determine optimal parameters” of the

eference documentation for deal.II [40] for further information.) 

Given that the time step �t is constrained by (85) , the interface

an move at most σ ≤ 1 cell widths in one time step t k → t k +1 .

his permits the reduction of the frequency with which we must

onduct the remeshing procedure to N time steps where N < 

W −2 
2 σ

nd W is the minimum width of the maximally refined band of

ells. (See, for example, any of the AMR computations in the sec-

nd (b) and fourth (d) frames in Figs. 21–32 for explicit examples

f W .) For the refinement strategy described above, the safest

ssumption is that W = 4 . This takes into consideration the case

here the interface is at the cell boundary. A band of larger width

 > 4 would both require a more complex algorithm to find the

ecessary cells to flag and would increase the number of refined

ells. Thus, there is a balance between cost associated with the

requency of running the algorithm to flag cells for refinement

nd cost of having a larger value of W . This balance is problem

ependent. 
.5. Alternate discretizations of the composition equation in ASPECT 

In all of the work described in this article we use the Volume-

f-Fluid interface tracking algorithm described in Section 3.4 above

o approximate solutions of the composition Eq. (10) . 6 However,

here are three other algorithms implemented in ASPECT that one

an use to approximate solutions of the advection Eq. (10) for the

ompositional variable C . In practice, this variable can be density,

iscosity, or any other quantity that is passively transported with

he flow. Users may have multiple distinct compositions that are

ach passively advected with the flow. For completeness we briefly

escribe them here. 

Two of these three alternate advection methods are based on a

patial discretization of the weak form of the advection Eq. (10) for

he composition; namely, 

∂C 

∂t 
, ψ 

)
�

+ ( u · ∇C, ψ ) � = 0 . (86) 

1. The first method that was implemented in ASPECT for ap-

proximating solutions of the advection Eq. (10) for the quan-

tity is a continuous Galerkin finite element method. Since

Eq. (86) is the weak form of the advection Eq. (10) and our

numerical approximation to solutions of (86) are based on a

continuous Galerkin finite element formulation, this advec-

tion method also includes an entropy-viscosity stabilization

term νh ( C ) for the compositional field on the right-hand side

of (86) , (
∂C 

∂t 
, ψ 

)
�

+ (u · ∇ C, ψ) � = −( νh (C) ∇ C, ∇ ψ ) � . (87) 

We emphasize that the entropy-viscosity stabilization term

νh ( C ) in Eq. (87) does not have the same value in each cell

as the entropy-viscosity function νh ( T ) for the temperature

that appears in Eq. (40) ; they are computed separately and

are unlikely to have the same value on any given cell �e .

The time discretization of the composition equation in this

advection method is also the adaptive BDF2 algorithm. This

leads to the following FEM Entropy Viscosity (FEM-EV) dis-

cretization of Eq. (10) , 

1 

�t k +1 

(
2 �t k +1 + �t k 

�t k +1 + �t k 
C k +1 − �t k +1 + �t k 

�t k 
C k 

+ 

(�t k +1 ) 2 

�t k (�t k +1 + �t k ) 
C k −1 , ψ 

)
�

= −(u 

k · ∇C k +1 , ψ) � − (νk 
h (C ) ∇C k +1 , ∇ψ) 

�
. (88) 

We often refer to this advection method as the FEM-EV ad-

vection method, where ‘EV’ is an abbreviation for entropy-

viscosity. Also, we emphasize that this is the only advection

method in ASPECT that has any form of artificial viscosity or

entropy-viscosity. 

2. Another algorithm for modeling solutions of Eq. (10) that

we have implemented in ASPECT is a Discontinuous Galerkin

(DG) method with a Bound Preserving limiter (DGBP).

See [28] for a detailed description of this method and a com-

parison with the continuous Galerkin FEM-EV method de-

scribed in item (1). 

3. We have also implemented a particle-in-cell method in AS-

PECT [22,64] , which one can use to approximate the solution

of the composition Eq. (22) . 
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Fig. 6. A diagram of the initial condition for the “Advection of a Linear Interface in 

a Constant Velocity Field” benchmark. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

g  

i

 

w

o  

fi  

f

E  

w  

t
 

w

4

 

v  

t  

z  

l  

u  

a  

t  

T  

‘  

e  

o

4

b

 

c  

I  

c  

i  

y  

t  

y  

i  

w

See [64] for a detailed comparison of these three advection

methods with the VOF method described here. 

In closing this section we wish to emphasize that in all of the

authors’ previous and current work designing VOF methods we

have not used any type of artificial viscosity, including entropy vis-

cosity, to stabilize the method. In fact, the authors are not aware

of any version of a VOF algorithm in which some form of stabi-

lization other than the application of an appropriate CFL constraint

was required, regardless of whether the VOF method was coupled

to a finite element method or to a finite difference method. 

4. Numerical results 

In this section we present our numerical results. First, in

Section 4.2 we compute two test problems with prescribed veloc-

ity fields to verify the accuracy of our implementation of the VOF

algorithm. Next, in Section 4.3 we present a sequence of compu-

tations of a time-dependent problem; namely, a falling circular

region of greater density than the surrounding fluid and measure

the convergence rate of the VOF method in this time-dependent

flow field with an interface across which there is a jump in

density. Then, in Section 4.4 , we compute two well-known bench-

marks from the computational mantle convection community to

verify that our VOF method has been correctly implemented in the

underlying mantle convection code ASPECT. Finally, in Section 4.5 ,

we apply the algorithm to a problem of interest in the field of

geodynamics. 

4.1. Definition of the error measurement 

We begin by defining the norm in which we will measure

the error between our computed and true solutions ( Section 4.2 )
Fig. 7. On the left is the initial condition; namely, a diagonal line reconstructed by the

the exact and computed interface at time t = 1 . 0 , with the exact interface in red and 

is wider so that the two may be compared visually. It is apparent that the two interf

between the approximate and true interfaces is O ( εmach ) where εmach ≈ 10 −16 denotes ma

always reconstruct a linear interface exactly on a grid of equally sized square cells, i.e., 

u const = ( u const , v const ) the approximate interface will remain a line for all time. (For inter

the web version of this article.) 
r estimate the error between computed solutions on successive

rids in order to obtain an estimate of the convergence rate of our

nterface tracking method ( Section 4.3 ). 

Since each volume fraction f e is constant on its grid cell �e ,

e use P 0 elements to store the value of the volume fraction f e 
n each �e . Given a fixed grid with cells �e indexed by e we de-

ne the error between the exact f exact 
e and computed f 

comp 
e volume

ractions by 

rror 
(

f exact − f comp 
)

= 

∑ 

e 

∣∣ f exact 
e − f comp 

e 

∣∣V (�e ) (89)

here V ( �e ) denotes the volume of the cell �e . Note that (89) is

he discrete L 1 norm of the difference between f exact 
e and f 

comp
e 

ith weight V ( �e ). 

.2. Interface tracking benchmark problems in stationary flows 

In this section, we compute two test problems in stationary

elocity fields with known exact solutions to ensure that our

he implementation of the VOF algorithm is exact to machine

ero, εmach , when we use it to advect a line in a constant ve-

ocity field of the form in a constant velocity field of the form

 const = ( u const , v const ) and that it converges at its second-order

ccurate design rate when the flow field is solid body rotation and

he interface is a smooth closed curve that does not intersect itself.

hese very simple problems are what some researchers refer to as

sanity checks’. In other words, if we do not obtain the expected

rror / convergence rate, then we know something is wrong with

ur implementation of the VOF algorithm in the FEM code. 

.2.1. Advection of a linear interface in a constant velocity field 

enchmark 

Our first benchmark is the advection of a linear interface in a

onstant velocity field u const = ( 20 
100 , 

25 
100 ) as shown in Figs. 6 and 7 .

n these figures, the computational domain is [0, 1] × [0, 1] square

overed with a grid of square cells of side h = 2 −4 , and the initial

nterface is one of the two main diagonals of the domain, namely,

 = 1 − x . At each time step t k → t k +1 the interface is advanced

he velocity field u const and then compared with the exact solution

 = 

145 
100 − x . Note that the velocity field is not perpendicular to the

nterface and that neither the interface nor the flow is aligned

ith the grid. 
 ELVIRA interface reconstruction algorithm. On the right is a comparison between 

the computed interface in green. he contour for the (green) computed interface 

aces are visually indistinguishable. It is also evident from Table 2 that the error 

chine precision. This is because the ELVIRA interface reconstruction algorithm will 

up to machine precision εmach and hence, in a constant velocity field of the form 

pretation of the references to color in this figure legend, the reader is referred to 
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Table 2 

The error in advecting a linear interface in a constant veloc- 

ity field u const = ( 20 
100 

, 25 
100 

) that is not aligned to the mesh 

nor perpendicular to the interface. Note that the error is on 

the order of machine precision εmach ≈ 10 −16 and the num- 

ber of cells that the interface passes through is approxi- 

mately L 
h 

where L is the distance traveled by the interface 

from time t = 0 . 0 to time t = 1 . 

h Error 

2 −4 1 . 23382 · 10 −16 

2 −5 1 . 21675 · 10 −16 

2 −6 2 . 96083 · 10 −16 

2 −7 5 . 92738 · 10 −16 

Fig. 8. Diagram of the Circular Interface Rotation Benchmark problem. Note that 

the red dot is the center of rotation and the circle is offset from the center of ro- 

tation by exactly one radius so that the edge of the circle just touches the center 

of rotation. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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Table 3 

The error and convergence rate after the true and approx- 

imate circular interfaces have rotated 2 π radians. It is ap- 

parent that the convergence rate tends to 2.00 as h → 0. 

h Error Rate 

2 −4 6 . 03897 × 10 −3 

2 −5 1 . 74516 × 10 −3 1.79 

2 −6 3 . 92745 × 10 −4 2.15 

2 −7 1 . 05605 × 10 −4 1.89 

2 −8 2 . 63464 × 10 −5 2.00 

2 −9 6 . 48952 × 10 −6 2.02 
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In this computation we used a CFL number of σ = 

1 
2 , which

esulted in, for example, a total of 23 time steps on the least

efined grid of h = 2 −4 . (See Eq. (84) below and the accompanying

ext for the definition of the CFL number σ and, in particular,

ts modification for advection problems in ASPECT.) Since the

LVIRA interface reconstruction algorithm reconstructs lines ex-

ctly (i.e., to εmach ≈ 10 −16 ), we expect the error in computations

f a linear interface in a constant velocity field to be exact to

achine precision εmach ≈ 10 −16 . The errors from computations

ith h = 2 −4 , 2 −5 , 2 −6 , and 2 −7 shown in Table 2 confirm that

his is true for our implementation of our VOF method in ASPECT;

amely, in all cases the error is O ( εmach ). 

.2.2. The circular interface rotation benchmark 

The second benchmark problem is the advection of a circular

isk containing composition 1 in a rotating velocity field as shown
ig. 9. The initial and final states for the Circular Interface Rotation Benchmark on a uni

LVIRA interface reconstruction algorithm. On the right is a comparison between the true

ed and the computed interface in green. The green contour for the computed interface 

wo interfaces are visually indistinguishable. It is also apparent from Table 3 that the error

f the side of the square cell shown in the table heading. (For interpretation of the refere

rticle.) 
n Fig. 8 . In this problem the angular velocity is π radians per unit

ime with an end time of t = 2 . 0 . Note that the center of rotation

s not at the center of the circle, but rather it lies on the boundary

f the circle and is marked with a red dot. In each of these compu-

ations we used a CFL number of σ = 

1 
2 . The initial and final states

or a computation on a grid with h = 2 −6 are shown in Fig. 9 . 

Since our interface reconstruction and advection algorithms are

esigned to be second-order accurate for smooth interfaces in

mooth flows, in this problem we expect the approximate interface

o be a second-order accurate approximation to the true interface.

he (discrete) L 1 error in the volume fractions f e and the corre-

ponding convergence rates for six computations with increasing

rid resolutions of h = 2 −4 , 2 −5 , . . . , 2 −9 are shown in Table 3 . It is

pparent that the convergence rate asymptotes to 2.00, confirming

hat the VOF method produces a second-order accurate approxi-

ation to the true interface. 

.3. The sinking ball benchmark 

We now present a nondimensional variation of the Gerya-

uen [23] ‘sinking box’ problem in order to perform a convergence

tudy on a non-trivial problem. Our version of the problem is de-

ned on a 1 × 1 square domain in which a ball (disk) of heavier

uid of radius 0.26 is horizontally centered 0.3 units below the

op edge of the domain as shown in Fig. 10 . The ball’s density is

1 = 110 , while the background density is ρ0 = 100 . The viscos-

ty of both the ball and the background fluid is μ0 = μ1 = 10 7 .

e approximate the solution (of the nondimensional version) of

he incompressible Stokes equations in (6) –(8) , but with the term

0 α (T − T 0 ) g − �ρ C g replaced by ρ g in Eq. (8) , together with
form grid with h = 2 −6 . On the left is the initial condition as reconstructed by the 

 and computed interface after one full rotation ( t = 2 . 0 ), with the true interface in 

is drawn wider so that the two may be compared visually. It is apparent that the 

 between the true and computed interfaces is O ( h 2 ) as h → 0 where h is the length 

nces to color in this figure legend, the reader is referred to the web version of this 
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Fig. 10. Diagram of the initial condition for the Sinking Ball Benchmark problem. 
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the above initial conditions. Thus, we hold the following parame-

ters fixed: ( Fig. 11 ) 

g = (0 , 9 . 8) acceleration due to gravity 
L = 1 domain height and width 

μ0 = 10 

7 background viscosity 

μ1 = 10 

7 ball viscosity 
ρ0 = 100 background density 
ρ1 = 110 ball density 

(90)

For comparison, we also compute the same problem in which
we use the ‘Bound Preserving Discontinuous Galerkin (DGBP)’
method in ASPECT [28] , which we described briefly in item (2)
of Section 3.5 , to advect the denser material in the ball. In both
cases, the velocity and pressure are discretized by Q 2 and Q 1 ele-
ments, respectively. In the DGBP computations, the fluid indicator
function χ ( x , y , t ) is discretized in space with a discontinuous Q 2 

element (often denoted by Q −2 ) that carries a compositional field

 

def = C DGBP . This field is initialized by placing the values of χ at
time t = 0 given by 

χ(x, y ; t = 0) = 

{
1 if 0 ≤ (x − 0 . 50) 2 + (y − 0 . 70) 2 ≤ (0 . 26) 2 , 
0 otherwise , 

(91)

n the support points of the element. 

Except for the error in the volume fractions f e , we estimate the

difference between fields w 2 h and w h on grids with square cells of
Fig. 11. The interface at time t = 5 × 10 6 for the sinking ball test proble
ide 2 h and h , respectively, with the following norm, 

 = 

( ∫ 
�h 

| w 2 h − w h | p d x 

) 1 
p 

, (92)

here p = 1 or p = 2 and w h indicates that w was computed

n a grid with square cells of side 2 h , and similarly for w h . In

q. (92) w represents quantities such as the pressure and the two

elocity components. Since we use a continuous Galerkin finite

lement method to discretize w in space, the approximation to

 is a piecewise continuous function. The integration in (92) is

erformed by quadrature, using points and weights generated by

 standard Gauss–Legendre quadrature rule on the more refined

ells; i.e., those with side h . Asymptotically, the norms of these

ifferences are proportional to the errors on the coarser grids. This

llows us to estimate the convergence rate using a formula such

s the one in Eq. (13) of [4] , despite not having the true solution

o the problem. In all of the following convergence studies the

nal states of the computations were compared at T end = 5 × 10 6 . 

In the case of the volume fractions f e , it is not appropriate to

pproximate them as piecewise continuous functions, since they

re constant on each cell and typically have discontinuities at

ome of the edges of cells that contain a portion of the interface.

herefore we estimate the difference between the volume fractions

f 2 h e on a grid with square cells of side 2 h and f h e on a grid of with

quare cells of side h with the following norm 

rror 
(

f 2 h e − f h e 

)
= 

∑ 

e 

∣∣ ˜ f h e − f h e 

∣∣V (�h 
e ) . (93)

here ˜ f h e are volume fractions on the fine grid �h that are ob-

ained from the reconstructed interfaces on the coarse grid �2 h 

ia a procedure that is described below and in Fig. 12 . ( Fig. 14 ) 

Just as in Eq. (92) , the integration in (93) is performed on the

ner grid �h . Some researchers estimate the accuracy and con-

ergence rate of a VOF interface tracking algorithm by using the

ifference in the values of the volume fractions on successive grids
2 h and �h as an estimate of the error in the volume fractions

n the coarser grid as we have done here; e.g., [4,68] . Others have

hosen to estimate the error by integrating the difference between

he characteristic functions χ2 h and χh associated with one of the

uids on two successive grids in order to estimate the error in the

haracteristic functions; e.g., [74] . However, a reasonably accurate

umerical integration of this difference over all cells that contain

 portion of the interface would require a relatively expensive
m on a uniform grid of square cells with sides of length h = 2 −6 . 
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Fig. 12. An example of how the difference between the volume fractions f 2 h e on 

the coarse cells and the volume fractions f h e on the finer cells are computed. The 

reconstructed interface on the coarse cell, shown in green, produces four volume 

fractions on each of the four more refined subcells of the coarse cell. These sub- 

cells, each with side h , are colored pink and blue in the figure and the volume 

fractions on the subcells, which are derived from the coarser grid, are denoted 
˜ f h 1 , 

˜ f h 2 , 
˜ f h 3 , 

˜ f h 4 . We difference these four volume fractions with the four volume frac- 

tions f h 
j 

, j = 1 , 2 , 3 , 4 from the finer grid that correspond to the same cells as the 

subcells of the coarse cell. Note that no linear interface in the coarse cell can pass 

through all four refined cells. Thus, for example, the compositional field ˜ C h associ- 

ated with the volume fractions ˜ f h 1 , . . . , 
˜ f h 4 on the refined cells will have an O (1) 

jump between the value 0 < C 2 h < 1 on the coarse cell and the value ˜ C h on the 

blue refined cell where, say, in the figure ˜ C h 
blue 

≡ 0 . The same reasoning applies 

if ˜ C h 
blue 

≡ 1 . For this reason the VOF compositional field C h 
def = C h VOF converges at a 

first-order rate whereas the volume fractions f h e themselves converge at a second- 

order rate as shown in Table 4 and Fig. 13 . (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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Table 4 

The columns labeled C DGBP and C VOF contain the errors computed for the DGBP 

and VOF compositional fields, respectively. The column labeled VOF f e contains 

the errors in the volume fraction data f e that we use to reconstruct the fluid 

interface. 

h C DGBP Rate C VOF Rate VOF f e Rate 

L 1 Error L 1 Error L 1 Error 

2 −4 5 . 03 × 10 −2 3 . 24 × 10 −2 1 . 65 × 10 −2 

2 −5 2 . 26 × 10 −2 1.16 1 . 96 × 10 −2 0.73 6 . 93 × 10 −3 1.25 

2 −6 1 . 23 × 10 −2 0.88 1 . 03 × 10 −2 0.93 2 . 34 × 10 −3 1.57 

2 −7 6 . 22 × 10 −3 0.98 4 . 87 × 10 −3 1.08 5 . 59 × 10 −4 2.07 

2 −8 3 . 29 × 10 −3 0.92 2 . 28 × 10 −3 1.09 1 . 25 × 10 −4 2.16 

2 −9 1 . 79 × 10 −3 0.88 1 . 14 × 10 −3 1.01 3 . 10 × 10 −5 2.02 

2 −10 9 . 88 × 10 −4 0.86 5 . 82 × 10 −4 0.96 9 . 02 × 10 −6 1.78 
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b

omputation and, in our case, implementing such an algorithm in

SPECT would be somewhat difficult. 

Unlike the functions w that are approximated with a continu-

us Galerkin element it is necessary to explicitly transfer the vol-

me fraction data f 2 h e on the coarse grid to corresponding values
˜ f h e j 

for j = 1 , 2 , 3 , 4 on the finer grid,in order compare them with

he given values f h e j 
on the finer grid. We do this by computing the

olume fractions ˜ f h e on the more refined cells with side h by using

he interface reconstructed from the volume fractions f 2 h on the
e 

ig. 13. Convergence rates in the discrete L 1 norm for the volume fractions f e and the co

all test problem. 
oarser grid with side 2 h as shown in Fig. 12 . We use this recon-

tructed interface to ‘interpolate’ (or project) one volume fraction

n a coarse cell to four volume fractions ˜ f h e on the more refined

ells that are contained in that coarse cell. We then treat the vol-

me fractions as constant fields on the refined cells and the error

s estimated as in Eq. (92) . 

Due to the nature of the error estimation algorithm, we ex-

ect a maximum rate of first-order for the compositional field C

erived from the VOF data f e . This can be seen as follows. First,

or a given level of refinement, say h , we consider the number of

ells the fluid interface passes through. Assuming the length of

he interface L I is approximately constant under refinement, we

an expect the number of cells the fluid interface passes through

o be proportional to 
L I 
h 

, so the number of cells that contain a

uid interface is O (h −1 ) . Upon refinement, it is apparent from

ig. 12 that each coarse cell will have at least one refined cell that

oes not contain a fluid interface, and therefore will have a value
mpositional fields associated with the VOF and DGBP computations of the sinking 
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Fig. 14. Errors and convergence rates in the discrete L 2 norm for the velocity fields from the DGBP and VOF computations of the sinking ball test problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Errors and convergence rates in the discrete L 2 norm for the velocity. Note that 

the second order convergence rates for the velocity are what one expects for 

the Q 2 × Q 1 element combination we have used to approximate the solution of 

the underlying incompressible Stokes flow. Note also that an error of O 
(
10 −12 

)
is roughly the smallest error we expect to be able to compute accurately given 

the tolerance set for the iterative solver of the Stokes matrix equation. 

h DGBP Velocity Rate VOF Velocity Rate 

L 2 Error L 2 Error 

2 −4 4 . 38 × 10 −9 1 . 74 × 10 −9 

2 −5 1 . 23 × 10 −9 1.83 4 . 76 × 10 −10 1.87 

2 −6 3 . 64 × 10 −10 1.76 1 . 41 × 10 −10 1.76 

2 −7 1 . 09 × 10 −10 1.74 3 . 47 × 10 −11 2.02 

2 −8 3 . 78 × 10 −11 1.53 8 . 63 × 10 −12 2.01 

2 −9 2 . 44 × 10 −11 0.64 2 . 16 × 10 −12 2.00 

2 −10 4 . 69 × 10 −12 2.38 5 . 49 × 10 −13 1.98 
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E  

f  

f  
of either C = 0 or C = 1 on that cell. Since f e can be expected to

differ significantly from both 0 and 1 in most coarse cells that

contain an interface, this results in an O (1) difference in C between

the coarse C 2 h and the fine ˜ C h values for the compositional field

on any coarse cell containing the interface, where ˜ C h are the

compositional field values due to the volume fractions ˜ f h e on the

subcells that were obtained from the coarse grid volume fractions

f 2 h e by the procedure described in Fig. 12 . Since the volume of

a single refined cell is O ( h 2 ), the maximum convergence rate of

the C VOF field should therefore be O (h −1 ) × O (h 2 ) × O (1) = O (h ) .

This analysis agrees with the computational results shown in

Fig. 13 and Table 4 ( Fig. 15 ). 

We note that the curvature of the initial interface is 50 
13 and

hence, according to Eq. (67) , the VOF computation will be underre-

solved as long as h > 

13 
825 ≈ 0 . 015625 = 2 −6 . Furthermore, one can

see in Fig. 13 and Table 4 that the volume fractions f e begin to

converge at the full, second-order design rate once h ≤ 2 −6 is sat-

isfied. 

4.3.1. A study of the effectiveness of AMR on this problem 

The primary benefit of AMR is reduced computation time,

which is due to a reduced problem size while still permitting a

finer mesh in areas of interest. The precise trade-off is dependent

on the problem under consideration and the strategies used for re-

fining the grid. 

This problem, as with many problems involving fluid interfaces,

is especially well suited to AMR. The sole feature in the sinking ball

problem is an (initially) smooth region with a higher density than

the surrounding fluid and the velocity field is largely only affected

in a neighborhood of the fluid interface. In this case the AMR strat-

egy we use, which is to only refine the grid to the maximum level

of refinement in a neighborhood of the fluid interface, is very well

suited to the problem ( Table 5 ). 
In order to examine the performance of the AMR algorithm

ersus computing on a uniform grid with cell size h min × h min ,

here h min denotes the size of the most refined cell in the

MR computation, we compare the performance of the two grid

trategies when we apply them to the sinking ball problem. In all

f these computations we use the AMR grid refinement strategy

escribed in Section 3.4.7 . Thus, the fluid interface is the only

eature of importance in this comparison. The AMR algorithm

s configured so that the coarsest (square) cell size possible is

 = 2 −3 and we recalculate the mesh at every time step ( Table 6 ).

In order to examine the efficacy of the AMR computations, the

olutions of the uniform and AMR computations are compared us-

ng the following value for the error 

 = 

(∫ 
�h 

| w uni f orm 

− w AMR | p dx 

) 1 
p 

(94)

or p = 1 or p = 2 where, as in Eq. (92) , the integration is per-

ormed by quadrature, with points and weights generated by a
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Fig. 15. Convergence rates in the discrete L 2 norm for the pressure from the DGBP and VOF computations of the sinking ball test problem. 

Table 6 

Errors and convergence rates for the pressure in the discrete L 2 norm. Note that 

the convergence rates for the pressure are essentially what one expects for the 

Q 2 × Q 1 element combination that we have used to approximate the solution of 

the underlying incompressible Stokes flow. 

h DGBP Pressure Rate VOF Pressure Rate 

L 2 Error L 2 Error 

2 −4 1.30 × 10 0 4 . 67 × 10 −1 

2 −5 3 . 10 × 10 −1 2.06 1 . 52 × 10 −1 1.62 

2 −6 1 . 14 × 10 −1 1.44 5 . 22 × 10 −2 1.55 

2 −7 2 . 89 × 10 −2 1.98 1 . 42 × 10 −2 1.88 

2 −8 1 . 61 × 10 −2 0.85 4 . 54 × 10 −3 1.64 

2 −9 8 . 11 × 10 −3 0.99 1 . 40 × 10 −3 1.69 

2 −10 2 . 13 × 10 −3 1.93 4 . 88 × 10 −4 1.52 
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Table 7 

The number of cells at the final time T end for our AMR computations 

and the wall clock runtimes with growth rates for both AMR and uni- 

form grids. Here n = h −1 is the number of grid cells on a side of the 

computational domain when the computation is made at the maximum 

permitted level of refinement. 

n AMR cells AMR(sec) Rate Uniform(sec) Rate 

2 3 6.40 0 0 0 × 10 1 1.56 × 10 0 8 . 19 × 10 −1 

2 4 1.840 0 0 × 10 2 6.99 × 10 0 2.16 4.43 × 10 0 2.44 

2 5 4.60 0 0 0 × 10 2 3.02 × 10 1 2.11 2.96 × 10 1 2.74 

2 6 1.04800 × 10 3 1.14 × 10 2 1.92 2.11 × 10 2 2.83 

2 7 2.260 0 0 × 10 3 4.14 × 10 2 1.86 1.51 × 10 3 2.84 

2 8 4.660 0 0 × 10 3 1.59 × 10 3 1.94 1.16 × 10 4 2.94 

Table 8 

The L 1 norm of the difference between the VOF compositional field C = C VOF , 

(i.e., the integral of C VOF integrated over the entire computational domain �), 

the volume fractions f e , and the L 2 norm of the difference of the velocity field 

u , each computed on a uniform grid versus an AMR grid at time, T end . 

n ‖ C − C AMR ‖ 1 ‖ f e − f eAMR ‖ 1 ‖ u − u AMR ‖ 2 
2 4 3 . 80 × 10 −6 3 . 80 × 10 −6 4 . 30 × 10 −11 

2 5 1 . 41 × 10 −4 1 . 41 × 10 −4 4 . 40 × 10 −11 

2 6 5 . 41 × 10 −5 5 . 26 × 10 −5 4 . 10 × 10 −11 

2 7 2 . 36 × 10 −5 2 . 34 × 10 −5 4 . 16 × 10 −11 

2 8 1 . 28 × 10 −5 1 . 27 × 10 −5 4 . 10 × 10 −11 

o  

O  

i  

a

 

o  

p  

N  
tandard Gauss–Legendre quadrature rule on the uniform grid.

ince the refinement strategy requires that the fluid interface al-

ays be at the maximum level of refinement, it is sufficient to

ompare the f e values by treating them as a field that is constant

ver the corresponding cell. 

In Fig. 16 and Table 7 it is apparent that AMR reduces the

omputational cost from O (h −3 ) = O (n 3 ) to O (h −2 ) = O (n 2 ) where

 = h −1 is the number of grid cells on a side of the computational

omain when the computation is made at the maximum permitted

evel of refinement. This is a significant benefit. 

Additionally, in Table 8 we show the difference in C VOF , f e , and

he velocity u for a computation with AMR versus a computation

n a uniform grid. It is apparent from this table that the norm of

he differences at the final time for C VOF and f e are both small and

ecreasing when h ≤ 2 −6 , which, according to (67) , is the grid size

t which the interface is “well-resolved”. Note that since (2 −8 ) 2 =
 

−16 ≈ 1 . 53 × 10 −5 , only for the most refined case (i.e., h = 2 −8 )

o we have a difference in the volume of the advected fluid that

s equivalent in magnitude to the volume of a single cell. For all
ther refinement levels it is less than the volume of a single cell.

n the other hand the L 2 norm of the difference in the velocities

s O (10 −11 ) for all refinement levels, which is near the limit of the

ccuracy that we can expect for our computations. 

Tables 9 and 10 demonstrate that when we use AMR instead

f a uniform grid it does not have a significant effect on the com-

uted (total) volume of either C VOF ( Table 9 ) or C DGBP ( Table 10 ).

ote that in Table 10 the magnitude of the difference between the



236 J.M. Robey and E.G. Puckett / Computers and Fluids 190 (2019) 217–253 

Fig. 16. Wall clock run times for AMR versus a uniform grid. 

Table 9 

The total change in the volume of the composition C VOF between the initial and final 

state when we use the VOF advection method. The correct volume is approximately 

0.21238. For the AMR computation h is the maximum level of refinement; i.e., the 

smallest size a refined cell is allowed to be. 

h = 2 −k Uniform mesh Relative change AMR Relative change 

2 −3 −5 . 81 × 10 −4 2 . 73 × 10 −3 −5 . 81 × 10 −4 2 . 73 × 10 −3 

2 −4 −1 . 59 × 10 −4 7 . 48 × 10 −4 −1 . 60 × 10 −4 7 . 55 × 10 −4 

2 −5 −3 . 94 × 10 −5 1 . 85 × 10 −4 −3 . 90 × 10 −5 1 . 83 × 10 −4 

2 −6 −9 . 77 × 10 −6 4 . 60 × 10 −5 −9 . 51 × 10 −6 4 . 48 × 10 −5 

2 −7 −2 . 45 × 10 −6 1 . 15 × 10 −5 −2 . 33 × 10 −6 1 . 10 × 10 −5 

2 −8 −6 . 11 × 10 −7 2 . 88 × 10 −6 −5 . 64 × 10 −7 2 . 66 × 10 −6 

2 −9 −1 . 53 × 10 −7 7 . 20 × 10 −7 −1 . 42 × 10 −7 6 . 69 × 10 −7 

2 −10 −3 . 80 × 10 −8 1 . 79 × 10 −7 −4 . 40 × 10 −8 2 . 07 × 10 −7 

Table 10 

The total change in the volume between the initial and final state of the compo- 

sition C DGBP when we used the DGBP advection method. The correct volume is ap- 

proximately 0.21238. For the AMR computation h is the maximum refinement level; 

i.e., the smallest size a refined cell is allowed to be. Note that for the DGBP advec- 

tion algorithm, the difference in the correct volume and the computed volume is 

approximately O ( h ). The output from ASPECT of the total value of the composition 

C over the domain � is limited to an accuracy of about O (10 −10 ) and hence, for 

h = 10 −10 we could not accurately subtract the computed values of these quanti- 

ties from the true value. Thus, we have omitted the last row of this table since the 

difference between the computed and true volumes were O (10 −10 ) . 

h = 2 −k Uniform mesh Relative change AMR Relative change 

2 −3 −4 . 21 × 10 −5 1 . 98 × 10 −4 −4 . 21 × 10 −5 1 . 98 × 10 −4 

2 −4 −1 . 64 × 10 −5 7 . 70 × 10 −5 −2 . 13 × 10 −5 1 . 00 × 10 −4 

2 −5 −3 . 18 × 10 −6 1 . 50 × 10 −5 −2 . 98 × 10 −6 1 . 40 × 10 −5 

2 −6 −4 . 23 × 10 −7 1 . 99 × 10 −6 −3 . 31 × 10 −7 1 . 56 × 10 −6 

2 −7 −6 . 10 × 10 −8 2 . 87 × 10 −7 −4 . 00 × 10 −8 1 . 88 × 10 −7 

2 −8 −8 . 00 × 10 −9 3 . 77 × 10 −8 −4 . 00 × 10 −9 1 . 88 × 10 −8 

2 −9 −2 . 00 × 10 −9 9 . 42 × 10 −9 −1 . 00 × 10 −9 4 . 71 × 10 −9 
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rue value of approximately 0.21238 for the integral of C DGBP over

he domain � and the computed value is O ( h ). Also note that in

able 10 we have not displayed the results of our computations

ith h = 2 −10 , which are O (10 −10 ) , since the difference between

he true and computed values of this quantity is O (10 −10 ) , which

s too small to be reliable given that ASPECT only outputs the com-

uted values to an accuracy of O (10 −10 ) . Finally, as we mentioned

n Section 3.4 there are operator split VOF advection algorithms

hat conserve the volume of the fluid to machine zero, which

ould negate the errors shown in Table 9 ; e.g., see [4,68,81] . 

.4. Mantle convection benchmark problems 

In this section we compute two ‘benchmark’ problems that

re well-known and frequently used in the computational mantle

onvection community to demonstrate that our VOF interface

racking algorithm can reproduce previously published computa-

ional results of the same problem. In our view the first problem,

ommonly known as the “van Keken problem” or the “van Keken

soviscous Rayleigh-Taylor problem” is not a reasonable ‘bench-

ark’, since the problem is mathematically ill-posed. In other

ords, it is unstable [11] and perturbations due to different

umerical methods can yield vastly differing results. In fact,

n [64] we demonstrated that it suffices to change only the algo-

ithm with which the composition variable C is advected in order

o obtain clearly different results at the same output time. For

xample, see Fig. 11 of [64] or compare Fig. 5(c) and (d) of [66] to

ur results here or in [64] or to the results in [79] . ( Fig. 17 ) 

.4.1. The van Keken isoviscous Rayleigh–Taylor Problem 

In this section, we present our computation of the van Keken

soviscous Rayleigh–Taylor problem [79] . In spite of the fact that

he problem is unstable and hence ill-posed, it has become a
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Fig. 17. A diagram of the initial condition for the “van Keken” test problem [79] . 

Note that although the interface appears to be a straight line it actually has a very 

small (0.02) amplitude perturbation that is barely visible on this scale. This pertur- 

bation produces a Rayleigh-Taylor instability, the results of which can be seen in 

Fig. 18 . In the formula for the perturbation D = 0.9142 is the width of the domain. 

Fig. 18. Computed solution of the van Keken isoviscous Rayleigh–Taylor problem 

at time t = 20 0 0 on a uniform grid of 128 × 128 cells. Compare with the computa- 

tional results in [41,64,66,79] . 
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Fig. 19. Initial conditions for the Gerya-Yuen “Sinking-Box” test problem. 
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tandard “benchmark” in the computational geodynamics commu- 

ity. In this problem a less dense (buoyant) fluid lies beneath a

enser fluid, with a perturbed interface between the two layers.

he problem is computed in a [ D , 1] computational domain where

 = 0 . 9142 is the width of the domain. The initial discontinuity

etween the two compositional / density layers is given by 

(x, y, t = 0) = 

{
0 , if 0 ≤ y < 0 . 2 + 0 . 02 cos ( π x / D ) , 
1 , otherwise . 

(95) 

T (x , 0) = 

⎧ ⎨ 

⎩ 

(1 − 5 y ) 

(5 − 5 y ) 

0 . 5 
his initial condition has a (discontinuous) interface along the

urve 

 = 0 . 2 + 0 . 02 cos 

(
πx 

D 

)
. (96) 

.4.2. The Gerya-Yuen sinking box benchmark 
Following the original authors, we pose the Gerya-Yuen ‘sink-

ng box’ problem [23] in dimensional form. The problem is defined
n a 500 km × 500 km two-dimensional Cartesian computational
omain. A small horizontally centered 100 km × 100 km square is
laced with its top edge 50 km below the top of the domain so
hat the initial location and dimension of the box is defined by the
omposition field C ( x , t ) as follows: 

(x , 0) = 

{
1 , if (x, y ) ∈ [20 0 km , 30 0 km ] × [350 km , 450 km ] , 

0 , otherwise . 

(97) 

The block’s density is ρ1 = 3300 kg/m 

3 
, while the background

ensity is ρ0 = 3200 kg/m 

3 
. We approximate the solution of the

ncompressible Stokes equations (i.e., Eqs. (6) –(8) without the term

0 α(T − T 0 ) g in Eq. (8) ) with these initial conditions and holding

he following parameters fixed: ( Figs. 19 and 20 ) 

 = (0 , 9 . 8 ) m/s 
2 
, acceleration due to gravity 

 = 500 km domain height and width 

= 10 

21 Pa · s viscosity 

0 = 3200 kg/m 

3 
, background density 

1 = 3300 kg/m 

3 
, small box density 

(98) 

.5. Computations of thermochemical convection in a density 

tratified fluid 

We now present the results of our computations of the model

roblem for thermochemical convection with density stratification,

he equations for which were presented in Section 2 . In these com-

utations the Rayleigh number is fixed at Ra = 10 5 and we vary

nly the buoyancy ratio as follows: B = 0 . 0 , 0 . 1 , 0 . 2 , . . . , 1 . 0 and

 = 2 . 0 . The domain for all of the computational results shown

elow is a two-dimensional rectangular region that we denote by

= [0 , 3] × [0 , 1] as shown in Fig. 1 . 

The initial conditions for the temperature T are, 

sin (10 π y ) (1 − cos ( 2 
3 

k π x )) if 0 ≤ y ≤ 1 
10 

, 

sin (10 π y ) (1 − cos ( 2 
3 

k π x + π)) if 9 
10 

≤ y ≤ 1 , 

otherwise , 

(99) 

here the period of the perturbation k = 1 . 5 and the amplitude

f the perturbation A = 0 . 05 . Note that A = 0 . 05 ensures that

 ≤ T ( x, y ; 0) ≤ 1 throughout the entire computational domain. The
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Fig. 20. Fluid interface for the Gerya-Yuen [23] ‘sinking box’ problem at time t = 9 . 81 Myr computed with AMR as shown on the right. 
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initial conditions for the composition are, 

(x, y ; t = 0) = 

{
1 if 0 ≤ y < 

1 
2 

, 

0 if 1 
2 

≤ y ≤ 1 

(100)

and the boundary conditions for the velocity and temperature are

as specified in (26) –(31) . 

All of the results shown below were computed twice: once on

a fixed, uniform grid with 192 × 64 square cells each with side h =
64 −1 and then on the same underlying grid but with the addition

of two levels of an adaptively refined mesh in a neighborhood of

the interface. Each level of refinement increases the grid resolution

by a factor of two; i.e., h → 

h 
4 with two levels of refinement. 

Finally, as noted in Section 3.3 above, in all of the computations

in this section the local Péclet number Pe e < 10. And furthermore,

we have conducted several extensive studies (e.g., see [27,64] ) that

have lead us to conclude that using the algorithm described in

Section 3.3 with the entropy-viscosity stabilization technique for

approximating solutions of the advection-diffusion equation for the

temperature (21) does not change these computational results. 

5. Discussion 

In Section 4.2 we demonstrated that our implementation of the

VOF method in ASPECT is exact to machine zero, εmach , when we

use it to advect a line in a constant velocity field of the form

u const = ( u const , v const ) and that it converges at its second-order ac-

curate design rate when the flow field is solid body rotation and

the interface is a smooth closed curve that does not intersect itself.

Then in Section 4.3 in order to examine the convergence rate

of our VOF methodology on a more difficult time-dependent

problem we introduced a problem in which a circular region with

a higher density than the surrounding fluid falls. We also use this

problem to carefully assess the efficacy of computing with the

interface refined using AMR versus computing the same problem

on a uniform grid with the (uniform) cell size being the same as

the smallest cell size we allowed in the AMR computations. The

results of our tests confirm that the algorithm converges at the

full design rate. We also confirmed that the AMR strategy yields

a significant increase in computational efficiency while remaining

close to the uniform mesh result. 
In Section 4.4 we demonstrated that the method reproduces

visually) two benchmarks from the computational mantle convec-

ion literature. 

We now present a detailed discussion of the results of our

omputations of thermochemical convection in density stratified

ow shown in Section 4.5 . This model problem is designed to

tudy the basic physics underlying the formation of thermal

lumes that form at LLSVPs, entrain some of the material in the

LSVP, and bring it to the Earth’s surface. It is also a two dimen-

ional analog of the experimental results of Davaille [19] and Le

ars and Davaille [7,8] . 

.1. Computations of thermochemical convection in a density 

tratified fluid 

Examining the results in Section 4.5 of our computa-

ions of thermochemical convection in a density stratified

uid for values of the nondimensional buoyancy parameter

 = 0 . 0 , 0 . 1 , 0 . 2 , . . . , 1 . 0 and B = 2 . 0 at Rayleigh number Ra = 10 5 ,

e note a fundamental change in the dynamics and structure of

he flow field as B increases from B = 0 . 0 to B = 2 . 0 . First, consid-

ring only the extreme values B = 0 . 0 and B = 2 . 0 , we observe the

ollowing difference in the qualitative behavior of the interface. For

 = 0 . 0 ( Fig. 21 ), which is the classic Rayleigh-Bénard problem in

hich there is no difference in the densities of the two fluids (i.e.,

ρ = 0 ), the height of the convection cells is equal to the height

f the domain � and we observe the steady cellular convection

tructure with three 1 × 1 counter rotating cells as predicted by

he analysis in Section 6.21 of [78] . That the flow is steady, (i.e.,

ndependent of time) in Fig. 21 is apparent after comparing the

emperature fields at t ′ = 1 . 97 × 10 −2 and t ′ = 2 . 36 × 10 −2 . 

Due to the variations in the velocity solution, the thermal Pé-

let numbers are dependent on the regime in which the solution

alls. Because the VOF scheme is inherently non-diffusive, the com-

ositional Péclet numbers are always Pe = + ∞ For the whole layer

onvection regime Pe = 3 . 602 × 10 2 , while in the stratified regime

e = 1 . 004 × 10 2 . In both cases, the Péclet number is sufficiently

mall to justify the use of the entropy viscosity stabilized contin-

ous Galerkin advection scheme for the temperature advection. 

Note that for B = 0 . 0 each of the three 1 × 1 convection cells

verturn at the same fixed rate. On the other hand, for B = 2 . 0

he magnitude of �ρ prevents the denser fluid from reaching the
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Fig. 21. Computations with B = 0 . 0 and Ra = 10 5 on an underlying uniform grid of 196 × 64 square cells at t ′ = 1 . 97 × 10 −2 and t ′ = 2 . 36 × 10 −2 . The background color is 

the temperature, which varies from T = 0 . 0 (dark blue) to T = 1 . 0 (dark red). (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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op of the domain and producing overturns, and hence convec-

ion cells, on the scale of the height of the domain. Rather, the

tructure of the flow shown in Fig. 32 consists of six (roughly)

quare counter rotating 1 
2 × 1 

2 cells below y = 0 . 5 and a similar

tructure above y = 0 . 5 . Thus, for B = 2 . 0 we observe a perma-

ently stratified convection structure. Furthermore, from B = 0 . 7 in

ig. 28 and, perhaps , from B = 0 . 4 in Fig. 25 or B = 0 . 5 in Fig. 26 ,
n; i.e., as B → 2.0 from below with B > B c where 0.3 < B c ≤ 0.7, it

ppears that at the times shown the flow is tending continuously

oward the stratified convection pattern shown in Fig. 32 . 

The features at either end of the interval B = [0 . 0 , 2 . 0] are

onsistent with the diagrams - obtained from experiments - on

he left and right of Fig. 1 in [8] , although in the diagram on

he right the authors have only drawn three cells above and
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Fig. 22. Computations with B = 0 . 1 and Ra = 10 5 on an underlying uniform grid of 196 × 64 square cells at t ′ = 1 . 97 × 10 −2 and t ′ = 2 . 36 × 10 −2 . The background color is 

the temperature, which varies from T = 0 . 0 (blue) to T = 1 . 0 (dark red). (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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three cells below the centerline and, in both drawings, the cells

appear to be more rectangular than square in shape. We assume

that these diagrams are simply rough sketches of the dynamics

of what the authors of [8] refer to as “Whole Layer” (left) and

“Stratified” (right) convection. Perhaps, also, these diagrams are

for different values of the other two nondimensional parameters

the authors varied in the work described in the sequence of
apers [7,8] and [19] ; namely, the ratio a of the height of the

ower layer to the height of the entire domain and the ratio

of viscosity of the lower layer to that of the upper layer. In

he work we present in Section 4.5 we did not vary these other

wo parameters; they were held fixed at a = 0 . 5 and γ = 1 . 0 .

n short, we conclude that our computational results correctly

orrespond qualitatively to what the authors of [8] observe in their
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Fig. 23. Computations with B = 0 . 2 and Ra = 10 5 on an underlying uniform grid of 196 × 64 square cells at t ′ = 1 . 97 × 10 −2 and t ′ = 2 . 36 × 10 −2 . The background color is 

the temperature, which varies from T = 0 . 0 (blue) to T = 1 . 0 (dark red). (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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xperiments when the nondimensional parameters a and γ are

eld fixed at a = 0 . 5 and γ = 1 . 0 . Finally, note the similarity of

he two counter rotating convection cells on the right in Figs. 21 c–

 and 22 c and d to the structure of the flow in Fig. 4 (a) of

7] . 

It is possible to obtain additional insight into the structure

nd dynamics of the flow for various values of B from the results

hown in Figs. 21–32 . As B increases from 0.0 to 0.1, 0.2, and 0.3
n Figs. 21–32 we observe that the rate of overturn decreases,

ntil for B = 0 . 3 the denser material has just reached the top of

he domain at t ′ = 2 . 36 · 10 −2 ( Fig. 24 c and d), whereas for smaller

alues of B the overturn has passed beyond the top of the domain

y t ′ = 2 . 36 · 10 −2 . For B = 0 . 4 we can see from Fig. 25 c and d,

hat the fluid does not reach a full overturn by t ′ = 2 . 36 × 10 −2 

uggesting that there may be a transition between the qualitative

ynamics of the flow at some B c in the range 0.3 ≤ B ≤ 0.4.
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Fig. 24. Computations with B = 0 . 3 and Ra = 10 5 on an underlying uniform grid of 196 × 64 square cells at t ′ = 1 . 97 × 10 −2 and t ′ = 2 . 36 × 10 −2 . The background color is 

the temperature, which varies from T = 0 . 0 (dark blue) to T = 1 . 0 (dark red). (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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In [8] the authors find B c = 0 . 302 when the viscosity ratio is

γ = 6 . 7 . 

For 0.5 ≤ B ≤ 1.0 in Figs. 26–31 the general interface structures

are similar, although with smaller volumes for the “pinched”

regions that are produced during the transition from “Whole
ayer” convection to “Stratified” flow. As shown in Fig. 32 , for

 = 2 . 0 , the stratification is sufficiently strong that the pinched

tructures do not form, although a standing wave does form as

 slight perturbation from the initial location of the interface at

 = 

1 
2 with boundaries at x � 0.5, 1.5, 2.5. 
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Fig. 25. Computations with B = 0 . 4 and Ra = 10 5 on an underlying uniform grid of 196 × 64 square cells at t ′ = 1 . 97 × 10 −2 and t ′ = 2 . 36 × 10 −2 . The background color is 

the temperature, which varies from T = 0 . 0 (dark blue) to T = 1 . 0 (dark red). (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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.1.1. A qualitative comparison to the experiments Davaille and Le 

ars 

In this section we briefly make some additional qualitative

omparisons of our computational results to the experimental

esults of Davaille [19] and Le Bars & Davaille [7,8] . Before doing

o however, it is first necessary to make several caveats concerning

his comparison. First, as we mentioned above, in the experiments
he authors varied two additional nondimensional parameters;

amely, (1) the ratio a of the height of the lower layer to the

eight of the entire domain and (2) the ratio γ of the viscosity of

he fluid that initially occupies the lower layer to the viscosity that

nitially occupies the upper layer. In our computations, shown in

ection 4.5 , we kept these parameters fixed at a = 0 . 5 and γ = 1 . 0 .

econd, in the experiments the two fluids are miscible , whereas in
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Fig. 26. Computations with B = 0 . 5 and Ra = 10 5 on an underlying uniform grid of 196 × 64 square cells at t ′ = 1 . 97 × 10 −2 and t ′ = 2 . 36 × 10 −2 . The background color is 

the temperature, which varies from T = 0 . 0 (dark blue) to T = 1 . 0 (dark red). (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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our computations the two fluids are immiscible . In both cases there

is no surface tension at the boundary between the two fluids. 

The general transition between one type of structure and

another (e.g., “Whole Layer” convection to “Stratified Convection”)

is similar to that found in the experiments shown in [8] , although

the precise location of the transition may differ. A rough com-

parison is show in Fig. 33 . The different grayscale backgrounds in

Fig. 33 correspond to the grayscale regions in Fig. 3 of [19] and
ig. 2 of [8] for a = 0 . 5 . In the results presented in this paper

e do not continue the computation for a sufficiently long times

o confirm that in the 0.3 ≤ B ≤ 0.5 regime the flow oscillates

efore beginning an overturn. However, the observed behavior

oes produce structures that match those described in [8] for the

ength of time for which we do have computational results. This

ifference may be in part due to the fact that in [8] the two fluids

lso vary in viscosity ratio γ , and Rayleigh number Ra. 
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Fig. 27. Computations with B = 0 . 6 and Ra = 10 5 on an underlying uniform grid of 196 × 64 square cells at t ′ = 1 . 97 × 10 −2 and t ′ = 2 . 36 × 10 −2 . The background color is 

the temperature, which varies from T = 0 . 0 (dark blue) to T = 1 . 0 (dark red). (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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.1.2. Numerical artifacts that occur when the interface is 

nderresolved 

Since the VOF method maintains a sharp interface between the

wo compositional fields, it is able to capture features that are ap-

roximately on the order of the grid scale h . However, in cases
here the structures formed by the interface become sufficiently

mall, for example, a thin column of fluid of width 2 h , the in-

erface reconstruction algorithm might produce numerical artifacts

hat are “characteristic” of the combination of the particular recon-

truction algorithm and advection algorithm one chooses to use in
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Fig. 28. Computations with B = 0 . 7 and Ra = 10 5 on an underlying uniform grid of 196 × 64 square cells at t ′ = 1 . 97 × 10 −2 and t ′ = 2 . 36 × 10 −2 . The background color is 

the temperature, which varies from T = 0 . 0 (dark blue) to T = 1 . 0 (dark red). (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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Fig. 29. Computations with B = 0 . 8 and Ra = 10 5 on an underlying uniform grid of 196 × 64 square cells at t ′ = 1 . 97 × 10 −2 and t ′ = 2 . 36 × 10 −2 . The background color is 

the temperature, which varies from T = 0 . 0 (dark blue) to T = 1 . 0 (dark red). (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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Fig. 30. Computations with B = 0 . 9 and Ra = 10 5 on an underlying uniform grid of 196 × 64 square cells at t ′ = 1 . 97 × 10 −2 and t ′ = 2 . 36 × 10 −2 . The background color is 

the temperature, which varies from T = 0 . 0 (dark blue) to T = 1 . 0 (dark red). (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

 

 

 

r  
the VOF method. 7 Here we briefly examine of the nature of one

particular numerical artifact that appears frequently in Section 4.5 .
7 It is important to recognize that this is not a failing of the VOF method in gen- 

eral or of the specific interface reconstruction and advection algorithms we have 

chosen for our work here, since whenever a computation is underresolved, all nu- 

merical methods will exhibit some sort of numerical artifact or artifacts that are 

“characteristic” of that particular method. 

i  

o  

o  

I  

r  

2  
The most common numerical artifact in the computational

esults shown in Section 4.5 is the tendency for the reconstructed

nterface to form ‘droplets’ that are diamond shaped and generally

ccupy a square of four cells, each edge having two square cells

f side h . For example, droplets such as these appear in Fig. 22 a.

n the computations shown in Section 4.5 these droplets typically

esolve into a thin vertical column of fluid of approximately

 h − 4 h in width with a length that is nearly the entire height of
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Fig. 31. Computations with B = 1 . 0 and Ra = 10 5 on an underlying uniform grid of 196 × 64 square cells at t ′ = 1 . 97 × 10 −2 and t ′ = 2 . 36 × 10 −2 . The background color is 

the temperature, which varies from T = 0 . 0 (dark blue) to T = 1 . 0 (dark red). (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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a  
he computational domain. For example Fig. 22 a and b, in which

he more refined computation in Fig. 22 b appears to be sufficiently

ell-resolved to draw the conclusion that a thin column of fluid

s forming in the locations where in Fig. 22 a there are only a few

roplets and no real indication of what the flow “should” look

ike. Or the droplets may resolve into a thin finger that is shorter

han the height of the computational domain such as in Figs. 27 c,

, 28 c and d. 
We note that if a feature of the interface is underresolved, it

an help the user determine if additional refinement is required.

n some instances, perhaps after making a second, more refined

omputation, it will be clear that additional refinement is neces-

ary, sometimes even more refined than the second computation

as. For example see Figs. 22 c and d, neither of which appear

ufficiently well resolved to accept the computation in Fig. 22 d

s well resolved enough to determine the true nature of the
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Fig. 32. Computations with B = 2 . 0 and Ra = 10 5 on an underlying uniform grid of 196 × 64 square cells at t ′ = 1 . 97 × 10 −2 and t ′ = 2 . 36 × 10 −2 . The background color is 

the temperature, which varies from T = 0 . 0 (dark blue) to T = 1 . 0 (dark red). (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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flow. On the other hand, there are instances when the numerical

artifact is sufficiently small so as not to affect the dynamics

of the interface that are of interest and additional resolution

might not be required. For example, depending on the user and

the underlying scientific application, this might be the case for

Figs. 29 c, d, 30 c and d, even though under magnification the

fingers in the refined computations shown in Figs. 29 d and 30 d

do not yet appear fully resolved. In other words, depending on
he application, these computations may or may not be well

esolved enough for the user to arrive at conclusions appro-

riate for their application concerning the flow at this point in

ime. 

In conclusion, we emphasize that the required degree of reso-

ution for a given computation will depend on the purpose of the

omputation and the user’s need for fine detail as opposed to gen-

ral qualitative information concerning the flow. 
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Fig. 33. A qualitative comparison of the computations presented in this paper to the experimental results of Davaille [19] and Le Bars & Davaille [7,8] . The grayscale regions 

correspond to boundaries of the qualitative regions shown in Fig. 3 of [19] and Fig. 2 of [8] for a = 0 . 5 . The experimental data is from Table 3 of [19] and Table 3 of [7] with 

a = 0 . 5 as is the case for all of the computations in this article. The terms “Stratified”, “Dynamic Topography”, and “Whole Layer” used to describe the qualitative state of 

the flow are the same as those used by the authors of [7,8] and [19] . 
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. Conclusions 

We have implemented a Volume-of-Fluid (VOF) interface track-

ng method in the open source finite element code ASPECT, which

s designed to model convection and other processes in the Earth’s

antle. We have demonstrated that this VOF method works effi-

iently and accurately in ASPECT’s parallel environment and with

ts adaptive mesh refinement (AMR) algorithm. 

In two simple benchmark computations we have demonstrated

hat the VOF method translates linear interfaces in a constant tran-

itional flow to machine precision and is second-order accurate

hen we use it to compute the motion of a circular interface in

olid body rotation. These results were as we expected. 

We have also used the VOF method to compute the approxi-

ate solution of a 2D ball (disk) falling in an incompressible Stokes

ow and demonstrated that the velocity and pressure converge at

he expected second-order and one to one-and-a-half order rate,

espectively, for a Q 2 × Q 1 element combination while the volume

ractions converge at a second-order rate. In addition, we com-

ared the use of the VOF method to model the interface in this

roblem with a computation in which the problem is computed

ith a Bound Preserving Discontinuous Galerkin method and we

btain similar if not better results with the VOF method. We used

his same test problem to demonstrate that the AMR strategy de-

eloped for the VOF field yields significantly greater computational

fficiency, without any loss in the accuracy of the computed result.

We then demonstrated that the method shows excellent (vi-

ual) agreement with two standard benchmark problems from the

omputational mantle convection literature. In particular, in the

econd of these benchmarks we use AMR to allow us to compute

t a much higher effective resolution at lower computational cost

han would otherwise be possible. 

Finally, we used the new interface tracking methodology to

tudy a problem involving thermochemical convection in density

tratified flow. This model problem is relevant to the study of

tructures at the core mantle boundary known as Large Low

hear Velocity Provinces (LLSVPs). Recent studies utilizing seismic
maging have revealed large regions with anomalous seismic

roperties in the lower mantle. There are two dome-like regions

eneath Africa and the Pacific with low shear-wave velocities that

xtend some 10 0 0 km above the core-mantle boundary and have

orizontal dimensions of several thousand kilometers [15,21] . Most

nterpretations propose that the heterogeneities are compositional

n nature, differing from the surrounding mantle, an interpretation

hat would be consistent with chemical geodynamic models. Based

n geological and geochemical studies it has been argued that

LSVPs have persisted for billions of years [9] . 

The model problem is designed to study the basic physics un-

erlying the formation of thermal plumes that bring some of this

aterial to the Earth’s surface. In our computations of we use

MR to obtain an effective grid resolution of 768 × 256 square cells

verlaying the fluid interface on an underlying grid of 192 × 64

quare cells. This increase in resolution confirms that for a certain

ange of the nondimensional buoyancy parameter B at Rayleigh

umber Ra = 10 5 our computations of the interface have con-

erged well enough to interpret with confidence the large scale

ynamics of the two regions of differing densities. 

In conclusion, the results of the work presented here demon-

trate that our VOF interface tracking method should perform well

n a number of problems of interest to the computational mantle

onvection community. 
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