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S U M M A R Y
Combining finite element methods for the incompressible Stokes equations with particle-in-
cell methods is an important technique in computational geodynamics that has been widely
applied in mantle convection, lithosphere dynamics and crustal-scale modelling. In these
applications, particles are used to transport along properties of the medium such as the
temperature, chemical compositions or other material properties; the particle methods are
therefore used to reduce the advection equation to an ordinary differential equation for each
particle, resulting in a problem that is simpler to solve than the original equation for which
stabilization techniques are necessary to avoid oscillations.

On the other hand, replacing field-based descriptions by quantities only defined at the loca-
tions of particles introduces numerical errors. These errors have previously been investigated,
but a complete understanding from both the theoretical and practical sides was so far lacking.
In addition, we are not aware of systematic guidance regarding the question of how many
particles one needs to choose per mesh cell to achieve a certain accuracy.

In this paper we modify two existing instantaneous benchmarks and present two new
analytic benchmarks for time-dependent incompressible Stokes flow in order to compare the
convergence rate and accuracy of various combinations of finite elements, particle advection
and particle interpolation methods. Using these benchmarks, we find that in order to retain the
optimal accuracy of the finite element formulation, one needs to use a sufficiently accurate
particle interpolation algorithm. Additionally, we observe and explain that for our higher-order
finite-element methods it is necessary to increase the number of particles per cell as the mesh
resolution increases (i.e. as the grid cell size decreases) to avoid a reduction in convergence
order.

Our methods and results allow designing new particle-in-cell methods with specific con-
vergence rates, and also provide guidance for the choice of common building blocks and
parameters such as the number of particles per cell. In addition, our new time-dependent
benchmark provides a simple test that can be used to compare different implementations,
algorithms and for the assessment of new numerical methods for particle interpolation and
advection. We provide a reference implementation of this benchmark in ASPECT (the ‘Ad-
vanced Solver for Problems in Earth’s ConvecTion’), an open source code for geodynamic
modelling.

Key words: Mantle processes; Numerical approximations and analysis; Numerical mod-
elling; Numerical solutions; Dynamics of lithosphere and mantle.
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1 I N T RO D U C T I O N

Computational geodynamic models are important tools to under-
stand the dynamic processes observed in the solid Earth; for exam-
ple, to model mantle convection, lithosphere dynamics and crustal
deformation. Most of these models involve solving the Stokes equa-
tions with variable rock properties (such as viscosity and density)
for the velocity and pressure. These equations are then coupled to
the time evolution of an advection-diffusion equation for the temper-
ature and, more generally, the advection of additional quantities that
influence rock properties, such as chemical composition (Tackley
1998; McNamara & Zhong 2005; Dannberg & Gassmöller 2018),
grain size (Rozel et al. 2011; Thielmann et al. 2015; Dannberg et al.
2017; Mulyukova & Bercovici 2018) or melt fraction and depletion
(Fischer & Gerya 2016; Gassmöller et al. 2016).

Consequently, a number of different techniques, with various ad-
vantages and disadvantages, have been developed to solve advection
or advection-diffusion equations. Among these are techniques that
directly solve the advection equations using stabilized finite element
or finite difference methods (Brooks & Hughes 1982; Guermond &
Pasquetti 2011; Kronbichler et al. 2012), volume-of-fluid methods
(Hirt & Nichols 1981; Robey & Puckett 2019), but notably also
ones in which ‘particles’ are used to describe the motion of the
material with its associated properties. Among these latter meth-
ods are particle-in-cell (PIC) or marker-and-cell methods (Evans
et al. 1957; Harlow & Welch 1965), and interface tracking methods
such as marker chain (Poliakov & Podladchikov 1992). For a recent
comparison, see Puckett et al. (2018).

PIC methods in particular have been widely used for geodynamic
computations (Tackley & King 2003; Moresi et al. 2003; Gerya &
Yuen 2003; McNamara & Zhong 2004; Popov & Sobolev 2008;
Samuel 2018), since they are conceptually simple and do not re-
quire specialized algorithms or other techniques to stabilize the
solution of the strongly advection-dominated equation. In PIC or
related methods, the advected property is transported on a set of
discrete particles that are advected with the flow. Since each par-
ticle’s movement is independent of all of the other particles, this
converts the partial differential equation for the advection of the
quantity or quantities carried by the particles into a set of ordi-
nary differential equations for each particle’s location and, possi-
bly, the evolution of the quantity. When the particles’ properties
are required for the solution of the Stokes equations for the next
time step, they are interpolated or projected back onto the discrete
grid. After the Stokes solve, the locations and properties of the
particles are updated, for example, by interpolating the newly com-
puted solution or an appropriately determined update back onto the
particles.

Despite the long history of researchers using PIC methods in
geodynamic codes, many challenges continue to exist in the imple-
mentation and application of these methods. Among these are that
PIC methods are difficult to combine with adaptively refined and
dynamically changing meshes, since the number of particles per
cell (PPC) may vary widely during a computation and the numeri-
cal error and convergence properties of the method are difficult to
determine precisely (see also Gassmöller et al. 2018). At a more
fundamental level, we are not aware of a systematic study that con-
siders the different contributions to the overall numerical error in
a PIC scheme. The excellent paper by Thielmann, May and Kaus
(Thielmann et al. 2014) provides many answers in this regard, but
leaves open others that relate, in particular, to the question of what
convergence orders one can expect in time-dependent Stokes flow,
and when appropriately varying the number of PPC. A separate

recent study by Samuel (see Samuel 2018) is concerned with im-
provements of the PIC method for time-dependent shear flow and
reducing the required number of particles, but does not quantify the
influence of the accumulated particle error on the Stokes solution.
We therefore consider the current study an extension of Thielmann
et al. (2014) in which we provide both a theoretical analysis and
numerical evidence that support each other, and complementary to
Samuel (2018) in that we investigate the particle error contributions
on time-dependent flow.

Specifically, we quantitatively determine the accuracy of PIC
methods coupled to finite element-based Stokes solvers in order
to untangle the influence of the following building blocks of PIC
methods on the accuracy of the solution: (1) the number and distri-
bution of particles, (2) the interpolation of particle-based properties
to field-based properties and (3) the integration of the motion of the
particles over time. In order to achieve this we start by reproduc-
ing the instantaneous benchmark results SolCx and SolKz (Zhong
1996; Duretz et al. 2011), and discuss how the convergence rate of
the computed solution depends on different finite element and inter-
polation algorithm combinations. Our numerical results generally
reproduce our theoretical predictions and demonstrate that in order
to recover the intrinsic convergence rate of a given finite element,
we need both a sufficiently accurate particle interpolation algorithm
and sufficiently many PPC. Crucially, however, we also show that
for the chosen algorithms the number of PPC needs to grow with
the mesh resolution in order to retain the optimal convergence order
for higher-order elements, leading to a method in which the cost
of particle advection grows faster than the cost of the mesh-based
computations if higher accuracy is required.

We then extend these considerations to the time-dependent case
by developing two new benchmarks, and use them to evaluate the
coupled finite element/PIC scheme. All of our results are imple-
mented in the open-source geodynamic modelling code ASPECT
(Kronbichler et al. 2012; Heister et al. 2017). It is our intention that
these results will act as reference results for future code compari-
son studies of time-independent or time-dependent PIC advection
algorithms, and will allow researchers to design PIC methods that
use a combination of techniques to ensure optimal accuracy of the
numerical method as a whole.

This paper continues as follows: In Section 2, we present the
continuous model we wish to solve. Section 3 then describes in
detail how we compute numerical approximations to the solution
of the model, and we end the section with a theoretical analysis
of error contributions and the convergence orders one can predict
using this analysis. Section 4 then uses stationary benchmarks to
confirm that the theoretical analysis indeed correctly describes what
one sees in practical computations. Section 5 extends these results
to time-dependent problems: we present two new, time-dependent
benchmarks, the derivations of which, including analytical solu-
tions, may be found in Appendices A and B, respectively. These
benchmarks then allow us to evaluate the error and convergence
rates for time-dependent computations of incompressible Stokes
flow coupled to a PIC advection method. We conclude in Section 6.

2 G OV E R N I N G E Q UAT I O N S

Geologic deformation over long timescales is commonly modelled
by the incompressible Stokes equations for a slow-moving fluid,
using a spatially and temporally variable viscosity that depends
nonlinearly on both the strain rate and pressure of the fluid, as well
as temperature, chemical composition and possibly other factors.
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The driving force for the flow is provided by a buoyancy term
that results from the spatial variability of the density, again due to
temperature, pressure and chemical composition differences.

The incompressible Stokes equations that describe this type of
flow are given by a force balance and mass continuity equations:

− ∇ · (2η ε(u)) + ∇ p = ρ g, (1)

∇ · u = 0, (2)

where u is the velocity, p the pressure, ρ the density, η the viscosity
and g the gravity. Furthermore, ε(u) = 1

2 (∇u + ∇uT ) is the sym-
metric gradient of the velocity and denotes the strain rate within the
fluid.

In more realistic applications, the mass continuity equation (2)
has to be replaced by an equation that allows for compressible
effects. However, as this is tangential to the purpose of the cur-
rent paper, we will simply assume that the fluid is incompressible.
In either case, the equations above are augmented by appropriate
boundary conditions.

A complete description of mantle convection would couple the
equations above to a set of advection-diffusion equations for the
temperature and chemical compositions, as well as possibly other
relevant quantities such as grain size distributions, frozen stress
tensors, etc., all of which are transported along with the velocity u
(see Schubert et al. 2001). If we denote (the components of) these
fields by φc = φc(x, t), c = 1, . . . , C, then each such φc typically
satisfies an advection-diffusion equation of the form

Dφc

Dt
− ∇ · (κc∇φc) = ∂φc

∂t
+ u · ∇φc − ∇ (κc∇φc) = Hc, (3)

augmented by appropriate initial conditions φc(x, 0) = φc,0(x) and,
if necessary, boundary conditions. Hc is a source term that in general
depends on both the flow variables and some or all of the other φc′ .
For example, if φc denotes the temperature, then the source term
might include contributions due to friction heating and adiabatic
compression, while if φc represents a particular material type’s
volume fraction, it might increase its value at the cost of that of
other materials.

The importance of these additional fields lies in the fact that in
realistic descriptions of convection in the Earth, the viscosity η and
density ρ in the Stokes equations above not only depend on strain
rate ε(u) and pressure p but also on these additional variables φc.
Consequently, the resulting set of equations is coupled, nonlinear
and time dependent. An accurate solution of the complete model
therefore requires an accurate way of advecting along these addi-
tional quantities.

In typical applications eq. (3) is dominated by the advection term
u · ∇φc, and the contributions by the diffusion term −∇ · (κc∇φc)
are rather small (if φc denotes the temperature) or are completely
negligible (e.g. if φc denotes a chemical composition). In this paper,
we are concerned with solving these equations for quantities for
which the diffusion term can be neglected; in this case, the equation
above simplifies to

Dφc

Dt
= ∂φc

∂t
+ u · ∇φc = Hc. (4)

Consequently, this paper is devoted to solving the coupled set of
Stokes and advection equations (1), (2) and (4), accurately. In par-
ticular, we will consider approximating the solution of eq. (4) using
particle methods and how these methods affect the accuracy of solv-
ing eqs (1) and (2) using field-based finite element methods when
the two approaches are coupled.

In the following sections, we will not make use of the fact that
we may, in fact, have more than one additional property. As a con-
sequence, we will drop the index c on the quantities φc. However,
everything we will say below remains true for cases with multiple
such properties.

3 N U M E R I C A L M E T H O D O L O G Y

Eqs (1), (2) and (4) can be solved by direct discretization via finite
element, finite volume or finite difference methods, or a variety of
other methods (see e.g. Donea & Huerta 2003; Deubelbeiss & Kaus
2008; Gerya 2009; Ismail-Zadeh & Tackley 2010).

However, discretizing advection problems such as eq. (4) without
introducing oscillations or excessive diffusion is not trivial. As dis-
cussed above, many mantle convection codes have instead used par-
ticle schemes to advect along properties of rocks. In these schemes,
a number of particles k = 1. . . N are characterized by their location
xk(t) and associated properties φk(t). Their location and value then
evolve according to the ordinary differential equation

d

dt
xk(t) = u(xk(t), t), xk(0) = xk,0, (5)

d

dt
φk(t) = H, φk(0) = φk,0, (6)

where H is a function of both particle-based quantities [xk(t), φk(t)],
field-based quantities [u(xk(t), t), ε(u(xk(t), t)), p(xk(t), t)] and
possibly other variables such as the time t. Conversely, coefficients
in the Stokes system (1) and (2) such as the viscosity η and density
ρ at arbitrary points x (e.g. at quadrature points) may depend not
only on field quantities such as velocity and pressure at x but also
on the quantities φk of particles located ‘close’ to x.

While conceptually simple to implement, this approach requires
(i) transferring data from field-based quantities to particle locations
when evaluating the right-hand sides of eqs (5) and (6) at xk , (ii)
integrating particle locations and properties in time according to eqs
(5) and (6), and finally (iii) transferring data back from particle
locations to quadrature points when evaluating coefficients of eqs
(1) and (2) at arbitrary locations x during assembly of matrices and
right-hand sides for the Stokes equation.

All of these three steps introduce errors into the solution pro-
cess: In the first step, the exact solution u(t) is not available, and
one has to use numerical approximations uh(tn) that were found
by approximating the solution of the Stokes equations at discrete
times tn. This error therefore depends on the accuracy of the spa-
tial discretization used for the computed velocity field, and of the
time-stepping scheme. In the second step, the numerical integration
of eq. (5) yields a trajectory xh(t) that is different from x(t) even
if the velocity were known exactly, depending on the accuracy of
the advection solver scheme; likewise, we obtain an approximation
φh, k(t) different from the exact solution φk(t) of eq. (6). Finally, no
particle will typically be located on a quadrature point x at time
t, and the required property φ(x, t) will need to be interpolated in
one of many possible approximate ways from the properties φk(t)
of nearby particles.

We will assess these errors quantitatively in Sections 4 and 5
in a number of benchmarks, for different Stokes discretizations,
different initial particle locations, advection solvers and particle
interpolation methods, all of which we will describe in remainder
of this section.
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3.1 Discretization of the Stokes system

The advection of particles can only be as accurate as the under-
lying velocity field that is used to advect them. In this work, the
velocity is obtained by using finite elements to discretize and solve
the Stokes equations. Specifically, we will employ the common Qk

× Qk − 1 ‘Taylor-Hood’ element (Taylor & Hood 1973) in which
the velocity and pressure are discretized by continuous finite el-
ements of degrees k and k − 1 on quadrilaterals or hexahedra,
respectively. For comparison to the existing results of Thielmann
et al. (2014), we will also use Qk × P−(k − 1) elements in which the
pressure is discretized using discontinuous polynomials of (total)
degree k − 1. Based on finite element theory we expect both the
Qk × Qk − 1 and the Qk × P−(k − 1) elements to show optimal con-
vergence order (Bercovier & Pironneau 1979); that is, to show a
decay of the velocity and pressure errors, when measured in the
L2 norm, as hk + 1 and hk, respectively, where h is the element size
of the mesh. We show in Sections 4 and 5 that this is indeed the
case for our implementation and model setups. In all of our exper-
iments we assume that the Stokes equation is solved either with a
direct solver, or with a sufficiently tight tolerance on an iterative
solver, so that the only remaining error stems from the spatial dis-
cretization of the flow field intrinsic to the finite element we have
used.

3.2 Generation of particles

In time-dependent problems, particles are transported along with the
flow; after some time, they will no longer be at specific locations.
Therefore, algorithms that reconstruct coefficients from particle
properties need to be general and deal with both arbitrary particle
numbers and locations on each cell. However, the test cases we
will consider in Section 4 only solve a single time step without
advecting particles. Thus, the particles are located where they were
created, and we need to make sure not to rely on a specific particle
distribution that controls our results.

We will consider two strategies for choosing the initial particle
locations xk(0) = xk,0:

(i) Create a number of particles NK on a regular grid of points
within the cell K̂ in the reference domain, from where they are
mapped to the corresponding points on each cell K of the trian-
gulation. This method implies that NK is the square of an integer
number of particles per spatial coordinate direction NPPD, that is,
NK = (NPPD)d, where d is the spatial dimension.

(ii) Create a number of particles NK within each cell K, with
locations drawn from a uniform probability distribution on K; here,
NK is equal to the fraction of the volume occupied by cell K relative
to the volume of the global domain �, times the global number of
particles N.

The practical implementation of both algorithms in arbitrary ge-
ometries is described in Gassmöller et al. (2018). Note that approach
(i) will lead to a constant particle count per cell, while approach (ii)
will lead to a roughly constant particle density per area.

Choosing between the two strategies allows us to determine the
influence of different particle distributions on the accuracy of the
solution. As we will see, for our benchmark models with uniform
mesh resolution these differences are in fact pretty small, although
they would become important for adaptive meshes, and after a fi-
nite amount of shear. Furthermore, for the time-dependent bench-
mark cases in Section 5, initial particle locations are less critical

as particles are moving from their starting positions; for easier re-
producibility, we therefore always generate particles at regular grid
locations [approach (i)] in the time-dependent cases.

3.3 Advection of particles

As described above, the advection of particles involves solving eq.
(5) for their position, which we do using a Runge–Kutta method
of second (RK2) or fourth order (RK4). As expected and as
shown for our implementation before (see supporting information
in Gassmöller et al. 2018) the error of particle positions for a given
static flow field reduces as 	t2 and 	t4 for RK2 and RK4, re-
spectively. However, because we will use a second-order accurate
BDF2 time-stepping scheme for our Stokes solution, any particle
advection method is limited for a time-varying velocity field to be
second-order accurate in time. Since the exact solution of the bench-
mark in Section 3.4 is time-independent, this will not be a limiting
factor for our experiments. Nevertheless, this limitation has to be
considered for realistic applications. We also note that our discrete
velocity solutions are only divergence-free in an integral sense, and
evaluating the velocity at the particle locations introduces a spuri-
ous velocity divergence that can lead to the clustering of particles
in certain flow patterns. This phenomenon can be improved using
velocity corrections known as conservative velocity interpolation
(Meyer & Jenny 2004; Wang et al. 2015; Pusok et al. 2017). How-
ever, even perfectly known and divergence free velocities can form
shear patterns that lead to particle clustering; this can be addressed
with appropriate particle weighting, splitting, and merging schemes
(Samuel 2018). We did not employ such methods in our bench-
marks, as we limited our benchmarks to moderate strain, and we
were mostly concerned with the optimal convergence rate possible
with the unmodified advection schemes. Nevertheless, it would be
an interesting future study to quantify the influence of such veloc-
ity modifications on the accuracy of the particle advection, while
ensuring that they do not affect the convergence rate.

3.4 Interpolation of particle data

Since particles carry material properties φk that enter the assembly
of the linear systems used to solve for the field-based quantities,
we need to define how these material properties can be evaluated at
quadrature points x that do not, in general, coincide with the location
of any of the particles. This operation is often called ‘interpolation’
from particle locations to the mesh, though a better term may in fact
be ‘projection’; we will use the terms interchangeably. In particular,
let K be a cell, IK⊆[1, N] be the set of those particle indices (among
the overall N particles) that are located on K, and NK = |IK| be their
number. Then we consider the following two strategies to evaluate
property φ at an arbitrary location x based on the information
{φk}k∈IK that is available on K alone:

(i) Piecewise constant averages. To obtain φ(x) on cell K, we
average the material properties among all particles located on K:

φ|K = 1

NK

∑
k∈IK

φk . (7)

The value φ(x) is then computed by finding the cell K within which x
is located, and taking the local average on K. In theory one could use
different averaging schemes than arithmetic averaging, for example,
harmonic or geometric averaging. However, since it was shown
before that these schemes converge with the same order (though
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varying absolute accuracy) to the correct solution (Thielmann et al.
2014) (see also the related discussion in Heister et al. 2017), here
we limit ourselves to arithmetic averaging.

(ii) Least-squares (bi-/tri-)linear interpolation. In this algorithm,
we seek a function φ that is (bi-/tri-)linear on each cell K. We will
allow it to be discontinuous between cells, and in that case it can be
computed locally on each cell independently. Specifically, we seek
φ|K so that it minimizes the squared error,

ε2 =
∑
k∈IK

[φ|K (xk) − φk]2, (8)

where xk is the location of particle k with associated property φk.
The minimizer φ|K is found by solving a 4 × 4 matrix in 2-D, or an
8 × 8 matrix in 3-D, for the coefficients of the (bi-/tri-)linear least-
squares approximation. To obtain material property values at an
arbitrary x in K then only requires evaluating φ|K (x), that is, evaluat-
ing the (bi-/tri-)linear shape functions of the approximant times their
corresponding coefficient values. As observed before (Thielmann
et al. 2014) this algorithm generates over-/undershooting close to
strong property gradients, which need to be handled in some form,
for example, by a strict limiter for the interpolated property. How-
ever, all of the benchmark results we show below are either suffi-
ciently smooth or have property gradients aligned with the mesh,
therefore we did not need to apply the limiter here. Note that in
contrast to Thielmann et al. (2014) we include the mixed polyno-
mial terms xy (and, in three space dimensions, xz, yz, xyz) in the
interpolation function to stay consistent with the polynomial space
of our pressure element. This modification potentially explains why
our method performs better for lower number of PPC, as discussed
in Section 4.1.

3.5 An error analysis

In this section, let us provide some theoretical considerations for
how the particle-based scheme outlined above might affect the over-
all error in the finite element solution of the Stokes problem. Our
goal here is to derive error convergence orders for the L2 norm
errors in velocity and pressure, that is, for

‖u − uh‖L2 =
(∫

|u(x, t) − uh(x, t)|2 dx

)1/2

, (9)

‖p − ph‖L2 =
(∫

|p(x, t) − ph(x, t)|2 dx

)1/2

. (10)

We will test the statements we will derive in computational experi-
ments in the sections to follow.

Before stating concrete error inequalities, let us present the con-
ceptual framework in which these are presented. In particular, in
Section 4 we will consider the numerical approximation of the so-
lution of stationary Stokes problems (1) and (2) using the finite
element method in which we do not know the exact density ρ and
viscosity η, but only have this information available at the loca-
tions of particles. (In Section 5, where we consider time-dependent
benchmarks, we will in fact only know the exact density and viscos-
ity at points xk whose coordinates are only approximately known;
we ignore this for the moment.) This can be stated as follows: In
the numerical problem that we will solve using the finite element
method, we will use a density ρh = IhRhρ and viscosity ηh = IhRhη,
where the operator Rhf restricts the values of a function f to the
locations of particles, and the operator Ih interpolates the values of
a function defined only at particle locations to the entire domain so

that it can be evaluated at arbitrary quadrature points for use in the
finite element method; Ih can be one of the two options discussed
in the previous subsection. The question is how the replacement
of ρ, η by ρh, ηh affects the accuracy with which we can compute
numerical approximations uh, ph via the finite element method.

Let us then concisely define what problem we solve. In particular,
let Lη be the solution operator of the Stokes equations (1) and (2),
that is, for a given right-hand side ρg and viscosity η, we have
that {u, p} = Lη(ρg) solves the Stokes equations. Furthermore, let
Lh

η be the discrete solution operator, that is, {uh, ph} = Lh
η(ρg)

is the finite element solution of these equations. The question we
want to answer is how the exact solution Lη(ρg) relates to the finite
element approximation Lh

ηh
(ρh g) in which we have replaced density

and viscosity as discussed above. Specifically, we will measure this
error in the ‘energy norm’:

|||Lη(ρg) − Lh
ηh

(ρh g)|||2 = η0‖∇(u − uh)‖2
L2

+ ‖p − ph‖2
L2

, (11)

where η0 is a suitably chosen reference viscosity that ensures that the
two terms are appropriately balanced and have matching physical
units. We will later relate this norm to the L2 norms of both the
velocity and pressure errors (instead of the H1 semi-norm of the
velocity and the L2 norm of the pressure).

To answer the question about the size of the error, let us first con-
sider the following auxiliary problem: It is well known that replacing
a sufficiently smooth function ρ or η by a suitable (i) piecewise con-
stant or (ii) piecewise (bi-/tri-)linear approximation on a mesh of
maximal mesh size h incurs an error proportional to h and h2, re-
spectively, when measuring the error in the L2 norm. In other words,
if we denote these approximants by Phρ and Phη, then

‖ρ − Phρ‖L2 = O(hr ),

‖η − Phη‖L2 = O(hr ),
(12)

where r = 1 for approximation option (i) and r = 2 for option (ii)
of the previous subsection. Concisely, we define Ph locally on each
cell K as follows, when applied to an arbitrary function f:

option (i): Ph f |K = 1

|K |
∫

K
f,

option (ii): Ph f |K = arg min
ϕh∈Q1(K )

1

2
‖ f − ϕh‖2

L2(K ).

(13)

Note that Ph is equal to IhRh if one were to consider infinitely
many particles equally distributed on each cell K because then the
point-based least-squares approximations (7) and (8) agree with the
integral-based least-squares approximations in (13). Below, we will
also need estimates such as (12) in other norms, and consequently
state the following results:

‖ f − Ph f ‖H1 = O(hr−1),

‖ f − Ph f ‖H−1 = O(hr+1),
(14)

where the first denotes the error in the gradient of f.
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Using this argument, we can now decompose the overall error
into four components. Namely, we will write the error as follows:

(
η0‖∇(u − uh)‖2

L2
+ ‖p − ph‖2

L2

)1/2

= |||Lη(ρg) − Lh
ηh

(ρh g)|||
≤ |||Lη(ρg) − Lη(Phρ g)|||︸ ︷︷ ︸

(1)

+ |||Lη(Phρ g) − LPhη(Phρg)|||︸ ︷︷ ︸
(2)

(15)

+ |||LPhη(Phρ g) − Lηh (ρh g)|||︸ ︷︷ ︸
(3)

+ |||Lηh (ρh g) − Lh
ηh

(ρh g)|||.︸ ︷︷ ︸
(4)

Here, the four norm terms on the right correspond, respectively, to
(1) the error introduced by replacing ρ by the projection Phρ when
solving the continuous Stokes equations, (2) the error introduced
by replacing η by the projection Phη when solving the continuous
Stokes equations, (3) the error introduced by further substituting
Phρ, Phη by ρh = IhRhρ, ηh = IhRhη when solving the continuous
Stokes equations and (4) the error introduced by the finite element
solution instead of the exact solution of two problems with the same
coefficients. Let us determine the size of these terms individually,
in increasing order of difficulty.

For the discretization error, (4), it is well known that when using
either Qk × Qk − 1 or Qk × P−(k − 1) finite elements, we have

|||Lηh (ρh g) − Lh
ηh

(ρh g)||| = O(hk), (16)

where h is the diameter of the largest cell of the mesh. It is worth
mentioning that this statement is only correct if the solution is
sufficiently smooth (e.g. u ∈ H k+1 and p ∈ Hk).

The replacement error for the density (1) is also easy. To this end,
one needs to know that the Stokes operator is linear and stable in
the H−1 norm, that is, that

|||Lη f1 − Lη f2||| = |||Lη( f1 − f2)||| ≤ C ‖ f1 − f2‖H−1 , (17)

with some constant C < ∞. Since f1 = ρ and f2 = Phρ, we can use
(14) to show that the first error term satisfies

|||Lη(ρg) − Lη(Phρ g)||| = O(hr+1). (18)

The replacement error for the viscosity, (2), is more difficult to
analyse. However, it is reasonable to assume that the solutions of
two Stokes equations with viscosities η1, η2 differ by an amount
proportional to ‖η1 − η2‖L2 . This would here suggest, invoking
(12), that

|||LPhη(Phρ g) − Lη(Phρ g)||| ≤ D‖η − Phη‖L2 = O(hr ), (19)

again with some constant D. We have no proof of this statement,
though it seems reasonable using standard arguments in the analysis
of elliptic partial differential equations (see e.g. Gilbarg & Trudinger
1983). The use of the L2 norm—or maybe the L∞ norm, for which
one obtains the same estimate—seems natural when analysing so-
lutions this way. One might be tempted to ask whether one could
replace ‖η − Phη‖L2 by ‖η − Phη‖H−1 and thereby gain an order of
convergence. But it will turn out, based on our numerical examples,
that the estimate is indeed correct as stated regarding the order of
convergence.

This leaves the error (3) due to replacing the projections Phρ,
Phη by the interpolants ρh = IhRhρ, ηh = IhRhη. Similar arguments

as those for the errors (1) and (2) yield that

|||LPhη(Phρ g) − Lηh (ρh g)||| ≤ C‖Phρ − Ih Rhρ‖H−1

+D‖Phη − Ih Rhη‖L2 . (20)

The exact size of these terms depends on how many particle loca-
tions we have on each cell, as well as how they are located. All we
know is that if we increase the number of points, and if these points
are uniformly distributed, then IhRh → Ph and consequently the
entire error term goes to zero. For finite numbers of PPC, we will
simply denote the right-hand side as E(h, PPC) with the expectation
that asymptotically E(h, PPC) → 0 as PPC → ∞ or h → 0.

Taking all of this together then yields that we should expect
the following error behaviour in the energy norm of the Stokes
problem:(

η0‖∇(u − uh)‖2
L2

+ ‖p − ph‖2
L2

)1/2

= O(hr+1) + O(hr ) + O(E(h, PPC)) + O(hk). (21)

This immediately yields the desired behaviour of the pressure error
in the L2 norm:

‖p − ph‖L2 = O(hr+1) + O(hr ) + O(E(h, PPC)) + O(hk). (22)

The velocity error in the L2 norm requires marginally more work.
Using the standard Nitsche trick (Brenner & Scott 2007) to obtain
the L2 error from the H1 error provides us with an extra power of h
and then yields

‖u − uh‖L2 = O(hr+2) + O(hr+1)

+O(h E(h, PPC)) + O(hk+1). (23)

The next section of this paper is in essence an exploration of
these last two relationships using concrete test cases.

4 I N S TA N TA N E O U S B E N C H M A R K S

The first set of benchmarks we will consider only solves a single
time step; thus, the positions of particles are known exactly. The
benchmarks are therefore intended to test the influence of initial
particle distributions, Stokes discretizations and the transfer of in-
formation from the particles to field-based quantities.

Specifically, we will consider the SolKz and SolCx benchmarks
(Revenaugh & Parsons 1987; Zhong 1996) that have previously
been used to test the accuracy of Stokes solvers in the presence of
a spatially variable viscosity (Duretz et al. 2011; Kronbichler et al.
2012). For both benchmarks, an exact solution for the velocity and
pressure fields is available. We can then compare the convergence
order we obtain if (i) we use the exact density and viscosity when
assembling the finite element linear system for the Stokes system,
or (ii) we use viscosity and density values that are interpolated from
a set of nearby particles that have each been initialized using the
exact values at their respective location. In the first of these cases,
only the contribution (4) of the errors considered in Section 3.5 is
present, whereas in the second case, all four contributions [(1)–(4)]
matter.

As we will show, and as anticipated in Section 3.5, the way
we interpolate from nearby particles to quadrature points greatly
matters in retaining (or not retaining) the convergence order of the
finite element scheme. To assess this quantitatively, we will evaluate
the difference between the known, exact solution and the computed,
approximate solution in the L2 norm as defined in Section 3.5,
considering both the velocity and pressure. The relevant integrals
are approximated through quadrature using a Gauss formula with
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two more quadrature points in each coordinate direction than the
polynomial degree of the velocity element; this guarantees both an
accurate evaluation of the integral and avoids inadvertent super-
convergence effects.

We will defer to the next section a discussion of the time-
dependent cases where we also have to deal with the additional
error introduced by inexact advection of particle locations.

4.1 SolKz

The SolKz benchmark (Duretz et al. 2011) uses a smoothly varying
viscosity on a 2-D square domain with height and width of one.
It uses tangential boundary conditions, a vertical gravity of 1, and
chooses the density field in such a way that one can construct an
exact solution for the Stokes equation with the given viscosity.

Specifically, the viscosity varies with depth y as

η(x, y) = e2By, (24)

where B is chosen such that the viscosity ratio between top and
bottom is 106. The density is given by

ρ(x, y) = − sin(2y) cos(3πx). (25)

We begin by investigating the influence of the initial particle
locations on the convergence rate of the velocity and pressure so-
lution for either of the two interpolation methods discussed before.
We show these results in Table 1 for different mesh resolutions.
The methods converge with different rates, and indeed at the rates
predicted by eqs (22) and (23). The initial particle locations do not
influence the convergence rate significantly, though the absolute
errors are somewhat larger for random particle locations, likely be-
cause some cells receive unfavourable particle locations (e.g. a high
particle density in only a small volume of the cell). We also observe
that for smaller numbers of PPC than the one shown here, the differ-
ence between the results obtained using regular and random particle
locations is larger. This is intuitive, as for an infinite number of par-
ticles the two methods should generate similar particle locations,
namely, particles in every possible location, while for few particles
all of them could be randomly generated in a very small part of the
cell, leaving a large region unsampled. Having established that the
choice of initial particle locations does not influence the achieved
convergence rate, we will conduct all other experiments with a reg-
ular particle distribution, as this delivers more reproducible model
results.

Given that both viscosity and density in this benchmark are
smooth, we expect the velocity and pressure fields to also be suf-
ficiently smooth for a finite element method to obtain the optimal
convergence order if the coefficients are evaluated exactly at each
quadrature point during the assembly of linear systems. In accor-
dance with earlier studies (Thielmann et al. 2014) we will call this
the direct method and, in the notation of Section 3.5 and eq. (12), it
corresponds to r = ∞ because the projection of the coefficients onto
the function that is actually evaluated is the identity operation. The
results of Section 3.5 then predict that, for both the Qk × Qk − 1 and
the Qk × P−(k − 1) elements, the velocity and pressure errors decay
as hk + 1 and hk, respectively. Indeed, we show this experimentally in
the leftmost columns of Table 2 for Q2 × P−1 (in the top rows), and
for Q3 × Q2 (in the bottom rows). These results—as well as those
in the remainder of the paper—omit data points where the error is
less than approximately 10−12, since at that point round-off errors,
ill-conditioning of the linear systems, and the finite tolerance of
iterative solvers begin to dominate the overall error.

Table 1. Velocity errors ‖u − uh‖L2 and pressure errors ‖p − ph‖L2

for the SolKz benchmark using the Q2 × P−1 Stokes element (k =
2), for arithmetic averaging (r = 1) and bilinear least-squares (r = 2)
interpolation methods for regular and random particle distributions
as discussed in Section 3.2. PPC (particles per cell), k and r are as
defined in Section 3.5.

Arithmetic average (r = 1)

Regular Random

h PPC ‖u − uh‖L2 Rate ‖u − uh‖L2 Rate

1
8 100 7.05 × 10−6 – 7.08 × 10−6 –
1
16 100 1.86 × 10−6 1.92 1.95 × 10−6 1.86
1
32 100 4.81 × 10−7 1.95 4.87 × 10−7 2.00
1
64 100 1.22 × 10−7 1.98 1.29 × 10−7 1.92
1

128 100 3.05 × 10−8 2.00 2.93 × 10−8 2.13
1

256 100 7.63 × 10−9 2.00 7.91 × 10−9 1.89

‖p − ph‖L2 ‖p − ph‖L2
1
8 100 1.91 × 10−2 – 1.92 × 10−2 –
1
16 100 1.24 × 10−2 0.62 1.24 × 10−2 0.63
1
32 100 6.57 × 10−3 0.92 6.60 × 10−3 0.91
1
64 100 3.33 × 10−3 0.98 3.35 × 10−3 0.98
1

128 100 1.67 × 10−3 1.00 1.68 × 10−3 1.00
1

256 100 8.37 × 10−4 1.00 8.40 × 10−4 1.00

Bilinear least squares (r = 2)
Regular Random

h PPC ‖u − uh‖L2 Rate ‖u − uh‖L2 Rate
1
8 100 1.72 × 10−6 – 1.68 × 10−6 –
1
16 100 2.46 × 10−7 2.81 2.49 × 10−7 2.75
1
32 100 3.50 × 10−8 2.81 3.52 × 10−8 2.82
1
64 100 4.56 × 10−9 2.94 4.71 × 10−9 2.90
1

128 100 5.95 × 10−10 2.94 6.55 × 10−10 2.85
1

256 100 8.41 × 10−11 2.82 1.05 × 10−10 2.64

‖p − ph‖L2 ‖p − ph‖L2
1
8 100 4.53 × 10−3 – 4.72 × 10−3 –
1
16 100 1.30 × 10−3 1.80 1.33 × 10−3 1.83
1
32 100 3.42 × 10−4 1.93 3.49 × 10−4 1.93
1
64 100 8.67 × 10−5 1.98 8.84 × 10−5 1.98
1

128 100 2.17 × 10−5 2.00 2.22 × 10−5 1.99
1

256 100 5.43 × 10−6 2.00 5.54 × 10−6 2.00

Next, we investigate the case where the viscosity and density are
not obtained from an exactly prescribed function, but are instead
interpolated from nearby particles. The corresponding convergence
orders for the velocity and pressure errors are shown in the second
and third set of columns in Table 2. For these results, we use between
4 and 361 PPC, distributed on a regular, equidistant grid. For models
in which results depend on increasing PPC we always choose the
smallest, most efficient number of particles that reaches the largest
possible convergence rate.

The table then shows that a cell-wise arithmetic average inter-
polation for the Q2 × P−1 element reduces the convergence of the
velocity error to second order. We have verified that this remains so
if the number of PPC were larger than the one used in the table. In
other words using a cell-wise constant averaging is suboptimal by
one order no matter how many PPC are used, and this also makes
sense in view of the discussion in Section 3.5 that suggests that the
best order that can be achieved is min {k + 1, r + 1} for the velocity
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Table 2. Velocity errors ‖u − uh‖L2 and pressure errors ‖p − ph‖L2 for the SolKz benchmark using the Q2 × P−1 (top rows) and Q3 × Q2 (bottom rows)
Stokes elements. PPC (particles per cell), k and r are as defined in Section 3.5.

Q2 × P−1 (k = 2)

‖u − uh‖L2 Direct method (r = ∞) Arithmetic average (r = 1) Bilinear least squares (r = 2)

h Error Rate PPC Error Rate PPC Error Rate

1
8 1.51 × 10−6 – 4 6.32 × 10−6 – 4 2.24 × 10−6 –
1
16 2.50 × 10−7 2.60 4 1.61 × 10−6 1.97 4 3.61 × 10−7 2.63
1
32 3.52 × 10−8 2.80 4 4.15 × 10−7 1.96 9 4.62 × 10−8 2.97
1
64 4.53 × 10−9 3.00 4 1.05 × 10−7 1.98 25 5.3 × 10−9 3.12
1

128 5.7 × 10−10 3.00 4 2.63 × 10−8 2.00 49 6.75 × 10−10 2.97
1

256 7.23 × 10−11 3.00 4 6.58 × 10−9 2.00 100 8.41 × 10−11 3.00
1

512 9.14 × 10−12 3.00 4 1.64 × 10−10 2.00 196 1.05 × 10−11 3.00

‖p − ph‖L2
1
8 5.02 × 10−3 – 4 1.93 × 10−2 – 4 4.58 × 10−3 –
1
16 1.33 × 10−3 1.90 4 1.24 × 10−2 0.64 4 1.31 × 10−3 1.80
1
32 3.44 × 10−4 2.00 4 6.58 × 10−3 0.92 9 3.43 × 10−4 1.94
1
64 8.68 × 10−5 2.00 4 3.33 × 10−3 0.98 25 8.67 × 10−5 1.98
1

128 2.17 × 10−5 2.00 4 1.67 × 10−3 1.00 49 2.17 × 10−5 2.00
1

256 5.43 × 10−6 2.00 4 8.37 × 10−4 1.00 100 5.43 × 10−6 2.00
1

512 1.36 × 10−6 2.00 4 4.19 × 10−4 1.00 196 1.36 × 10−6 2.00

Q3 × Q2 (k = 3)
‖u − uh‖L2 Direct method (r = ∞) Arithmetic average (r = 1) Bilinear least squares (r = 2)

h Error Rate PPC Error Rate PPC Error Rate
1
8 3.1 × 10−7 – 4 5.78 × 10−6 – 9 1.26 × 10−6 –
1
16 2.48 × 10−8 3.64 4 1.36 × 10−6 2.08 9 1.64 × 10−7 2.94
1
32 1.59 × 10−9 3.96 4 3.34 × 10−7 2.03 16 2.09 × 10−8 2.97
1
64 9.9 × 10−11 4.00 4 8.27 × 10−8 2.01 36 2.27 × 10−9 3.20
1

128 6.23 × 10−12 3.99 4 2.06 × 10−8 2.01 81 2.52 × 10−10 3.17
1

256 4 5.13 × 10−9 2.00 169 3.01 × 10−11 3.07
1

512 4 1.28 × 10−9 2.00 361 3.66 × 10−12 3.04

‖p − ph‖L2
1
8 7.04 × 10−4 – 4 1.86 × 10−2 – 9 1.37 × 10−3 –
1
16 1.15 × 10−4 2.61 4 8.27 × 10−3 1.17 9 1.18 × 10−3 0.21
1
32 1.68 × 10−5 2.78 4 3.06 × 10−3 1.43 16 3.52 × 10−4 1.74
1
64 2.3 × 10−6 2.89 4 1.11 × 10−3 1.47 36 9.19 × 10−5 1.94
1

128 3.03 × 10−7 2.92 4 3.99 × 10−4 1.48 81 2.32 × 10−5 1.98
1

256 3.89 × 10−8 2.96 4 1.43 × 10−4 1.48 169 5.83 × 10−6 2.00
1

512 4.94 × 10−9 2.98 4 5.07 × 10−5 1.49 361 1.46 × 10−6 2.00

and min {k, r} for the pressure [see eqs (22) and (23)]. For the ele-
ment used here, we have k = 2, and cell-wise constant interpolation
implies r = 1, so we need to expect the observed reduction in order
of convergence.

When we use the bilinear least-squares interpolation (r = 2) we
find an interesting behaviour that was briefly observed, but not fully
explored before (Thielmann et al. 2014); at low resolutions and
for a constant number of PPC the velocity error decreases with
nearly the expected rate of the direct method, but then degrades
to second-order convergence (not shown in the table; however, see
Fig. 1 and compare also fig. 6(b) of Thielmann et al. (2014)). Here
we show that increasing the number of PPC approximately linearly
with increasing resolution recovers the expected convergence rate
of the Stokes element (see the last set of columns in Table 2 and the
top plot in Fig. 1). This is a behaviour that to our knowledge has
not been described using geodynamic benchmark results before.
We also note that our implementation seems to be less sensitive to

the number of PPC since our convergence rate remains optimal to
h = 1

512 for PPC = 256, while the implementation in (Thielmann
et al. 2014) degrades to second order at h ≈ 1

128 for the same number
of PPC. We speculate that this is caused by our use of a bilinear
approximation, instead of a linear one, as discussed in Section 3.4.
The pressure error for the Q2 × P−1 element shown in Table 2
behaves as expected, it is suboptimal by one order for the arithmetic
averaging and is identical to the direct method for the bilinear least-
squares interpolation; both results are independent of PPC (not
shown in the table). All of these results are of course consistent with
the predictions of Section 3.5, if one assumes a specific relationship
for E(h, PPC) as further discussed below.

Recomputing the results above for the Q3 × Q2 Stokes element
reveals some similarities, but also noteworthy variations. For the ve-
locity, the direct method decreases the error with the expected fourth
order. The arithmetic average interpolation method again achieves
second-order accuracy, which for this element is sub-optimal by two
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Figure 1. Velocity errors ‖u − uh‖L2 for the SolKz benchmark for the Q2 × P−1 element (k = 2, top) and for the Q3 × Q2 element (k = 3, bottom), using
bilinear interpolation (r = 2). The error is plotted as a function of both mesh resolution (h) and number of particles per cell (PPC).

orders. The bilinear least-squares interpolation results in second-
order convergence with constant PPC (not shown in Table 2, but
shown in the bottom plot in Fig. 1), and third-order convergence
with increasing PPC. However, as expected it is impossible to re-
cover the fourth-order convergence rate of the direct method with
increasing PPC; this is consistent with the theoretical prediction

that the velocity error converges at best with a rate of min {k + 1,
r + 1}, for k = 3 and r = 2. As for the Q2 × P−1 element, these
results are all consistent with the predictions of eqs (22) and (23);
the exception is that for arithmetic averaging, one would expect a
first-order convergence rate for the pressure when in fact we observe
order 1.5.
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To further clarify the effect of the number of PPC on the
convergence rate when using the bilinear interpolation scheme
(r = 2), Fig. 1 shows convergence data for the velocity error
‖u − uh‖L2 as a function of both the mesh resolution (h) and the
number of PPC. The plots show that the optimal convergence or-
der can indeed be recovered for the Q2 × P−1—but not the Q3

× Q2—element, if one uses sufficiently many PPC. For both el-
ements, the velocity error is well described by the approximation
‖u − uh‖L2 = O(h3) + O(h2PPC−1). This can be compared with
(23), predicting O(hmin{k+1,r+1}) + O(h E(h, PPC)), to postulate a
specific form for E(h, PPC), namely E(h, PPC) = h PPC−1. For the
two parts of Fig. 1, we have k = 2 or 3 and r = 2.

Fig. 1 only shows velocity errors. We do not show corresponding
figures for convergence data for the pressure error because for a
bilinear reconstruction, the pressure converges at a fixed rate and
is essentially independent of the number of PPC. Increasing the
number of particles therefore does not increase the accuracy of the
pressure, unlike for the velocity.

As a consequence of all of these considerations, for a fixed num-
ber of PPC—that is, the only case that can be considered scalable
to large problems with fine meshes –, both elements only yield
an asymptotic convergence rate of ‖u − uh‖L2 = O(h2). In addi-
tion, it is worth mentioning that using 196, 361, or even 4096
PPC would make particle advection in time-dependent problems
far more expensive than solving the Stokes equation, and that using
the corresponding 143 = 2, 744, 193 = 6, 859 or even 643 = 262,
144 PPC in three space dimensions is not a realistic option. Conse-
quently, unless additional measures are taken, any practical use of
particle methods combined with higher-order finite elements will
be prohibitively expensive for high mesh resolutions, or suffer from
a sub-optimal convergence rate.

4.2 SolCx

The second instantaneous benchmark we investigate is SolCx, where
the viscosity is described by

η(x, y) =
{

1 if x < 0.5
106 if x ≥ 0.5,

(26)

and the density by

ρ(x, y) = − sin(πy) cos(πx), (27)

all again on the unit square � = (0, 1)2. The complete derivation
of the exact solution uses a propagator matrix method and is de-
scribed in Zhong (1996). The defining property of this benchmark
is that the discontinuous viscosity implies a nearly discontinuous
pressure field and a velocity field that has a kink. Consequently, we
can generally not expect optimal convergence rates unless (i) the
mesh is aligned with the discontinuity and (ii) we use a pressure
finite element that is discontinuous. While these properties reduce
the usefulness of the benchmark for general problems, it is useful
for our investigation for an unrelated reason: While the density of
the benchmark problem can only be approximated with the expected
accuracy of the particle interpolation methods mentioned in Sec-
tion 3.4 (namely, O(h) for arithmetic averaging and O(h2) for the
bilinear least-squares method), the viscosity is cell-wise constant if
one uses a mesh that is aligned with the interface, as we will do
here. The viscosity can therefore be interpolated exactly from par-
ticles to cells independent of the interpolation method. This allows
us to separate influences from density and viscosity errors on the
pressure and velocity solution. Specifically, within the analysis of
Section 3.5, this implies that the error contribution labelled (2) in eq.

(15) above does not exist for this benchmark and that, consequently,
eqs (22) and (23) can be replaced by

‖u − uh‖L2 = O(hr+2) + O(h E(h, PPC)) + O(hk+1), (28)

‖p − ph‖L2 = O(hr+1) + O(E(h, PPC)) + O(hk). (29)

In other words, as a function of the interpolation order r, the expected
convergence order is one higher than in the general case represented
by the SolKz benchmark discussed in the previous subsection.

Table 3 demonstrates convergence of the velocity and pressure
for the Q2 × P−1 element (top rows) and the Q3 × Q2 element
(bottom rows).

Starting with the Q2 × P−1 element (k = 2) and the direct method
(r = ∞, left-most columns of the top half of the table), the veloc-
ity error decreases with O(h3) and the pressure error with O(h2)
as expected and as reported previously (Kronbichler et al. 2012),
although half an order higher than reported in Thielmann et al.
(2014). Similarly, and as predicted by eqs (28) and (29) above,
when using particles and bilinear reconstructions (r = 2, right-most
columns of the table), we obtain the same convergence rates as for
the direct method. The one exception that violates our theoretical
predictions is when using particles and arithmetic averaging (r = 1,
middle columns) where the theory predicts third and second-order
convergence for velocity and pressure, respectively, but we only
obtain second order for both. The table shows this for a constant
number of PPC, suggesting that perhaps the term involving E(h,
PPC) limits the convergence order; however, we have verified that
even with large values of PPC, the convergence rate remains at two
for the velocity. While we lack an understanding of why theory and
practice do not agree here, we note that our data are consistent with
previous results in Thielmann et al. (2014).

As described before (Kronbichler et al. 2012; Thielmann et al.
2014), using a continuous pressure element like Q3 × Q2 (k = 3)
in general does not result in the optimal convergence rate for the
pressure error because of the discontinuity in the pressure solution.
Indeed, all methods to evaluate coefficients (independently of PPC
choice) now only reach a pressure convergence rate of O(h1/2) as
shown in the bottom half of Table 3. Nevertheless, as expected
for this benchmark despite the suboptimal pressure solution, the
velocity error is still able to converge with the expected rates for
the direct method (r = ∞, left-most columns) and the bilinear
least-squares method (r = 2, right-most columns), namely O(h4).
However, in order to obtain the latter result, we now need to increase
PPC∝h−2: using a constant number of PPC yields a suboptimal
convergence order of O(h2), whereas using PPC∝h−1 results in
O(h3).

The outlier is again the velocity error when using the piecewise
constant averaging (r = 1) where one would expect third-order
convergence but we only observe second order.

The convergence orders predicted for the bilinear interpolation of
the density—using PPC∝h−2—were one order higher than we saw
for the SolKz benchmark when using PPC∝h−1. This conclusion
followed from the fact that the viscosity interpolation for SolCx is
exact, and remains unchanged if one tried to solve the benchmark
with PPC∝h−2. In order to verify that this interpretation is in fact
correct, we repeat the SolKz benchmark with a density that is in-
terpolated from particles, but a viscosity that is exact (i.e. using
the particles for density, but the direct method for viscosity)—see
the results shown in Fig. 2. The Q2 × P−1 element shows no differ-
ence in the computations with interpolated viscosity, as they already
reached the convergence order implied by the discretization error
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Evaluating the accuracy of particle methods 1925

Table 3. Velocity errors ‖u − uh‖L2 and pressure errors ‖p − ph‖L2 for the SolCx benchmark using the Q2 × P−1 Stokes element (top rows) and the Q3 ×
Q2 Stokes element (bottom rows). PPC (particles per cell), k and r are as defined in Section 3.5.

Q2 × P−1 (k = 2)

‖u − uh‖L2 Direct method (r = ∞) Arithmetic average (r = 1) Bilinear least squares (r = 2)

h Error Rate PPC Error Rate PPC Error Rate

1
8 1.32 × 10−5 – 4 3.16 × 10−5 – 4 1.36 × 10−5 –
1
16 1.66 × 10−6 2.99 4 7.30 × 10−6 2.12 4 1.93 × 10−6 2.81
1
32 2.08 × 10−7 3.00 4 1.79 × 10−6 2.03 9 2.36 × 10−7 3.03
1
64 2.60 × 10−8 3.00 4 4.44 × 10−7 2.01 25 2.79 × 10−8 3.08
1

128 3.26 × 10−9 3.00 4 1.11 × 10−7 2.00 49 3.50 × 10−9 3.00
1

256 4.08 × 10−10 3.00 4 2.77 × 10−8 2.00 100 4.39 × 10−10 3.00
1

512 5.13 × 10−11 3.00 4 6.92 × 10−9 2.00 196 5.87 × 10−11 2.90

‖p − ph‖L2
1
8 1.48 × 10−3 – 4 3.16 × 10−3 – 4 1.53 × 10−3 –
1
16 3.7 × 10−4 2.00 4 8.00 × 10−4 1.99 4 3.83 × 10−4 2.00
1
32 9.22 × 10−5 2.00 4 2.00 × 10−4 2.00 9 9.29 × 10−5 2.05
1
64 2.30 × 10−5 2.00 4 5.00 × 10−5 2.00 25 2.30 × 10−5 2.01
1

128 5.75 × 10−6 2.00 4 1.25 × 10−5 2.00 49 5.75 × 10−6 2.00
1

256 1.44 × 10−6 2.00 4 3.12 × 10−6 2.00 100 1.44 × 10−6 2.00
1

512 3.59 × 10−7 2.00 4 7.80 × 10−7 2.00 196 3.59 × 10−7 2.00

Q3 × Q2 (k = 3)
‖u − uh‖L2 Direct method (r = ∞) Arithmetic average (r = 1) Bilinear least squares (r = 2)

h Error Rate PPC Error Rate PPC Error Rate
1
8 6.04 × 10−7 – 4 3.15 × 10−5 – 100 9.10 × 10−7 –
1
16 4.03 × 10−8 3.90 4 7.29 × 10−6 2.11 400 5.84 × 10−8 3.96
1
32 2.60 × 10−9 4.00 4 1.79 × 10−6 2.03 1600 3.70 × 10−9 3.98
1
64 1.67 × 10−10 4.00 4 4.44 × 10−7 2.01 6400 2.34 × 10−10 3.97
1

128 1.98 × 10−11 3.10 4 1.11 × 10−7 2.00 25600 1.93 × 10−11 3.60
1

256 4 2.77 × 10−8 2.00

‖p − ph‖L2
1
8 8.81 × 10−3 – 4 8.87 × 10−3 – 100 8.89 × 10−3 –
1
16 6.22 × 10−3 0.50 4 6.18 × 10−3 0.52 400 6.22 × 10−3 0.51
1
32 4.39 × 10−3 0.50 4 4.38 × 10−3 0.50 1600 4.39 × 10−3 0.50
1
64 3.1 × 10−3 0.50 4 3.10 × 10−3 0.50 6400 3.1 × 10−3 0.50
1

128 2.19 × 10−3 0.50 4 2.19 × 10−3 0.50 25600 2.19 × 10−3 0.50
1

256 4 1.55 × 10−3 0.50

(not shown in the figure). However, the Q3 × Q2 element now also
reaches the optimal convergence order for velocity (namely, 4) and
pressure (i.e. 3). Moreover, to achieve this, we now also require
PPC∝h−2 for the SolKz benchmark. All of this follows from the
theoretical considerations of Section 3.5 and shows the usefulness
of separating the total error into components that can be tested
individually.

Finally, we have run additional tests in which the mesh cells are
not aligned with the viscosity jump (by using an odd number of cells
in each direction), and have confirmed previous results that a non-
aligned jump limits the convergence order to O(h1) for the velocity
and O(h1/2) for the pressure (Kronbichler et al. 2012; Thielmann
et al. 2014). The choice of finite element, particle method, and
number of PPC does not influence this result and does not limit the
convergence order any further.

In summary, these experiments show the importance of the choice
of PPC and particle interpolation method in practical applications,
and that their optimal choices differ depending on whether the par-
ticles only carry density, or also viscosity information, and also

depend on the continuity of the viscosity. In particular, we may
need to grow the number of PPC as O(h−1) or even O(h−2) to retain
the convergence order of the finite element scheme if the expected
convergence order is better than O(h2). This requires choosing be-
tween one of three options: (i) One needs to use a potentially very
large number of PPC to retain the accuracy of the Stokes discretiza-
tion; in particular, if high accuracy is required or the computations
are in three space dimensions. This may be prohibitively expen-
sive, however; for example, in the Q3 × Q2 solution of the SolCx
case with h = 1

128 and PPC = 25, 600 (see Table 3), the particle
operations associated with the one time step we solve account for
some 95 per cent of the overall run time. (ii) One accepts the loss
of accuracy by using too few PPC, although that then calls into
question the use of higher-order polynomial spaces in the Stokes
discretization. (iii) One develops methods with higher accuracy to
project properties from particle locations to fields. An alternative is
to use field-based—instead of a particle-based—descriptions of the
temperature, chemical composition, or other advected quantities as
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1926 R. Gassmöller et al.

Figure 2. Velocity errors ‖u − uh‖L2 (top) and pressure errors ‖p − ph‖L2 (bottom) for the SolKz benchmark for the Q3 × Q2 element (k = 3) and bilinear
interpolation (r = 2). The error is plotted as a function of both mesh resolution (h) and number of particles per cell (PPC). In contrast to Fig. 1, here we
interpolate only the density from particles (i.e. we use the exact viscosity in the assembly of the finite element linear system), and we recover fourth-order
convergence rate in velocity and third order in pressure.

discussed in Kronbichler et al. (2012); in that case, the effort for
the Stokes solve and the advection solve is automatically balanced.

Finally, we want to emphasize that higher-order PIC schemes
with a constant number of PPC have been successfully developed
for other applications like the shallow-water equation, and the vortex
formulation of the Navier–Stokes equations (Edwards & Bridson

2012). In other words, we do not argue that the dependence on
PPC is an intrinsic property of any higher-order PIC schemes, but
is rather a consequence of the algorithmic differences between our
methods and those implemented in Edwards & Bridson (2012).
It is apparent that determining the precise differences responsible
provides a useful direction for future research.
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5 T I M E - D E P E N D E N T B E N C H M A R K S

The previous section presented benchmarks that assess different
strategies for the transfer of information from (stationary) particle
locations back to the finite element mesh, along with the error, which
was introduced by this operation. On the other hand, in realistic
applications, particles will be advected along, and consequently the
overall error will contain contributions that are due to the transfer
of particle information to the mesh, but also due to the fact that we
only know particle locations up to the numerical error introduced
in the integration of particle trajectories, as discussed in Section 3.
Here we will numerically test how large this overall error is, and
what effect it has on the numerical solution of the Stokes equation
when feeding information back to the Stokes solver.

To this end, we derive two different time-independent solutions
to the Stokes equations (1) and (2), in an annulus and in a box, in
which the exact density ρ is constant on streamlines. As we noted
before a spatially varying viscosity could limit the convergence rate
we are able to achieve with our interpolation methods, and might
obscure the error of the particle advection method; consequently, we
choose a constant viscosity. When one solves the Stokes equations
with this setup, the solution will not change with time, since ρ is
constant along streamlines, and ρ is advected along these stream-
lines. However, if the density (as part of the right-hand side) is
inexactly interpolated from particles in each time step, and the par-
ticles are inexactly advected along with the computed velocity, then
the numerical solution will change with time, and we can assess
the accuracy of the PIC algorithm using the difference between ex-
act (time-independent) and computed (time-dependent) solution. In
our experiments, we will evaluate this numerical error for different
values of the (largest) grid size hmax and different numbers of PPC.

Given that we use a constant viscosity, the same considerations
apply as for the SolCx benchmark in Section 4.2. Namely, one might
expect that if the time discretization error is negligible, we could
obtain the same convergence rates as shown in eqs (28) and (29):

‖u(t) − uh(t)‖L2 = O(hmin{k+1,r+2}) + O(h E(h, PPC),

‖p(t) − ph(t)‖L2 = O(hmin{k,r+1}) + O(E(h, PPC)).
(30)

5.1 A time-dependent benchmark in an annulus

For the first concrete realization of the approach outlined above,
we need to construct a test case with a steady-state velocity field
that depends on a spatially non-constant density that we can advect
along either as a field or with particles. We start by choosing the
domain as a 2-D annulus with inner and outer radii R1 = 1 and R2

= 2, respectively.
In this situation, we can express the equations and the solution

in a cylindrical coordinate system in terms of the radius r and the
azimuthal angle θ . A solution of eqs (1) and (2) can then be obtained
by setting

η = 1, ρ(r, θ ) = 48r 5, g(r, θ ) = r 3

384
er + eθ , (31)

where er and eθ are the radial and azimuthal unit vectors, respec-
tively. Such a gravity vector is not the gradient of a gravity potential
and consequently not physical, but this is of no importance here.
The Stokes system can then be solved using a separation of variables
approach and yields

u(r, θ ) = 0er − r 7eθ , p(r, θ ) = r 9

72
− 512

72
, (32)

Figure 3. Convergence rates for the velocity ‖u − uh‖L2 and pressure ‖p −
ph‖L2 for the time-dependent benchmark on the annulus using Q2 × Q1

and Q3 × Q2 element combinations, respectively. The results shown here
use the exact density.

for the velocity and pressure. In other words, the flow field is cir-
cular around the centre with a velocity that varies with radius.
Importantly, while all solution fields in question are polynomials in
r and θ , their degrees are sufficiently high so as to not be in the finite
element spaces we use. The benchmark is then completely defined
by prescribing η and g as above, along with prescribed tangential
velocity boundary values on the inner and outer boundaries of the
annulus, and the initial distribution of ρ. Note, that while it seems
unintuitive for a gravity in eθ direction to cause a flow in the −eθ

direction, one can think of this flow as being driven by the pre-
scribed tangential velocity at the outer boundary, which is gradually
reduced by the gravity with decreasing radius. A detailed derivation
and visualization of this solution can be found in Appendix A and
Fig. A1.

All experiments in this section show the error between the (sta-
tionary) exact solution u, p and ρ and the (time-dependent) numer-
ical approximation uh , ph and ρh at time t = 4π

27 ≈ 0.0982, which
equals two complete revolutions of particles on the outer edge r =
R2.

5.2 Results of the time-dependent annulus benchmark

If we use the exact (and unchanging) density when computing the
numerical solution of the Stokes equation, one expects convergence
to the exact solution with an appropriate power of the mesh size.
We verify that our solver achieves the expected convergence orders
in Fig. 3 for both Q2 × Q1 and Q3 × Q2 elements.

On the other hand, if the density at each time step is interpolated
from particles to quadrature points, then the solution will vary from
time step to time step due to the fact that particle locations are
advected along with the numerical approximation of the velocity
field u.

Fig. 4 shows convergence results for the Q2 × Q1 element (k =
2) for the velocity and pressure. As was shown in the instantaneous
benchmarks above (Section 4), the orders of convergence of the
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1928 R. Gassmöller et al.

Figure 4. The convergence rate of ‖u − uh‖L2 (top), ‖p − ph‖L2 (middle) and ‖ρ − ρh‖L2 (bottom) measured at t = 4π /27 for the time-dependent benchmark.
Density is carried on particles and is interpolated as cell-wise arithmetic average (r = 1, left) and bilinear least-squares interpolation (r = 2, right). All models
use a Q2 × Q1 element (k = 2) and RK2 to advect particles. Note that only with bilinear least-squares interpolation and an increasing number of particles per
cell (PPC) is the third-order convergence rate of velocity recovered. In all cases, ‖p − ph‖L2 converges at second-order rate with no apparent influence due to
the number of PPC (i.e. all dots fall on each other), while the convergence rate of ‖ρ − ρh‖L2 depends on the interpolation scheme, but not on PPC.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/219/3/1915/5567185 by guest on 31 O

ctober 2022



Evaluating the accuracy of particle methods 1929

velocity and pressure error directly depend on the interpolation
scheme, which also determines the convergence order for the error
in density. The rates we observe in the figure exactly correspond to
the predictions of (12) and (30) with one exception; for the velocity
error with piecewise constant interpolation of the density (top left
panel), we would have expected third-order convergence (min {k +
1, r + 2} = 3) if the temporal error were negligible, whereas we
only observe second order. Furthermore, this result is independent
of PPC. We are unsure about the reasons for this, but note that it
is consistent with observing the same phenomenon for the SolCx
benchmark which uses a similar setup (see Section 4.2).

As expected, for the bilinear interpolation (r = 2), the optimal
convergence rate is only recovered if the number of PPC is increased
as the mesh is refined and the number of cells increases. This obser-
vation is consistent with our instantaneous benchmarks above, and
the observation in Thielmann et al. (2014) that the convergence rate
is suboptimal for constant PPC. All of these results are identical
for the RK2 and RK4, advection schemes, which is why we only
present the RK2 results.

Fig. 5 shows the corresponding results for the Q3 × Q2 element (k
= 3). For lack of any new information we omit the arithmetic aver-
aging case (r = 1) and instead compare the RK2 integration scheme
to the RK4 integrator. We start by pointing out that the integration
scheme (RK2 versus RK4), the PPC (16–6400), and the finite el-
ement (Q2 × Q1 versus Q3 × Q2) do not change the convergence
rate of the density: it remains second-order accurate. However pres-
sure and velocity show significant differences as predicted by eq.
(30). The only case where we obtain a lower convergence order than
predicted by eq. (30) is the velocity error when using the RK2 in-
tegrator (top left panel), which only reduces with third-order where
we would have expected fourth order (min {k + 1, r + 2} = 4).
Interestingly, however, the expected order can be recovered by us-
ing the RK4 integrator and an increasing number of PPC (top right
panel), suggesting that it is the temporal error that we neglected in
deriving eq. (30) that is responsible for the reduced order.

Fig. 6 plots selected information from the two previous figures
as velocity error over number of PPC for different finite elements,
particle integration schemes, and mesh resolutions. In general all
of the computations we made show a linear decrease of velocity
error with increasing PPC (i.e. E(h, PPC)∝(PPC)−1 for fixed h),
which eventually transitions into a constant error at a model-specific
number of PPC when the error sources (1), (2), and (4) of Section 3.5
begin to dominate over the error of the particle interpolation. The
number of PPC at which the transition occurs can be interpreted
as optimal, in the sense that it recovers the design rate of the finite
element with the minimum number of particles. As can be seen
from this figure, the optimal number of PPC is dependent on the
finite element type and in the case of the Q3 × Q2 element also
the particle integrator and in all configurations the mesh size. Most
likely it will also depend on the problem one is solving. Therefore,
the optimal number of PPC cannot be accurately determined for
practical applications except by performing a convergence series test
with increasing PPC for the specific problem at the final resolution.

However, we propose that it is possible to determine a nearly
optimal number of PPC for most problems on a coarse resolution,
and then appropriately scale this number to the target resolution,
considering the convergence order of the finite element (k), the
interpolation scheme (r), and the type of properties carried on the
particle (density or viscosity). To illustrate this, consider the case
presented in the top right panel of Fig. 4, which uses the default
values for k (namely, 2), r (2), and the RK2 integration scheme of our
reference implementation in ASPECT. The series of models with

increasing PPC shows that when using PPC = 16, the error is already
sufficiently close to the error when using larger numbers of PPC
for h = 1

8 to consider this number appropriate for this resolution.
As determined above, the PPC-dependent error term discussed in
Section 3.5 scales as E(h, PPC) = O(h2PPC−1); consequently, we
need to choose PPC∝h−1 to achieve the expected velocity error
convergence order of O(h3). Thus, choosing PPC = 32 for h = 1

16

is a natural choice, as is PPC = 64 for h = 1
32 . In fact, we would

have done so for the figure, but our particle generation algorithm
requires PPC to be the square of a natural number, which is why
we chose numbers close to the natural choice. We hypothesize that
the optimal values of PPC that we have found in this section will
be close to optimal values for a variety of smooth problems, at
least for the 2-D cases we have considered here. Therefore, while
Section 3.5 provided the maximum possible convergence order one
could expect, this section provided guidance on how to choose PPC
to actually achieve this convergence order.

Concluding this section we want to emphasize that for higher-
order methods and high mesh resolutions, choosing a higher PPC
might be a more important and cheaper (though less visible) im-
provement in accuracy than a higher mesh resolution h. Conversely
choosing a low PPC can result in a significant (but usually invisible)
degradation of the accuracy of the solution.

5.3 A time-dependent benchmark in a box

For the second realization of the time-dependent benchmark ap-
proach outlined above, we choose the domain as the 2-D unit box
� = (0, 1)2.

For this situation, we can express the equations and the solution
in a Cartesian coordinate system. A solution of eqs (1) and (2) can
then be obtained by setting

η = 1, (33)

ρ(x, y) = sin(πx) sin(πy), (34)

g(x, y) = −4π 2 cos(πx)

sin(πx)
ey, (35)

where ey is the vertical unit vector (pointing upwards). While the
y-component of gravity becomes singular at x = 0 and x = 1,
the right-hand side of eq. (1) only contains ρg and consequently
remains non-singular. We avoid accidental division by zero when
assembling the equations by additionally computing ρg on the par-
ticles before interpolating the product to the grid. For consistency
with the annulus benchmark we also interpolate ρ when computing
the interpolation error.

The Stokes system can then be solved and yields

u(x, y) =
[

sin(πx) cos(πy)
− cos(πx) sin(πy)

]
, (36)

p(x, y) = 2π cos(πx) cos(πy) (37)

for the velocity and pressure. The resulting flow field contains rota-
tional and shear components and is tangential to all boundaries of
the box. A detailed derivation and visualization of this solution can
be found in Appendix B and Fig. B1.

All experiments for this benchmark show the error between the
(stationary) exact solution u, p, and ρ and the (time-dependent)
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Figure 5. Panels as in Fig. 4, but for a Q3 × Q2 element (k = 3). All models use the bilinear least-squares interpolation (r = 2). Columns represent RK2
(left) and RK4 (right) particle integration. Note that only with RK4, bilinear least-squares interpolation and an increasing number of particles per cell (PPC)
is the fourth-order convergence rate of the velocity recovered. All properties with a design convergence rate higher than 2 require increasing PPC to reach
their design rate, while constant PPC only allow for second-order convergence. The density is limited to second-order accuracy due to the chosen interpolation
scheme (r = 2).
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Figure 6. Convergence plots for velocity in the L2 norm for the time-dependent annulus benchmark in dependence of the number of particles per cell (PPC).
Models were computed using a Q2 × Q1 finite element (k = 2, top) and a Q3 × Q2 element (k = 3, bottom) respectively and particles were advected using
an RK2 integration scheme (left) and an RK4 integration scheme (right). Note that the required PPC to reach the minimum error for a given mesh refinement
depend on the finite element and the mesh resolution h itself. The time integration scheme only plays a role if its convergence rate is lower than the convergence
rate of the velocity element.

numerical approximation uh , ph, and ρh at time t = 0.1, which
equals 1

20 of a complete revolution of the centre of the model.
We did not run the benchmark for a full revolution, because as
described in an earlier study (Samuel 2018) the found flow field
requires a particle rebalancing algorithm as regions of the model are
sufficiently stretched to lose all particles. To avoid the complication
of measuring the accuracy of particle splitting/merging algorithms
we limited the model time.

The results of this benchmark setup are consistent with the results
described for the annulus geometry in Section 5.2. The particle
interpolation algorithm plays a crucial role in retaining the expected

convergence order of the finite element, and the particle advection
scheme can limit the convergence order if its convergence order
is lower than the one of the interpolation scheme. For lack of new
information the corresponding figures are presented in Appendix C.
This experiment shows that the interpretations of Section 5.2 are
independent of model geometry.

6 C O N C LU S I O N S

In this paper, we have used existing benchmarks and developed
new benchmarks to measure the accuracy and convergence rate of
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hybrid finite element/PIC methods and provided reference results
for these benchmarks obtained with the geodynamic modelling code
ASPECT. In particular, we have presented the first analytical bench-
marks in the computational geodynamics community that measure
the accuracy and convergence order of a time-dependent flow prob-
lem in a 2-D spherical annulus or a 2-D unit box using particles to
carry material properties. Since the two benchmarks are simple to
derive and implement, they can be used as a convenient measure for
the correctness of future implementations of similar algorithms, or
as a common model for code comparisons.

Additionally, we have investigated the influence of different inter-
polation algorithms for transferring information from the particles
to the cells and determined that in order to retain the optimal con-
vergence rate of high-order finite element formulations, one needs
to use a sufficiently high-order particle interpolation algorithm. Of
course the overall convergence rate of a model is also bounded by the
application in question: models with discontinuous material prop-
erties are limited to lower order accuracy if the mesh is not aligned
with the discontinuities. This assertion is backed up by a theoretical
analysis of the error contributions, predicting the observed conver-
gence orders of the presented benchmark cases. Among the error
contributions are (i) the discretization error due to using finite ele-
ment methods on meshes of finite cell size, (ii) the error introduced
by replacing the exact density and viscosity functions with ones
obtained by interpolating information from particles to (low-order)
polynomial spaces and (iii) the error introduced by using a finite
number of PPC.

The design of better and more accurate methods than the ones we
have presented here will need to address all of these error sources.
For the first of the error contributions mentioned above, this might
involve the use of higher-order finite element methods and/or finer
meshes; both of these options are well understood and frequently
used. The second error would involve interpolating data from par-
ticle locations onto polynomials of degree larger than one, for ex-
ample, onto quadratic polynomials (r = 3) rather than the constant
(r = 1) or linear ones (r = 2) used here. However, this has sub-
stantial drawbacks, for example, the fact that it is often difficult to
determine in practice whether a quadratic function in two or three
space dimensions is strictly positive, as one would hope the density
and viscosity are; more generally, the question of minimizing un-
wanted variability of the interpolant needs to be addressed. For the
third error source, the experiments we have shown suggest that one
may need to increase the number of PPC as one refines the mesh,
and we have provided guidance on how many PPC to choose for
smooth problems to retain the intended convergence rate. Never-
theless, while the exact number of PPC necessary to achieve the
designed convergence rate may be problem-dependent, the fact that
it is resolution dependent to begin with raises the question of the
scalability of the method, since either a loss of convergence rate
(e.g. with a constant number of PPC) needs to be accepted; or the
number of particles will need to increase substantially faster than
the number of cells, resulting in computations in which operations
on particles account for the vast majority of CPU cycles spent on a
simulation. As shown by the error analysis, this error source does
not disappear just because one uses a higher-order interpolation
scheme to transfer data from particles to the mesh. As a conse-
quence, we are not aware of a simple, cheap, and obvious method to
reach high convergence rates using such PIC methods with higher-
order finite elements, although it is quite possible that the methods
we have presented yield an accuracy that is sufficient for practical
geodynamic simulations.
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A P P E N D I X A : D E R I VAT I O N O F A N
I N C O M P R E S S I B L E S T O K E S S O LU T I O N
O N A N A N N U LU S

In order to derive the solution of the Stokes problem discussed in
Section 5.1, we consider the Stokes equations (1) and (2) in polar
coordinates. Since we will impose Dirichlet boundary conditions
along all boundaries, and since we only consider an isoviscous fluid
with η = 1, the equations can be simplified to

− 	u + ∇ p = ρ g, (A1)

∇ · u = 0. (A2)

In a polar coordinate system with r =
√

x2 + y2 and θ =
arctan y

x , we can express the Laplace operator, gradient and diver-
gence operators in terms of ∂

∂r and ∂

∂θ
. The incompressible Stokes

equations (A1) and (A2) then become

−
(∂2ur

∂r 2
+ 1

r

∂ur
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+ 1

r 2

∂2ur

∂θ 2

− 1

r 2
ur − 2

r 2

∂uθ

∂θ

)
+ ∂p

∂r
= ρ gr , (A3)
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(∂2uθ

∂r 2
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r

∂uθ
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r 2

∂2uθ
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− 1

r 2
uθ + 2
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= 0. (A5)
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Figure A1. Solution of the annular flow benchmark. Top left: the velocity and pressure solution of the benchmark. Top right: density and gravity fields that
determine the right-hand side of the Stokes system. Bottom row: initial and final particle distributions after one full revolution of the outer edge, coloured by
particle index.

We can find a solution by introducing the ‘stream function’ ψ(r,
θ ), and expressing the velocity through it:

ur = 1

r

∂ψ

∂θ
and uθ = −∂ψ

∂r
. (A6)

By this construction, the velocity field u then automatically satisfies
the continuity equation (A5).

We proceed by assuming that the stream function is separable,
that is, that it can be expressed in the form ψ(r, θ ) = F(r)G(θ ) for
functions F, G still to be determined. This form then immediately
implies ur = 1

r F(r )G ′(θ ) and uθ = −F
′
(r)G(θ ). Thus, eqs (A3)

and (A4) become

−
(1

r
F ′′G ′ + 1

r 2
F ′G ′ + 1

r 3
FG ′ + 1

r 3
FG ′′′

− 1

r 3
FG ′ + 2

r 2
F ′G ′

)
= −∂p

∂r
+ ρ gr , (A7)

−
(
−F ′′′G − 1

r
F ′′G − 1

r 2
F ′G ′′ + 1

r 2
F ′G

+ 2

r 3
FG ′′

)
= −1

r

∂p

∂θ
+ ρ gθ . (A8)

We can obtain a solution of this set of equations in the spirit
of manufactured solutions by choosing F(r ) = 1

8c r 8 and G(θ ) = c
where c can be any nonzero constant. This corresponds to a flow
field with no radial component ur = 0 and a constant (but radially
variable) angular velocity uθ = −r7. Since F and G always appear
as a product, c can be chosen arbitrarily and we will set it to c = 1.

Using this form then still requires us to find appropriate expres-
sions for the pressure p(r, θ ), the density ρ(r, θ ) and the gravity
vector g = (gr , gθ ) to satisfy the governing equations. Since ρ only
appears in a product with the gravity vector, we set

ρ(r, θ ) = 48r 5, (A9)

ensuring that it is spatially variable but constant along streamlines.
Further substituting all of these expressions into eqs (A7) and

(A8) then yields

0 = −∂p

∂r
+ 48r 5 gr , (A10)

48r 5 = −1

r

∂p

∂θ
+ 48r 5 gθ . (A11)
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If we assume a radially outward gravity component gr = r3

384 , this
implies that

0 = −∂p

∂r
+ r 8

8
. (A12)

Integrating with respect to r and normalizing the pressure, such that
at the outer boundary r = R2 = 2 we have p(r = R2, θ ) = 0, yield

p(r, θ ) = r 9

72
− 512

72
. (A13)

Given this pressure, the final remaining equation, eq. (A11), is

48r 5 = 48r 5gθ . (A14)

This results in gθ = 1.
In summary, our constructed solution is as follows:

u =
[

0
−r 7

]
, (A15)

p = r 9

72
− 512

72
, (A16)

ρ = 48r 5, (A17)

g =
⎡
⎣ r 3

384
1

⎤
⎦. (A18)

A P P E N D I X B : D E R I VAT I O N O F A N
I N C O M P R E S S I B L E S T O K E S S O LU T I O N
I N A B OX

In order to derive the solution of the Stokes problem discussed
in Section 5.1, we consider the Stokes equations (1) and (2) in
Cartesian coordinates. As before, we only consider an isoviscous
fluid with η = 1. The equations are then

− 	u + ∇ p = ρ g, (B1)

∇ · u = 0. (B2)

Figure B1. Solution of the rigid shear benchmark. Top left: the velocity and pressure solution of the benchmark. Top right: density and gravity fields that
determine the right-hand side of the Stokes system. Bottom row: initial (t = 0) and final particle distributions after one full revolution of the centre (t = 2),
coloured by particle index.
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We find a solution by introducing a variation of a previously
described stream function ψ(x, y) = 1

π
sin(πx) sin(πx) (van Keken

et al. 1997; Samuel 2018), and expressing the velocity through it:

ux = ∂ψ

∂y
= sin(πx) cos(πy) (B3)

uy = −∂ψ

∂x
= − cos(πx) sin(πy). (B4)

Using this construction, the velocity field u automatically satisfies
the continuity eq. (B2), is tangential to all boundaries of a unit box,
and contains both shear and rotational components.

Completing the solution then requires us to find appropriate ex-
pressions for the pressure p(x, y), the density ρ(x, y) and the gravity
vector g = (gx , gy) to satisfy the governing equations. Since there
are two equations to satisfy (x and y components of eq. B1), but
four functions to choose, we can choose two of these functions ar-
bitrarily. As for the spherical case, because we want the benchmark
to be stationary, we choose a density ρ(x, y) that is constant along
streamlines, and for convenience we choose ρ(x, y) = πψ(x, y) =
sin (πx)sin (πy). Additionally, we arbitrarily set gx = 0. Substituting
all of these expressions into eq. (A1) then yields

2π 2 sin(πx) cos(πy) + ∂p

∂x
= 0, (B5)

− 2π 2 cos(πx) sin(πy) + ∂p

∂y
= ρgy, (B6)

and integrating (B5) for x gives us the pressure:

p(x, y) = 2π cos(πx) cos(πy) + c. (B7)

Similarly, differentiating (B7) and substituting in (B6) results in the
y-component of gravity:

gy = −4π 2 cos(πx)

sin(πx)
. (B8)

In summary, our constructed solution is as follows:

u =
[

sin(πx) cos(πy)
− cos(πx) sin(πy)

]
, (B9)

p = 2π cos(πx) cos(πy), (B10)

ρ = sin(πx) sin(πy), (B11)

g =
[

0
−4π 2 cos(πx)

sin(πx)

]
. (B12)

A P P E N D I X C : R E S U LT S O F T H E
T I M E - D E P E N D E N T B OX B E N C H M A R K

Figs C1 and C2 present results for this second time-dependent
benchmark, using an identical layout as for the spherical annulus
case. Despite the changed geometry and different model solution,
all measured convergence rates are consistent with the model of
Section 5.1.
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Figure C1. The convergence rate of ‖u − uh‖L2 (top), ‖p − ph‖L2 (middle), and ‖ρ − ρh‖L2 (bottom) measured at t = 0.1 for the time-dependent box
benchmark. Density is carried on particles and is interpolated as cell-wise arithmetic average (r = 1, left) and bilinear least-squares interpolation (r = 2, right).
All models use a Q2 × Q1 element (k = 2) and RK2 to advect particles. Note that only with bilinear least-squares interpolation and an increasing number of
particles per cell (PPC) is the third-order convergence rate of velocity recovered. In all cases, ‖p − ph‖L2 converges at second-order rate with no apparent
influence due to the number of PPC (i.e. all dots fall on each other), while the convergence rate of ‖ρ − ρh‖L2 depends on the interpolation scheme, but not
on PPC.
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Figure C2. Panels as in Fig. C1, but for a Q3 × Q2 element (k = 3). All models use the bilinear least-squares interpolation (r = 2). Columns represent RK2
(left) and RK4 (right) particle integration. Note that only with RK4, bilinear least-squares interpolation and an increasing number of particles per cell (PPC)
is the fourth-order convergence rate of the velocity recovered. All properties with a design convergence rate higher than 2 require increasing PPC to reach
their design rate, while constant PPC only allow for second-order convergence. The density is limited to second-order accuracy due to the chosen interpolation
scheme (r = 2).
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