The Overshoot Problem In Mantle Convection Models
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Introduction and Background

The overshoot/undershoot problem in
computational modeling is a humerical
phenomenon that occurs in models of fields
with sharp or discontinuous gradients.

Overshoot in a 2D FDM code for modeling advection
causes the data to exceed its maximum T=1 and
minimum T=0 values in the direction of advection, namely
the positive x direction, v=(1,0) .

Overshoot is characterized by oscillatory
behavior along sharp gradients, causing the
data to exceed its physically correct values.

These effects have been observed in the Finite
Element (FEM) mantle convection codes
ConMan, Citcom and ASPECT and will occur In
any high-order accurate FEM mantle
convection code. The overshoot/undershoot
problem is inherent to any high-order FEM or
FDM method. To our knowledge, this issue has
not be addressed within the mantle
convection community.
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Overshoot in Mantle Convection Codes

Overshoot/undershoot may occur in, for
example, models of subducting slabs or hot
upwelling mantle plumes may result in the sharp
gradients which cause overshoot.

While moderate (x9%) overshoot/undershoot is
not an issue for some scientific problems, certain
postprocessing calculations, such as melt
volume, are strongly sensitive to temperature,
so that overshoot may cause drastic differences
between the true and approximate values.

Overshoot in Finite Difference Codes

We developed a simple FDM code for modeling
1D and 2D advection in order to study the
effects of various numerical methods on the
overshoot problem. Thus, our method
approximates solutions of the advection
equation

ur +v-Vu =20 (1)
for the arbitrary scalaru.

Given the temperature u:;” at time t" = nAt
and position ; = JAx, we may discretize the
1D version of equation (1) with the first-order

upwind method to obtain

up = + 55 (u)y — uf) (2)

or the second-order Fromm's method to obtain
n+1 _ . n ;| vAt n n

i =+ X (ufg —uf) + (3)
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Overshoot/undershoot in CitcomS and ASPECT, two FEM mantle convection codes. Left: overshoot can be seen in a CitcomS
model of a subducting slab, causing oscillation. Initial temperature T satisfies 0=Typ=<1. Right: a rising 0=T;=<1000 blob In
ASPECT (without entropy-viscosity) exhibits overshoot T>1000 trailing the leading edge and undershoot T<O0 along all sides
of the blob. The color map on the left of the ASPECT plot is adjusted to highlight overshoot and undershoot.
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The cause of the overshoot is directly related to
the accuracy of the method. By Godunov's
Theorem, all linear methods with second-order
or higher accuracy will overshoot. In a first-order
method, the flux is approximated as constant
across each cell, whereas in a second-order
method, the flux is refined using an additional
linear term across the width of the cell. This
linear term is the cause for the overshoot/
undershoot, as it may over or under-estimate the
flux along a cell containing a steep gradient.

The use of a piecewise

linear flux approximation ' At

may lead to non-physical ¢ 21—
overshoots and
undershoots along sharp ~JY
gradients, due to the
tendency of these
approximations to over or
under-estimate the flux
across a sharp edge

One way to address this overshoot/undershoot
problem is to use a flux-limiter that enforces the
use of upwind (i.e., lower-order) fluxes in
neighborhoods of sharp gradients inuand high-
order fluxes (e.g. Fromm's Method) in smooth
regions of u. This is because the Upwind Method
does not overshoot near large gradients in u,

while Frommm's Method Is more accurate.

X

The flux-limited version of (3) is thus,

n+1  n  vAt n n
i T Uy TS (“j—l _uj)+ (4)

([ vAt 2 At2
_(;}Aw ZI:A$2 ) (u?—Fl o U? o u?—l + u?—I—Z)} ¢(9])

where Hjis a measure of the "smoothness" of
uin a neighborhood of the point jand ¢ is a
function which varies between 0 and 1
depending upon the value of 8. This yields an
entire family of flux-limiter methods
depending upon the choice of 6 and ?[1,2].
Similar approaches have been successfully
developed for Runge-Kutta Discontinuous
Galerkin (RKDG) FEM although, to the best of
our knowledge, they have not yet been

implemented in mantle convection codes.
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Results and Conclusions

The introduction of nonlinear flux-limiting has
adequately addressed the overshoot/
undershoot problem in FDM. However,
attempts to use techniques based on artificial
viscosity or "clipping" in FEM models of mantle
convection have proven to be inadequate. We
plan to address the overshoot/undershoot
problem by using RKDG FEM in mantle
convection codes. For more information, see
the poster "Runge-Kutta Discontinuous
Galerkin Method for Advection-Diffusion
Problems"(DI31A-2199) by Rajesh Kommu.
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