

A Discontinuous Galerkin (DG) Method for Solving Temperature Advection-Diffusion Equation in the Mantle Convection Code ASPECT

Ying He, joint work with Elbridge Gerry Puckett, Magali I. Billen and Louise Kellogg

University of California, Davis

Dec. 13th, 2016 AGU Fall Meeting @ San Francisco, CA

Motivation

Geodynamics Computations involve Temperature

Crustal layers for slab dynamics

Arredondo & Billen, J. Geodyn. submitted

Incompressible Stokes equations with an advection-diffusion equation for the temperature and a Bousinesq approximation for the density

$$
-\nabla \cdot [2\eta \epsilon(\mathbf{u})] + \nabla p =
$$

$$
\nabla \cdot \mathbf{u} =
$$

$$
\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T =
$$

$$
\rho =
$$

Note, if $\kappa = 0$, there is no diffusion, only advection and $Pe = +\infty$.

Discontinuous Galerkin Method (DG)

In ASPECT we have two options

Finite Element Method (FEM)

CAN easily make LOCAL cell changes!

CANNOT make local changes WITHOUT affecting neighboring cell values!

The original advection-diffusion algorithm in ASPECT

FEM stabilization scheme: entropy viscosity

positive valued entropy viscosity adds artificial diffusion

$$
\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T - \nabla \cdot (\kappa + \mu_h(T)) \nabla T = \mathbf{0}
$$

 \bullet

The equation for temperature is modified as follows

For Local oscillation with high order discretization

6

Post processing of DG solutions for Overshoot/Undershoot

The Discontinuous Galerkin (DG) approach

1. Use trouble cell indicator: for example, the minmod limiter, the shock detection technique. Need local and neighboring values.

- 1. Find the trouble cell using local Min/Max, global Min/Max
- 2. Apply the Bound Preserving limiter *Y. He, G. Puckett, and B. Magali, to appear, PEPI 2016* **Zhang, X., Shu, C.-W., 2010a**

- 2. Apply the WENO limiter, reconstruction depends on adjacent cells.
	- **Qiu, J., Shu, C.-W., 2005**
	-

```
Zhu, J., Qiu, J., Shu, C.-W., Dumbser, M., 2008
```


Initial Temperature and velocity field on a unit box **FEM only** \rightarrow

 $FEM + EV \rightarrow$

DG only

DG + limiting

Solve the nondimensional problem

$$
Pe = \frac{L||u||_{\infty}}{\kappa} = \frac{1}{\kappa}, \text{ if } L = ||u||_{\infty} = 1
$$

Vertical Profile at x=0.5 Horizontal Profile at y=0.9

- *•* We have implemented a stable, accurate, and efficient method for the temperature advectiondiffusion equation within ASPECT*:* DG+bound preserving limiter+WENO limiter.
- *•* We studied the iso-viscous test cases of a rising square with Peclet numbers from 1e3 to 1e6.
- *•* Our numerical results have demonstrated that*, compared to FEM with entropy viscosity,* DG with limiting is more suitable for convection dominated flows; i.e., higher Peclet numbers*.*

- Adaptive mesh refinement (AMR)
- Apply this to subduction type models, where temperature overshoots occur ahead of the slab tip when there is a sharp viscosity contrast. The sharp viscosity contrast produces thin thermal boundary layers that "act" like iso-viscous flows with large Peclet numbers.

Supported by the U. S. National Science Foundation under Award No. ACI - 1440811.

Conclusions and Future Work

Future Work

Conclusions

9

Thank you!

1, Y. He, G. Puckett, and B. Magali, A Discontinuous Galerkin Method with a Bound Preserving Limiter for the Advection of non-Diffusive Fields in Solid Earth Geodynamics, to appear, Physics of the Earth and Planetary Interiors 2016 *DOI 10.1016/j.pepi.2016.12.001*

3, Zhang, X., Shu, C.-W., 2010a. On maximum-principle-satisfying high order schemes for scalar conservation laws. Journal of Computational Physics 229 (9)

5, Zhu, J., Qiu, J., Shu, C.-W., Dumbser, M., 2008. Range Kutta discontinuous Galerkin method using WENO limiters ii: unstructured meshes. Journal of Computational Physics 227 (9), 4330-4353.

2, Kronbichler, M., Heister, T., Bangerth, W., 2012. High accuracy mantle convection simulation through modern numerical methods. Geophysical Journal International 191 (1), 12-29

 4, Qiu, J., Shu, C.-W., 2005. Runge Kutta discontinuous Galerkin method using WENO limiters. SIAM Journal on Scientic Computing 26 (3), 907-929.

Typical layout in the movie. Play the movie!

Initial Temperature and velocity field on a unit box

Time: 0.390126

Time: 0.390104

Time: 0.390189

Time: 0.390103

Solve the nondimensional problem

$$
Pe = \frac{L||u||_{\infty}}{\kappa} = \frac{1}{\kappa}, \text{ if } L = ||u||_{\infty} = 1
$$

Numerical Results: entropy viscosity

DG FEM

 $\begin{tabular}{|c|c|} \hline \quad LDG \\ \hline \quad L.FEM \\ \hline \end{tabular}$