

A Discontinuous Galerkin Method for the Advection of non-Diffusive Fields in Solid Earth Geodynamics: Demonstration and Comparison with Other Methods in the Mantle Convection Code ASPECT

Ying He Department of Mathematics University of California, Davis

Oct 16, 2016 @ College of Earth Sciences, University of Chinese Academy of Sciences

Outline

- **• Introduction of ASPECT**
- **• Discontinuous Galerkin method with a bound preserving limiter method for the Advection of non-Diffusive Fields in Solid Earth Geodynamics**
- **• Numerical experiments**
- **• Conclusions**

Part I Introduction of ASPECT

暈

ASPECT $=$ Advanced Solver for Problems in Earth's ConvecTion

- Mantle convection using modern numerical methods
- Open source, $C++$
- Available at: http://aspect.dealii.org
- Supported by NSF/CIG:

Kronbichler, Heister and Bangerth. High Accuracy Mantle Convection Simulation through Modern Numerical Methods. Geophysical Journal International, 2012, 191, 12-29.

Who?

- Wolfgang Bangerth, Timo Heister
- Contributors (total: 31):

Jacky Austermann, Eva Bredow, Markus Bürg, Sam Cox, Juliane Dannberg, William Durkin, Grant Euen, René Gaßmöller, Thomas Geenen, Anne Glerum, Ryan Grove, Menno Fraters, Ying He, Eric Heien, Lorraine Hwang, Louise Kellogg, Martin Kronbichler, Shangxin Liu, Kimee Moore, Elvira Mulyukova, Bob Myhill, John Naliboff, Sanja Panovska, Jonathan Perry-Houts, Elbridge Gerry Puckett, Ian Rose, Max Rudolph, Benjamin Smith, Sarah Stamps, Scott Tarlow, Cedric Thieulot, Bruno Turcksin, Iris van Zelst, Sigi Zhang

Timeline

- \approx 2008-2011: deal.II based examples/experiments (Bangerth)
- Oct 2011: Aspect development started
- \bullet March 2012: release 0.1
- \bullet April 2013: release 0.2
- \bullet May 2013: release 0.3 (bugfixes)
- \bullet April 2014: release 1.0
- \bullet June 2014: release 1.1
- January 2015: release 1.2 solver improvements, concentric shells, boundary names, plugins, ...
- \bullet May 18 2015: release 1.3 material averaging, nullspace handling, output grouping, ascii data, stress postprocessing, ...
- \bullet May 15 2016: release 1.4 Particle overhaul, modularizing assembly, flexible FEM variables, heating models, DG, signals, ...

ASPECT as software: Philosophy and numerical methods

Codes in Geodynamics

- There are some widely used codes
- Almost all codes use globally refined meshes
- Almost all codes use lowest order elements \bullet
- Most codes use "simple" solvers \bullet
- No code has been "designed" with a view to
	- extensibility
	- $-$ maintainability
	- $-$ correctness

Geodynamics: Design challenges CIG

As a "community code", Aspect needs to satisfy these goals:

- Can solve problems of interest (to \bullet . geodynamicists)
- Be well tested
- Use modern numerical methods
- Be very easy to extend to allow for \bullet experiments
- Freely available

Equations

Equations

,

$$
-\nabla \cdot \left[2\eta \left(\varepsilon(\mathbf{u}) - \frac{1}{3}(\nabla \cdot \mathbf{u})\mathbf{1}\right)\right] + \nabla p = \rho \mathbf{g}
$$
 Momentum equation
\n
$$
\nabla \cdot (\rho \mathbf{u}) = 0
$$
 Conservation of mass
\n
$$
\rho C_p \left(\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T\right) - \nabla \cdot k \nabla T = \rho H
$$
 Conservation of energy
\n
$$
+ 2\eta \left(\varepsilon(\mathbf{u}) - \frac{1}{3}(\nabla \cdot \mathbf{u})\mathbf{1}\right) : \left(\varepsilon(\mathbf{u}) - \frac{1}{3}(\nabla \cdot \mathbf{u})\mathbf{1}\right)
$$
\n
$$
- \frac{\partial \rho}{\partial T} T \mathbf{u} \cdot \mathbf{g} + \rho T \cdot \Delta S \frac{DX}{Dt}
$$
\n
$$
\frac{\partial c_i}{\partial t} + \mathbf{u} \cdot \nabla c_i = 0
$$
 Advection of compositional fields
\nField method (or tracer method)

Summary of equations

- Compressibility \bullet
- 2- or 3-dimensional domain Ω , different geometries
- Total pressure \bullet .
- **Radiogenic heating** \bullet .
- Adiabatic heating, shear heating & latent heat \bullet
- Advection of any number of compositional fields

Numerical methods

- Mesh adaptation
- Accurate discretizations (choice of finite element for velocity and pressure + nonlinear artificial diffusion for temperature stabilization)
- Efficient linear solvers (preconditioner + algebraic multigrid)
- Parallelization of all of the steps above
- Modularity of the code

Mesh adaptation

Example: Composition as refinement strategy \bullet

Compositional field

Mesh cells, colors indicate the estimated error

Mesh adaptation

Mesh refinement options

- Strategies: (nonadiabatic) temperature /pressure, composition, density, velocity, viscosity, thermal energy density...
- Refinement criteria scaling factors
- min/max refinement level function
	- \triangleright Phase transitions / jump in material properties
- Additional refinement times
	- > Onset of new processes (convection? melting? plate velocities?)

Mesh adaptation

- Finite element method
- Uses Cartesian coordinates (mapping for curved boundaries)
- Free choice of finite element basis functions
- \triangleright Stability: choose polynomial degree of velocity one order higher than for pressure (e.g. linear and quadratic)

Velocity, temperature, composition

Discretization

Modified temperature/composition equation: \bullet

$$
\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T - \nabla \cdot (\kappa + \nu_h(T)) \nabla T = \gamma
$$

Result: \bullet

Modularity

Modularity

Checkpointing

- After crash of program
- Use the final state of one model as initial \bullet condition for a series of models
- \rightarrow Restart required
- Aspect creates checkpoint files \bullet
- Possibility to change parameters in restarted model (material laws, postprocessors)

Building on libraries

- Meshes, finite elements, discretization: http://www.dealii.org/
- a C++ program library targeted at the computational solution of PDEs using adaptive finite elements

Efficient solvers

- Temperature: Conjugate gradient with \bullet preconditioner (LU decomposition)
- Stokes system (pressure & velocity): \bullet . Generalized minimal residual method with preconditioner (includes conjugate gradient solves & algebraic multigrid)

Short term

- * Melt transport V
- Active tracers
- **Approximations** \rightsquigarrow benchmarking efforts
- ***** Robust nonlinear solvers
- **Seoid**
- * Better experience for beginners (tutoriale installation atc.)

Long term

We need to be bold!

- Sensitiviy analysis, inverse problems, uncertainty quantification?
- Surface processes
- **•** Elastic rheology
- a large scale, matrix-free, geometric multigrid
- **Long-term tectonics**
- and then take over whole geoscience co

Part II Discontinuous Galerkin method with a bound preserving limiter method for the Advection of non-Diffusive Fields in Solid Earth Geodynamics

Mathematical Modeling

$$
-\nabla \cdot (2\eta(C)\epsilon(\mathbf{u})) + \nabla \mathbf{p} = \rho(C)\mathbf{g},
$$

\n
$$
\nabla \cdot \mathbf{u} = 0,
$$

\n
$$
\frac{\partial C}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{C} = 0,
$$

\n(3)

u*, p* and *C* are variables of velocity, pressure and composition

 $\eta(C)$ viscosity and $\rho(C)$ density

 $(1)+(2)$ Incompressible Stokes equation

(3) advection/convection equation

The unique solution $C(x,t)$ satisfies $0 \leq C(x,t) \leq 1$ for any $0 \leq x \leq 1$ if given that the initial condition satisfies $0 \leq C_0(x) \leq 1$.

Overshoot $C(x,t) > 1$; Undershoot $C(x,t) < 0$;

The DG-FEM solution is discontinuous between elements.

All operators of the DG-FEM are local.

The stability of DG-FEM is enforced through the flux choice.

DG-FEM Double the number of degrees of freedom along the interfaces.

Overshoot/Undershoot

DG-FEM: bound preserving limiter.

The limiter is a local post-processing procedure.

The framework is based on

Perthame and Shu, Numerische Mathematik, 1996: high order FV schemes with SSP Runge-Kutta can be written as a convex combination of several formal first order schemes.

X.-D. Liu and S. Osher, SINUM, 1996: the simple scaling limiter.

X.Z. and Shu, Journal of Computational Physics, 2010: the weak monotonicity.

Numerical experiments

Given a two dimentional steady flow with velocity field $\mathbf{u} = (-y, x)$.

Table 1: Comparison of Numerical Test Results. Results are presented at time 6.283 $\approx 2\pi$. For each viscosity ratio, we list the number cells resulting from the uniform mesh, AMR and AMR with refinement only, the number of degrees of freedom for the advection solver (C) and the overshoot/undershoot of the compositional field. 32

Numerical experiments

Test example: sinking hard box problem T. V. Gerya, D. A. Yuen 2003

₩.

 $\eta_1/\eta_0 = 1$ 34

Figure 3: Comparison of DG with and without the BP limiter. A) Composition shown on AMR mesh at timestep 5000 for DG without limiter (left) and with limiter (right), B) Enlarged-view Comparison of Compositional Field for Top and Bottom of Falling Box, C) Horizontal profile across top. Location of profiles are shown in top sub-figure of (B).

FEM (left) v.s. DGBP(right) uniform grid

FEM v.s. DGBP AMR on

<u> Andreas de la componición de la componición de la compo</u> 0.0 0.25 0.50 0.75 1.0

Conclusion

- Introduced ASPECT. Need more help? Subscribe ASPECT mailing list and ask questions.
- Developed a stable, accurate, and efficient method for compositional field advection equation: LDG+bound preserving limiter.
- Numerical results demonstrated that the proposed numerical method reduces the #cells and #DoFs significantly when AMR is used.

Thank you!