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Abstract. This survey is devoted to the nondimensionalization of the equa-
tions of mantle convection that arise from the Boussinesq approximation. The
procedure of nondimensionalization is fully explained, and special attention

is devoted to explaining the physical meaning of the choices of scales and
the resulting nondimensional parameters. The end result is the derivation of

a system of equations depending on a single nondimensional parameter, the
Rayleigh number.

The rationale behind writing this work is the difficulty of finding a com-
plete derivation and explanation of nondimensionalization and its physical
meaning in the literature in the context of mantle convection. The relevant

material is scattered throughout numerous books and articles. Here we have

attempted to synthesize as much of the pertinent material as possible into a
single reference.

This survey may be useful to students in geophysics who need to under-

stand the origin of the equations they are working with. It may also be used
as a reference for instructors who may find this material useful for presenting

the derivation of the equations of mantle convection in nondimensional form.



Contents

Introduction 1

Chapter 1. Incompressible Navier-Stokes Equations 3
1.1. Introduction 4
1.2. Navier-Stokes Equations 4
1.3. Nondimensionalization of Navier-Stokes Equations 4
1.3.1. Perspective of Nondimensionalization 5
1.3.2. Inertial Flow Perspective 5
1.3.3. Viscous Flow Perspective 7
1.3.4. Further Investigation of the System 8

Chapter 2. Stokes Equations 9
2.1. Introduction 10
2.2. Low Reynolds Number Flows 10
2.2.1. Physical Meaning of Small Reynolds Number 10
2.2.2. Estimation of Nondimensional Parameters 12
2.2.3. Stokes Equations 12
2.3. Passage to Dimensional Stokes Equations 13
2.3.1. Stokes Equations vs. Navier-Stokes 13

Chapter 3. Temperature Advection-Diffusion Equation 14
3.1. Introduction 15
3.2. Derivation of Temperature Advection-Diffusion Equation 15
3.2.1. Constant Heat Capacity 15
3.2.2. Fourier Law of Heat Conduction 15
3.2.3. Conservation of Energy 16
3.3. Nondimensionalization of the Temperature Advection-Diffusion

Equation 17
3.3.1. Advective Term Perspective 17
3.3.2. Conduction Term Perspective 18

Chapter 4. The Boussinesq Approximation 19
4.1. Introduction 20
4.2. Derivation of Boussinesq Approximation 20
4.2.1. Goal of Boussinesq Approximation 20
4.2.2. Equation of State 20
4.2.3. Temperature Advection-Diffusion Equation 21
4.2.4. Navier-Stokes Equations 21
4.2.5. Equations of Boussinesq Approximation 22
4.3. Nondimensionalization 22

v



CONTENTS vi

4.3.1. Nondimensional Form of Boussinesq Equations 23

Chapter 5. The Equations of Mantle Convection 24
5.1. Introduction 25
5.2. Choice of Scales 25
5.2.1. Time Scale 26
5.2.2. Pressure Scale 26
5.3. Nondimensional Form of Equations 28
5.3.1. Limit of Infinite Prandtl Number 28

Appendix A. Buckingham’s Π-Theorem 29
A.1. Introduction 30
A.1.1. Content of Buckingham’s Π-Theorem 30
A.2. Dimensionality Reduction of a System of Physical Quantities 30
A.2.1. Physical Dimensions Form a Linear Space 30
A.2.2. Dimensional Matrix 31
A.2.3. Buckingham’s Theorem 32
A.3. Dimensionality Reduction of a Physical Functional Dependence 32

Appendix B. Poisson Equation for Pressure 35
B.1. Introduction 36
B.2. Tensor Notation 36
B.2.1. Navier-Stokes Equations in Tensor Notation 36
B.3. Poisson Equation for Pressure Field in an Incompressible Flow 36
B.4. Laplace Equation for Pressure in Stokes Equations 37

Bibliography 38



Introduction

Nondimensionalization is a powerful method of investigating a behavior of com-
plex systems when the exact dynamics is practically impossible to compute yet it is
still possible to estimate the mutual importance of various factors on the overall dy-
namics. For example, although, in general, the exact solution to the Navier-Stokes
equations cannot be computed, nondimensionalization of these equations reveals the
relative importance of pressure, viscosity, and other factors on the aggregate behav-
ior of the flow. Thus, knowing that the dissipation of energy and momentum due
to viscosity is negligible compared to the vigor of the inertial motion of the fluid,
which manifests itself in a very large nondimensional parameter called Reynolds
number, it is possible to neglect the viscous term in the Navier-Stokes equations,
thus turning them into Euler’s equations. Analagously, when Reynolds number is
small and inertial motion is negligible compared to viscous effects, Navier-Stokes
equations turn into Stokes equations. These examples demonstrate how nondi-
mensionalization may serve as a tool leading to useful approximations and deeper
understanding of the physics underlying the mathematical equations.

At a first glance, nondimensionalization appears to be a simple scheme: first,
a change of variables that would make the independent physical variables nondi-
mensional, followed by simple algebraic manipulations with the coefficients of the
equations, and, finally, taking limits with respect to certain coefficients of interest,
such as Reynolds number mentioned above. However, such unintelligent approach
may lead to mistakes. For example, it may lead to disappearance of the pressure
term in the Stokes equations when they are derived from Navier-Stokes, which to-
tally contradicts the physical fact that pressure is an important factor even for
highly viscous flows. Thus, correct nondimensionalization requires understanding
of the physics underlying the decision one makes when a certain scale must be
chosen in order to nondimensionalize a particular physical quantity. Otherwise,
nondimensionalization becomes a dull set of tricks, which cannot amount to gen-
uine knowledge and understanding of the natural world.

Unfortunately, although nondimensionalization has been successfully employed
for a long time as a powerful method of investigation, no universal algorithm was
developed for applying this method to all of the possible physical situations. It
is natural, since it is impossible to account for all of the possible combinations
of physical factors in an abstract mathematical scheme. Thus, when one wishes
to nondimensionalize the equations of mantle convection, the first difficulty that
arises is an absence of a reliable source devoted to this specific context. Because
of that, a researcher is compelled to search through a vast, inhomogenous array
of literature in order to answer his or her questions regarding the nondimensional-
ization of the equations of mantle convection. This is obvously inefficient and the
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INTRODUCTION 2

valuable knowledge is lost if a successful researcher never shares his synthesis with
the community.

The present work is addressing this exact problem. It is a synthesis of the
numerous, oftentimes very little but important, ideas from the sources the author
had available to him. It is intended to be a growing point in the mantle convection
community, providing a source that thoroughly explains nondimensionalization in
the context of mantle convection. The author hopes that this work save precious
time for other researches and students, which should be devoted to solving new
intersting problems.

The goal of this work is to derive a nondimensional form of the equations
of the Boussinesq approximation in the context of mantle convection. To do so,
we start with the incompressible Navier-Stokes equations and nondimensionalize
them, explaining the physical meaning of this procedure and its underlying sub-
tleties. From the Navier-Stokes, we derive Stokes equations, fully explaining the
procedure. Then, we nondimensionalize the heat equation in the same pedagogi-
cal manner. Moreover, we derive the equations of Boussinesq approximation and
nondimensionalize them. Finally, based on all the previous preparations, we derive
the equations of mantle convection in the limit of infinite Prandtl number, which
is a commonly accepted approximation Earth’s mantle. An appendix is intended
for those interested in understanding why nondimensionalization is possible per se.
Namely, it outlines the proof of Buckingham’s Π-Theorem, which is shown to be
simply a consequence of a fundamental theorem of linear algebra.

All in all, in addition to solving the problem of deriving the equation commonly
accepted in the mantle convection community, the author hopes that his work is
also useful from a pedagogical perspective. Hopefully, it answers the questions that
the members of the community, especially students, often have, and, even more
importantly, that it explains how the answers are actually found.

The authors would like to thank Professor Donald L. Turcotte, and Professor
Louise Kellogg from Earth and Planetary Sciences and the Computational Infras-
tructure for Geodynamics at UC Davis for their comments, suggestions, and support
for this work.
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1.1. Introduction

The purpose of this chapter is to derive the nondimensional form of the in-
compressible Navier-Stokes equations. Special attention is devoted to the physical
meaning of the nondimensional parameters. It is shown that the procedure of nondi-
mensionalization and interpretation of its results depend crucially on the choice of
perspective, which can be either that of inertial flow, or of viscous flow. Both
perspectives are discussed and their importance explained.

1.2. Navier-Stokes Equations

The flow of an incompressible viscous fluid in a homogeneous gravitational field
is described by the following set of equations known as Navier-Stokes equations for
incompressible flow [12]:

(1.1) ∂tv + (v ·∇)v = −gez −
1

ρ
∇p+ νΔv

(1.2) ∇ · v = 0

Where

ez is the unit normal to the surface of the Earth.
[ρ] = ML−3 is density assumed constant.
[g] = LT−2 is the acceleration due to uniform gravitational field.
[v] = LT−1 is the velocity field of the flow.
[ν] = [µρ ] = L2T−1 is the kinematic viscosity of the fluid assumed constant.

[p] = ML−1T−2 is dynamic pressure (i.e., the one due to inertial move-
ment of fluid, which should not be confused with thermodynamic pres-
sure).

Naturally, these equations must be supplemented by appropriate boundary
conditions in order to describe a closed well-posed system.

1.3. Nondimensionalization of Navier-Stokes Equations

Dimensionless quantities allow us to identify a family of similar physical pro-
cesses, i.e. those which are invariant under the change of scale. Thus, dimension-
less quantities parametrize the family of similar processes. Since physical processes
are approximately described by equations, it is natural to expect that the equa-
tions governing similar processes are also parametrized by dimensionless parame-
ters. Therefore, it is possible to nondimensionalize the equations and thus describe
how processes change quantitatively in response to the change of dimensionless
parameters.

Naturally, it is advantageous to nondimensionalize the equations before they
are solved numerically since all the information about the process’s characteristics
can be stored in a small number of dimensionless parameters, also reducing the
possible confusion about which units to store the dimensional parameters in [4].
(cf. also Buckingham’s Π-Theorem)

In order to non-dimensionalize the Navier-Stokes equations, it is necessary to
introduce the characteristic parameters of the flow, namely:

L - characteristic length scale.
V - characteristic velocity scale (e.g. average or maximum speed of the
flow).
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T - characteristic time scale.
P - characteristic pressure scale (e.g. pressure difference between the ends
of a pipe).

Nondimensionalization is accomplished by a change of variables in which the
original variables t,x,v, p are expressed as fractions of the characteristic parameters
of the flow:

t� =
t

T
, v� =

v

V
, x� =

x

L
, p� =

p

P

Solving for the old dimensional variables and substituting them into (1.1) and
(1.2) yields, dropping the primes for notational convenience:

(1.3)
V

T
∂tv +

V 2

L
(v ·∇)v = −gez −

P

ρL
∇p+

νV

L2
Δv

(1.4) ∇ · v = 0

1.3.1. Perspective of Nondimensionalization. To continue with nondi-
mensionalization of the equations (1.1) and (1.2), it is necessary to choose a per-
spective. In other words, which factor are we most interested in considering our
particular flow?

In a case when we are interested in weighing the influence of inertia compared
to other factors, the coefficients in the equation (1.3) must be rearranged so as to
yield 1 in front of the inertial term, namely (v ·∇)v. Such flows arise in contexts
when fluids are not viscous and the characteristic speed of the flow is very large,
e.g. in a flow past an airfoil.

In other cases, it is interesting to weigh other factors influencing the flow against
the effects of viscosity, such as in the problems of mantle convection. In that case,
the coefficients must be rearranged so as to yield 1 in front of the viscous term,
namely Δv.

1.3.2. Inertial Flow Perspective. According to Buckingham’s Π-Theorem
[4], the system can be described by 7 − 3 = 4 nondimensional parameters, since
there are 7 dimensional parameters describing the flow (x,v, ρ, ν, g, p, t) among
which there are 3 independent units of measurements: mass, length, and time
(M,L, T ).

From the point of view of the inertial terms, nondimensionalization leads to
the following equations:

(1.5) St ∂tv + (v ·∇)v = − 1

2Fr
ez −

1

2Eu
∇p+

1

Re
Δv

(1.6) ∇ · v = 0

The four nondimensional parameters have a concrete physical meaning.
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1.3.2.1. Strouhal Number.

St =
L

V T
is a measure of how stationary the flow is. It is a ratio of characteristic time of

inertial motion and the characteristic time of the flow:

St =
L
V

T
=

Tinertia

T
For example, if the inertial flow of plasma is much faster than the period of

oscillation of an external magnetic field (Tinertia � T ), then the fluid simply cannot
measurably respond to such low-energy influence of the external field, and the flow
can be treated as approximately stationary.

1.3.2.2. Froude Number.

Fr =
V 2

2gL
is a measure of the influence of the gravitational field on the inertial flow. It

can be interpreted as a ratio of kinetic energy density (i.e., energy density of the
inertial flow) and the density of the work done by the gravitational field:

Fr =
V 2

2gL
=

ρV 2

2ρgL
=

KE

Workgravity
For example, large Froude numbers characterize the flow of water from a fire

hose, where the jet is barely deflected from its rectilinear trajectory because of its
high initial kinetic energy.

1.3.2.3. Euler Number.

Eu =
ρV 2

2P
is a measure of the influence of pressure on the inertial flow. It can be inter-

preted as a ratio of kinetic energy density and the work done by the pressure:

Eu =
ρV 2

2P
=

KE

Workpressure
The Euler number is large in highly inertial flows where pressure gradients do

not significantly deflect the flow, for example, in waterfalls.
1.3.2.4. Reynolds Number.

Re =
LV

ν
is a measure of the influence of viscosity on the inertial flow. It can be inter-

preted as a ratio of time scales of viscous and inertial processes:

Re =
LV

ν
=

L2

ν
L
V

=
Tviscosity

Tinertia

Another way to interpret the Reynolds number is as the ratio of the character-
istic kinetic energy to the characteristic viscous shear stress τ of the flow [10, p.
484]:

KE ∼ ρV 2, τ ∼ ρνV

L
,
KE

τ
=

LV

ν
= Re

In the case in which the energy dissipation due to viscosity is too slow (Tinertia �
Tviscosity), viscosity has little influence on the inertial motion of the fluid.
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1.3.2.5. Large Reynolds Numbers and Turbulence. Thus, large Reynolds num-
bers correspond to small energy dissipation by internal friction in the fluid and
indicate the dominance of the inertial flow.

Turbulence occurs precisely in such flows. Indeed, highly energetic physical
systems are, in general, unstable. The dissipation of energy provides the mecha-
nism for stabilization. Since for large Reynolds numbers viscosity does not dissipate
adequate amounts of energy, a fundamentally different mechanism of energy dissipa-
tion is needed. Such mechanism is precisely provided by the developed turbulence,
whereby the initial kinetic energy of the laminar flow is distributed on a spectrum
of scales of stochastic pulsations of the fluid.

Thus, turbulence is caused by the interaction of smaller and larger scales of
motion in the fluid, and these interactions provide a mechanism for energy dissi-
pation. A remarkable example of the importance of turbulence in nature has been
suggested by A.N. Kolmogorov [5, pp. 185-186]. He estimated that, in the ab-
sence of turbulence, the speed of the flow in the Volga river would be on the order
of 400, 000 miles per hour, which would make life completely impossible along its
shores.

1.3.3. Viscous Flow Perspective. Equations (1.5) and (1.6) are suitable
for eliminating negligible factors when the inertial flow is known to be dominant.
For example, if the Reynolds number is large, then it is plausible to neglect the
viscosity term in the equation.

However, what if we are concerned with eliminating negligible factors knowing
that the flow is inherently viscous? This context arises, for example, in prob-
lems involving mantle convection. Naturally, previous equations do not provide
information about the relative importance of other factors compared to viscosity.
Therefore, we must transform the equations (1.5) and (1.6) to reflect a viscous flow
perspective.

From the perspective of viscous flow, the equations (1.5) and (1.6) become

(1.7) ReSt ∂tv +Re (v ·∇)v = − Re

2Fr
ez −

Re

2Eu
∇p+Δv

(1.8) ∇ · v = 0

The new dimensionless coefficients also have a physical interpretation.
1.3.3.1. Reynolds Number Times Strouhal Number.

ReSt =
LV

ν

L

V T
=

L2

νT

is a measure of how stationary the flow is, albeit now from a point of view of
a viscous flow.

It can be interpreted as the ratio of the viscosity time scale to the characteristic
time scale of the flow:

ReSt =
L2

νT
=

L2

ν

T
=

Tviscosity

T
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1.3.3.2. Reynolds Number Over Froude Number.

Re

2Fr
=

LV

ν

gL

V 2
=

gL2

νV
is a measure of the influence of the gravitational field in a viscous flow. It can

be interpreted as a ratio of viscosity and gravity time scales:

Re

2Fr
=

gL2

νV
=

L2

ν
V
g

=
Tviscosity

Tgravity

1.3.3.3. Reynolds Number Over Euler Number.

Re

Eu
=

LV

ν

P

ρV 2
=

PL

ρνV
=

P

τ

This coefficient can be interpreted as a ratio characterizing the balance of pres-
sure and viscous shear stresses τ in the flow.

1.3.3.4. Nondimensional Numbers as Ratios of Time Scales. Because viscous
dissipation is a process that takes place on a molecular scale, it is natural to ex-
pect the nondimensional equations to depend on ratios of time scales associated
with microscopic processes. In contrast, in the case of the inertial perspective the
nondimensional parameters were mostly ratios characterizing the energy balance of
various macroscopic processes in the flow.

This can be explained by the fact that microscopic processes are determined by
local relaxation times. On the other hand, quantities like kinetic energy density are
macroscopic and do not influence local relaxation times, which explains why they
are not present in the nondimensional parameters when the viscous flow perspective
is considered.

1.3.4. Further Investigation of the System. Thus, it is evident that nondi-
mensionalization is not a deterministic process since its outcome depends on the
additional information available to the researcher.

Firstly, one must choose a perspective, or a point of view, in order to obtain
useful information from the nondimensional forms of the equations. Otherwise,
a common mistake may happen when terms that are not actually negligible are
neglected because of the incorrect interpretation of the nondimensional numbers.
For example, the limit of vanishing Reynolds number in the inertial perspective
does not imply that the only remaining term in the equation is the viscous term.
Indeed, from the perspective of viscosity, Reynolds number is multiplied by other
dimensionless numbers in front of other terms such as the gradient of pressure, so
the asymptotics of these compound terms must now be considered as well.

Secondly, without further specification of the system it is impossible to simplify
the equations further. Either one must estimate the nondimensional numbers by
direct measurements of characteristic parameters of the flow, or introduce additional
relationships between them. For example, the viscosity time scale can be chosen
as a characteristic time scale, and characteristic pressure can be identified with the
characteristic viscous shear stress of the flow.
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2.1. Introduction

The incompressible Stokes equations describing creeping or highly viscous flows
are derived from the incompressible Navier-Stokes equations. The derivation is done
from the viscous flow perspective, since the inertial flow perspective is inappropriate
for creeping flows. The physical meaning of the choice of pressure scale based on
viscous shear stress is fully explained, which is commonly left unexplained in the
literature. The physical meaning of the nondimensional parameters arising from
the nondimensionalization is discussed.

2.2. Low Reynolds Number Flows

2.2.1. Physical Meaning of Small Reynolds Number. A very small Reynolds
number is indicative of the dominance of viscosity in the flow. Therefore, it is nat-
ural to consider the Navier-Stokes equations from the perspective of viscosity:

(2.1) ReSt ∂tv +Re (v ·∇)v = − Re

2Fr
ez −

Re

2Eu
∇p+Δv

(2.2) ∇ · v = 0

What does it mean physically for the Reynolds number to be small?

Re =
LV

ν
=

L2

ν
L
V

=
Tviscosity

Tinertia
� 1 ⇐⇒ Tviscosity � Tinertia

This means that the inertial flow is much slower than the processes associated
with viscosity.

Another way to interpret a small Reynolds number is when viscous shear stress
τ dissipates most of the kinetic energy of the inertial flow:

KE ∼ ρV 2, τ ∼ ρνV

L
,
KE

τ
=

LV

ν
= Re � 1 ⇐⇒ KE � τ

This means that the energy dissipation due to viscous shear stresses dominates
the kinetic energy in the energy balance of the flow [10, p. 484].

2.2.1.1. Choice of Time Scale. Small Reynolds number means that the viscous
dissipation is a much faster process than the inertial flow of the fluid’s particles:

Re =
Tviscosity

Tinertia
� 1 =⇒ Tviscosity � Tinertia

In the limit Re −→ 0 =⇒ Tvisc = 0, which means that viscous dissipation
happens infinitely fast. Naturally, infinitely fast processes cannot serve as a measure
of processes that take finite time to evolve. Therefore, the appropriate characteristic
time scale of the system is the time scale of the inertial flow:

T = Tinertia =
L

V
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2.2.1.2. Choice of Pressure Scale. The choice of the characteristic scale for
the pressure is based on the consideration that for low Reynolds number flows
the kinetic energy is negligible compared to the viscous shear stress. Therefore,
the estimate of a characteristic viscous shear stress is adopted as a characteristic
pressure scale.

There are at least two ways to arrive at an estimate of the viscous shear stress.
The first is to consider Newton’s approximation to the force F due to viscosity

[13]. The surface force due of viscosity is directly proportional to the surface
area (estimated as L2) of contact between two layers of fluid, the speed of their
relative motion V , and inversely proportional to the distance between the moving
layer of the fluid and the layer that is at rest (estimated as L). The constant of
proportionality is, by definition, the dynamic viscosity µ = ρν:

F =
µV L2

L
=

ρνV L2

L
= ρνV L

Hence, the viscous shear stress, which is simply the force due to viscosity per
area, is

P =
F

L2
=

ρνV L

L2
=

ρνV

L
Also, the viscous stress tensor τij can be estimated based on its dimension:

τij = ρν(
∂vi
∂xj

+
∂vj
∂xi

) ∼ ρνV

L
= P

It is interesting to see why the choice of scale based on kinetic energy is inap-
propriate for low Reynolds number flows.

The equations (2.1) and (2.2) suggest two characteristic pressure scales:

P1 =
2EuP

Re
=

ρνV

L
and

P2 = 2EuP = ρV 2

Their ratio is equal to the Reynolds number:

P2

P1
= ρV 2 L

ρνV
=

LV

ν
= Re ⇐⇒ P2 = ReP1

Considering these choices of scale, the coefficient multiplying the gradient of
pressure in the equation (2.1) becomes either

Re

2Eu
=

P1L

ρνV
= 1

or

Re

2Eu
=

P2L

ρνV
= Re

P1L

ρνV
= Re

If the scale P2 is chosen, the pressure gradient term will vanish in the limit
Re −→ 0. This contradicts the physical fact that pressure influences low Reynolds
number flows [8, pp. 433-434].
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Thus, the natural choice of characteristic pressure scale for low Reynolds num-
ber flows is the characteristic viscous shear stress:

P = Pviscosity =
ρνV

L

2.2.2. Estimation of Nondimensional Parameters. Given the choices of
time and pressure scales discussed above, we can estimate the nondimensional co-
efficients in the equations (2.1) and (2.2).

2.2.2.1. Strouhal Number. Strouhal number

St =
L

V T
= 1

The physical interpretation of Strouhal number being equal to unity is that the
stationary and nonstationary components of the flow are in balance.

2.2.2.2. Reynolds Number Over Froude Number.

Re

2Fr
=

gL2

νV
=

ρgL
ρνV
L

=
Egravity

Pviscosity

This dimensionless number can be interpreted as a measure of the work done
by the gravitational field on the fluid in comparison with the viscous shear stresses.

2.2.2.3. Reynolds Number Over Euler Number.

Re

2Eu
=

PL

ρνV
= 1

This ratio can be interpreted as a balance of pressure and viscous shear stresses
in the flow.

2.2.2.4. Euler Number.

Eu =
ρV 2

2P
=

ρV 2

2

L

ρνV
=

Re

2

Euler number can be interpreted as a ratio characterizing energy balance be-
tween the kinetic energy of the flow and and viscous shear stresses.

2.2.2.5. Nondimensional Equations. Considering the estimations of the nondi-
mensional parameters presented above, the equations (2.1) and (2.2) become:

(2.3) Re(∂tv + (v ·∇)v) = −gL2

νV
ez −∇p+Δv

(2.4) ∇ · v = 0

2.2.3. Stokes Equations. Now it is possible to derive the Stokes equations
from the equations (2.3) and (2.4) by taking the limit of Re −→ 0, which is a
common approximation when creeping or very viscous flows are considered:

(2.5) Δv =
gL2

νV
ez +∇p

(2.6) ∇ · v = 0
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2.3. Passage to Dimensional Stokes Equations

Since Stokes equations are commonly presented in a dimensional form, it is
educational to demonstrate the underlying procedure that makes the dimensional
form of the equations valid.

Firstly, equation (2.6) is brought back by multiplying it by

P

L2
=

ρνV

L3

and the equation (2.5) becomes dimensional when multiplied by

νV

L2
=

2gFr

Re
which is all equivalent to a change of variables

t� =
t

T
=

tV

L
, v� =

v

V
, r� =

x

L
, p� =

p

P
=

pL

ρνV
By performing either of the above procedures, we obtain Stokes equations in a

dimensional form:

(2.7) νΔv = gez +
1

ρ
∇p

(2.8) ∇ · v = 0

2.3.1. Stokes Equations vs. Navier-Stokes. Thus, the only difference
between Stokes and Navier-Stokes equations is the presence of the inertial terms.
In addition, the Poisson equation for pressure becomes Laplace’s equation [B.4],
i.e. a homogenous Poisson equation, which manifests the independence of pressure
from velocity in highly viscous flows. Furthermore, Stokes equations are linear,
which further simplifies their numerical solution.

These facts could be postulated from purely physical consideration, yet only
dimensional analysis presented above truly justifies neglecting the inertial terms
under the condition

Re � 1
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3.1. Introduction

The derivation of the temperature advection-diffusion based on the principle of
conservation of energy is presented. Then, the temperature advection-diffusion is
nondimensionalized from both the advection and conduction perspectives, and the
physical meaning of the corresponding nondimensional parameters is discussed.

3.2. Derivation of Temperature Advection-Diffusion Equation

The so-called temperature advection-diffusion equation, which is mathemat-
ically equivalent to the heat equation with the additional terms responsible for
convective transport of heat, provides an approximate description of heat transfer
processes in a thermally isotropic and uniform medium.1 It describes the evolution
of the temperature field in time. Remarkably, the same equation is used to describe
mass transfer processes, since oftentimes the underlying physical assumptions are
mathematically equivalent.

The assumptions underlying our derivation are the following. [9]

3.2.1. Constant Heat Capacity. The amount of heat required for a sub-
stance of mass m to change its temperature from θ1 to θ2 is directly proportional
to m and the increment of temperature θ2 − θ1:

Q = cm(θ2 − θ1), [c] =
L2

ΘT 2

The coefficient c is called specific heat capacity (i.e. heat capacity per unit
mass).

3.2.2. Fourier Law of Heat Conduction. The amount of heat ΔQ trans-
ferred through an infinitesimal plate of area ΔS in time Δt is directly proportional
to ΔS, Δt, and the rate of change of temperature along the unit normal to that
plate ∇θ · n:

ΔQ = −kΔSΔt ∇θ · n, k > 0, [k] =
ML

T 3Θ

The coefficient k is called thermal conductivity. Note that the heat flows oppo-
site to the increase of temperature, which explains the negative sign in the equation
above.

1An alternative name is convection-diffusion equation. In terms of semantics, advection

is preferrable to convection in this context. Indeed, convection means the flow of the fluid in
response to the heat gradients present in the fluid. Advection, however, is a term used to describe

a transport of a quantity (such as temperature, concentration of a chemical, etc.) in response
to the fluid motion. That is why, in this case, temperature is advected. Of course, advection of

temperature (heat) causes convection of a fluid an vice versa, so these proceses are interrelated,

However, convective heat transfer is often referred to as convection, but, in the light of our previous
remarks, it would be more appropriate to call it advection and advective heat transport. However,

this is a terminological inconsistency rooted in history.
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3.2.3. Conservation of Energy. The rate of change of the amount of heat
in a volume Ω ⊂ R3 is

dQ

dt
=

d

dt

�

Ω

ρc θdV = ρc

�

Ω

dθ

dt
dV

Note that c, ρ, and k were assumed constant (uniform and isotropic medium),
and the differentiation under the integral is allowed assuming that the temperature
field θ is smooth enough. The last assumption is usually plausible since temperature
transfer is a diffusive process which smoothens discontinuities.

Simultaneously, heat is flowing out of the volume Ω through its boundary ∂Ω:

dQout

dt
= −

�

∂Ω

k(∇θ · n) dS

In other words, the amount of heat flowing out through the boundary per unit
time is directly proportional to the negative flux of the gradient of temperature.

By divergence theorem

�

∂Ω

(∇θ · n) dS =

�

Ω

(∇ ·∇θ)dV =

�

Ω

ΔθdV =⇒ dQout

dt
= −k

�

Ω

ΔθdV

Conservation of energy requires that, given there are no sources of heat, the
change of the amount of heat in the volume is equal to the amount of heat leaving
or entering it through the bounday:

dQ

dt
= −dQout

dt
⇐⇒ ρc

�

Ω

dθ

dt
dV = k

�

Ω

ΔθdV

Since we assumed that the temperature field θ is smooth enough, and the
volume Ω was arbitrary, the functions under the integral must be equal throughout
the domain R3:

ρc
dθ

dt
= kΔθ

Unfolding the material derivative dθ
dt and dividing the equation by ρc we obtain

the advection-diffusion equation, describing diffusion of temperature simultaneous
with convective transport of heat by the velocity field. In other words, the equation
takes both the heat conduction and advection processes into account:

(3.1) ∂tθ + (v ·∇)θ = κΔθ

The coefficient κ is called thermal diffusivity and is a measure of the intensity
of the diffusion of temperature:

κ =
k

ρc
, [κ] =

L2

T

Naturally, boundary conditions must be supplied in order for the equation (4.2)
to describe a concrete system.
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3.3. Nondimensionalization of the Temperature Advection-Diffusion
Equation

The nondimensionalization of the temperature advection-diffusion (4.2) is ac-
complished in the same manner as in the case of Navier-Stokes equations in chapter
1.

However, now it is necessary to introduce a new parameter, the characteristic
temperature of the system Θ. Operationally, it can be defined, for example, as the
average temperature of the field or the difference between the maximum and the
minimum temperatures.

According to Buckingham Π-theorem [4] (cf. also Buckingham’s Π-Theorem),
the system can be described by 7 − 4 = 3 nondimensional parameters, since there
are 7 dimensional parameters describing the heat transfer (x,v, ρ, ν, g, θ, t) among
which there are 4 independent units of measurements (mass, length, time, temper-
ature).

By performing a change of variables

t� =
t

T
, v� =

v

V
, r� =

x

L
, θ� =

θ

Θ

and substituting into the equation (4.2), dropping the primes for notational
convenience, we obtain

(3.2)
Θ

T
∂tθ +

ΘV

L
(v ·∇)θ =

κΘ

L2
Δθ

As in the case of Navier-Stokes equations in chapter 1, it is necessary to choose
a perspective in order to proceed with nondimensionalization.

3.3.1. Advective Term Perspective. From the point of view of the advec-
tive (inertial) term, the equation (3.2) becomes

(3.3) St ∂tθ + (v ·∇)θ =
1

Pe
Δθ

Since Strouhal number St has the same meaning as in nondimensionalization of
Navier-Stokes equations discussed in chapter 1, only the Peclet number Pe deserves
a discussion here.

3.3.1.1. Peclet Number. The Peclet number

Pe =
LV

κ
=

L2

κ
L
V

=
Tconduction

Tinertia

is a measure of the vigour of advection. It can be interpreted as a ratio of
conduction and advection time scales, inertial time scale being equivalent to ad-
vection time scale. In other words, it indicates which mechanism of heat transfer,
convective or conductive, is dominant in the flow.

It is possible to consider the Peclet number as a product of Reynolds and
Prandtl number:

Pe =
LV

κ
=

LV

ν

ν

κ
= RePr, Pr =

ν

κ
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Since the Prandtl number characterizes the medium but not the flow itself,
Peclet number can be viewed, to some degree, as a Reynolds number in the context
of heat transfer.

3.3.1.2. Prandtl Number. Prandtl number

Pr =
ν

κ
=

L2

κ
L2

ν

=
Tconduction

Tviscosity

can be interpreted as a ratio of conduction and viscosity time scales. Since it
does not involve any kinematic or dynamic quantities like characteristic length or
speed, Prandtl number characterizes the properties of the medium but it does not
characterize the properties of the flow.

In other words, Prandtl number is constant for different types of flow in the
same medium. It simply characterizes which mechanism of energy dissipation,
viscous or heat conduction, is dominant for a given material.

3.3.2. Conduction Term Perspective. From the point of view of the con-
duction (diffusion) term, the equation (3.2) becomes

(3.4)
1

Fo
∂tθ + Pe (v ·∇)θ = Δθ

The only new dimensionless parameter is the Fourier number Fo.
3.3.2.1. Fourier Number. The Fourier number

Fo = StPe =
κT

L2
=

T
L2

κ

=
T

Tconduction

is a ratio of the characteristic time scale of the system and the conduction time
scale. It is a measure of how stationary the heat transfer process is. The smaller the
time scale of a certain process, the more dominant that process is in the information
exchange in the system.

For example, if the conduction time scale is much smaller than the characteristic
time scale of the system (e.g. period of oscillation of a magnetic field), Fourier
number will be large and the heat transfer can be considered stationary. In an
opposite case, if the frequency, and hence the energy, of the alternating magnetic
field is very large, than the fluid will respond to this disturbance and the heat
transfer process will be nonstationary.

In other words, heat conduction, due to its dissipative nature, stabilizes the sys-
tem, whereas external disturbances usually destabilize it, thus making the process
inherently nonstationary.
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4.1. Introduction

The derivation of the equations of the Boussinesq approximation, which de-
scribe convective processes, is presented. These equations are nondimensionalized
and the physical meaning of the resulting nondimensional parameters is discussed.

4.2. Derivation of Boussinesq Approximation

Boussinesq approximation to the equations of convection, which consist of
Navier-Stokes equations (cf. chapter 1) and heat equation (cf. chapter 3), is based
on an assumption that the fluid is incompressible. In addition, the density of the
fluid is assumed not to depend on thermodynamic pressure. Furthermore, the tem-
perature variations in the medium are deemed small enough as to accept a linear
approximation to the change of density with temperature.

It must be noted that the variation of density with temperature is only taken
into account in the momentum equations while density is constant in other equa-
tions. This speaks of the limitations of the approximation: it is only valid for
the “weak convection” in which the perturbations of density due to temperature
gradients are small. Otherwise, the variation of density with temperature must be
taken into account in all of the equations, leading to a system different from the
one considered here.

The derivations presented below follow the works [2,6].

4.2.1. Goal of Boussinesq Approximation. Boussinesq approximation re-
sults in a system of equations that describe the evolution of the perturbations of
the parameters of the system from the initial reference parameters. For example,
the heat transfer equation, in the context of Boussinesq approximation, describes
the evolution of the perturbation of temperature θ� = θ − θ0 from the reference
temperature θ0.

Thus, after performing the computations, it is important to remember to add
the reference parameters to the computed values in order to obtain the actual
information about the system: e.g. θ = θ0 + θ�

For notational convenience, we shall drop the primes in the exposition that
follows, keeping in mind that, in this context, θ describes the perturbations of
temperature, not the actual value of temperature.

4.2.2. Equation of State. The equation of state that is of interest in the
context of Boussinesq approximation is density as a function of temperature and
pressure:

ρ = ρ(θ, p)

Neglecting the dependence of density on pressure, and considering only linear
terms, the equation of state for density for the perturbations of temperature can
be written as

(4.1) ρ(θ0 + θ) ≈ ρ(θ0)(1−
θ

ρ(θ0)

∂ρ

∂θ

����
θ0

) = ρ0(1− βθ), ρ(θ0) = ρ0

where
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β =
1

ρ0

∂ρ

∂θ

����
θ0

, [β] =
1

Θ

is the volumetric coefficient of thermal expansion that characterizes the decrease
of density with temperature. Its name makes sense if we recall the relationship
between the specific volume and density:

v =
1

ρ
=⇒ β =

1

ρ0

∂ρ

∂θ

����
θ0

= v0
∂v−1

∂θ

����
θ0

= −v0
v20

∂v

∂θ

����
θ0

= − 1

v0

∂v

∂θ

����
θ0

4.2.3. Temperature Advection-Diffusion Equation. Since the temper-
ature advection-diffusion equation in chapter 3 is linear with respect to θ and,
therefore, invariant with respect to addition of a constant to the temperature, the
equation for the perturbation of temperature in the Boussinesq approximation is
the same as the original equation if we, for convenience, drop the primes in θ�:

(4.2) ∂tθ + (v ·∇)θ = κΔθ

4.2.4. Navier-Stokes Equations. The only change in the Navier-Stokes equa-
tions resulting from Boussinesq approximation concerns the dependence of density
on temperature expressed by the equation (4.1). Substituting (4.1) into the Navier-
Stokes equations in chapter 1, we obtain

(4.3) ρ0(1− βθ)(∂tv + (v ·∇)v) = −ρ0g(1− βθ)ez −∇p+ µΔv

= −ρ0gez + ρ0gβθez −∇p+ µΔv

(4.4) ∇ · v = 0

The term

−ρ0βθ(∂tv + (v ·∇)v)

on the left-hand side of (4.3) can be neglected due to the assumption βθ � 1 [2].
The mechanical equilibrium and, hence, the hydrostatic pressure is determined

by the equation

∇phydrostatic = ρ0gez

Because the hydrostatic pressure is of little interest by itself, since it describes
the equilibrium case when the density is constant, it can serve as a reference pres-
sure:

(4.5) p� = p− phydrostatic =⇒ ∇p� = ∇p−∇phydrostatic = ∇p− ρ0gez

Substituting (4.5) into the right hand side of (4.3) eliminates the term −ρ0gez.
Finally, after the operations described above, (4.3) is divided by ρ0. Dropping

the subscript in the reference density ρ0 for convenience but keeping in mind that
ρ still denotes the reference density, the Navier-Stokes equations of the Boussinesq
approximation finally become
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(4.6) ∂tv + (v ·∇)v = gβθez −
1

ρ
∇p+ νΔv

(4.7) ∇ · v = 0

4.2.5. Equations of Boussinesq Approximation. Summarizing preceding
considerations, the full set of equations of Boussinesq approximation in dimensional
form is the following:

(4.8) ∂tv + (v ·∇)v = gβθez −
1

ρ
∇p+ νΔv

(4.9) ∇ · v = 0

(4.10) ∂tθ + (v ·∇)θ = κΔθ

4.3. Nondimensionalization

Following the procedures for nondimensionalization described in chapter 3 and
chapter 1, we obtain the following dimensionless system of equations:

(4.11) St ∂tv + (v ·∇)v =
Θβ

2Fr
θez −

1

2Eu
∇p+

1

Re
Δv

(4.12) ∇ · v = 0

(4.13) St ∂tθ + (v ·∇)θ =
1

Pe
Δθ

In problems concerning the onset of convection, the fluid is initially at rest, so
there is no natural characteristic speed of the flow V . Therefore, it must be derived
from the characteristic length and time scales:

V =
L

T
Substituting this relationship into the dimensionless coefficients above, we ob-

tain new dimensionless coefficients.
4.3.0.1. Strouhal Number.

St =
L

V T
= 1

Physically, St = 1 means that the stationary and nonstationary components of
the flow are in balance.

4.3.0.2. Measure of Buyoant Force.

Θβ

2Fr
=

gΘβL

V 2
=

ρgΘβL

ρV 2
=

Workbuoyancy
2KE

Physically, the nondimensional coefficient gΘβL
V 2 is a measure of the influence of

buoyant force on the velocity field. It can be interpreted as the ratio of the work
done by the gravity due to buoyancy, resulting from the thermal expansion of the
fluid, to the kinetic energy of the flow.
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4.3.0.3. Euler Number.

Eu =
ρV 2

2P
==

KE

Workpressure

is a measure of the influence of pressure on the inertial flow. It can be inter-
preted as the ratio of kinetic energy density and the density of work done by the
pressure.

4.3.0.4. Reynolds Number.

Re =
LV

ν
=

L2

νT
=

Tviscosity

T
In this context, the Reynolds number measures the influence of viscosity pro-

cesses on the overall flow.
Another way to interpret the Reynolds number is as the ratio of characteristic

kinetic energy to the viscous shear stresses of the flow:

KE ∼ ρV 2, Pviscosity ∼ ρνV

L
,

KE

Pviscosity
=

LV

ν
= Re

4.3.0.5. Peclet Number.

Pe = PrRe =
ν

κ

L2

νT
=

L2

κT
=

Tconduction

T
In this context, Peclet number measures the influence of heat conduction pro-

cesses on the overall flow.

4.3.1. Nondimensional Form of Boussinesq Equations. Considering the
new nondimensional parameters, the equations (4.11), (4.12), and (4.13) become

(4.14) ∂tv + (v ·∇)v =
gΘβT 2

L
θez −

PT 2

ρL2
∇p+

νT

L2
Δv

(4.15) ∇ · v = 0

(4.16) ∂tθ + (v ·∇)θ =
κT

L2
Δθ

Further investigation of the equations requires information about the charac-
teristic pressure scale P and the characteristic time scale T .
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5.1. Introduction

The equations of the Boussinesq approximation are considered in the context of
mantle convection. The physical considerations underlying the appropriate choice of
time and pressure scales for nondimensionalization of these equation are explained,
which is commonly not presented in the literature. The physical meaning of all
nondimensional numbers arising after nondimensionalization is discussed. Finally,
the equations of mantle convection are obtained in the limit of infinite Prandtl
number, which results in a system depending on a single nondimensional parameter,
the Rayleigh number.

5.2. Choice of Scales

In chapter 4 we obtained nondimensionalized form of the equations of Boussi-
nesq approximation from the perspective of the inertial flow1:

(5.1) ∂tv + (v ·∇)v =
gΘβT 2

L
θez −

PT 2

ρL2
∇p+

νT

L2
Δv

(5.2) ∇ · v = 0

(5.3) ∂tθ + (v ·∇)θ =
κT

L2
Δθ

However, mantle convection is characterized by very low Reynolds number
flows, which implies that a more appropriate point of view for nondimensional-
ization is the point of view of the viscosity term in the equation (5.1). In order to
transform the equations to conform with the new scaling perspective, we multiply
the equation (5.1) by

L2

νT

which makes the dimensionless coefficient in front of Δv a unity.
Thus, the equations (5.1 - 5.3) become

(5.4)
L2

νT
(∂tv + (v ·∇)v) =

gΘβTL

ν
θez −

PT

ρν
∇p+Δv

(5.5) ∇ · v = 0

(5.6) ∂tθ + (v ·∇)θ =
κT

L2
Δθ

Further investigation of these equations requires additional information about
the time and pressure scales, T and P .

1The meaning of the “prespective of nondimensionalization” is explained in (1.3.1)
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5.2.1. Time Scale. There are two natural choices of scales in the context of
the highly viscous flows that are characteristic of mantle convection. [3]

The first choice is based on the viscosity time scale:

Tviscosity =
L2

ν
The second choice is based on the heat conduction time scale:

Tconduction =
L2

κ
In order to choose the appropriate scale for the context of mantle convection,

we observe that their ratio is equal to the Prandtl number:

Tconduction

Tviscosity
=

ν

κ
= Pr

A commonly used approximation for the dynamics of Earth’s mantle is the
limit of infinite viscosity, which is equivalent to the limit of infinite Prandtl number
since thermal conductivity is usually fixed or bounded:

ν −→ ∞ ⇐⇒ Pr −→ ∞
Physically, this limit can be interpreted as

Tviscosity � Tconduction

or

Tviscosity −→ 0

Physically, this limit means that information due to viscous interactions prop-
agates infinitely fast, and infinitely fast processes cannot serve as a measure of
other processes because they are infinitely slow relative to infinitely fast processes.
Thus, the viscosity time scale becomes singular in the common mantle convection
approximation, which makes it an inappropriate choice for the time scale.

Therefore, the only choice left is the time scale associated with heat conduction,

T = Tconduction =
L2

κ
Another argument supporting this choice of scale is the fact that heat conduc-

tion takes place regardless of the macroscopic flow of the fluid. Since initially the
fluid is at rest in the common problems of mantle convection, measurable viscous
dissipation processes cannot start until the fluid has been set in an adequately
intense macroscopic flow. At the same time, heat conduction starts immediately
because a gradient of temperature is always present in the mantle.

5.2.2. Pressure Scale. In chapter 2 we justified an appropriate pressure scale
for low Reynolds number flows based on an estimate of viscous shear stress:

P =
ρνV

L
=

ρν

T
Following [8, pp. 433-434], we shall verify that this choice of scale is appropriate

by comparing it with another possible choice of scale based on kinetic energy.
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Given 9 parameters describing the convection (x,v, ρ, ν,κ, g, p, θ, t) and 4 units
of measurement (length, time, mass, temperature), by Buckingham’s Π-theorem we
can form 9− 4 = 5 nondimensional parameters describing the system. [4] (cf. also
Buckingham’s Π-Theorem)

From (5.4), (5.5), and (5.6) we see that they are the following:

Pr =
ν

κ
PT

ρν

ρL2

PT 2

Ra =
gΘβL3

νκ
κT

L2

From this we can see that there are two choices of nondimensionalizing the
pressure:

P1 =
ρν

T

P2 =
ρL2

T 2

Their ratio is :

P1

P2
=

νT

L2
=

T

Tviscosity

Given our choice of time scale, we find that the ratio is equal to the Prandtl
number:

T = Tconduction =
L2

κ
P1

P2
=

Tconduction

Tviscosity
=

ν

κ
= Pr ⇐⇒ P2 =

1

Pr
P1

Considering these choices of scale, the coefficient multiplying the gradient of
pressure in the equation (5.4) becomes either

P1T

ρν
= 1

or

P2T

ρν
=

1

Pr

P1T

ρν
=

1

Pr
In the limit Pr −→ ∞ the scale associated with P2 implies that the gradient of

pressure term in the equation (5.4) will vanish. This contradicts the physical fact
that pressure influences the flow even at low Reynolds numbers. [8, pp. 433-434]

Thus, the appropriate choice of characteristic pressure scale is, as in chapter 2,
associated with viscous shear stress:

P = P1 =
ρν

T
=

ρνκ

L2
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5.3. Nondimensional Form of Equations

Considering the choices of scales discussed above, the equations (5.4), (5.5),
and (5.6) finally become

(5.7)
1

Pr
(∂tv + (v ·∇)v) = Ra θez −∇p+Δv

(5.8) ∇ · v = 0

(5.9) ∂tθ + (v ·∇)θ = Δθ

The only new nondimensional parameter is the Rayleigh number Ra.
5.3.0.1. Rayleigh Number. Rayleigh number

Ra =
gΘβL3

νκ
=

gΘβLT

ν
=

gΘβT
ν
L

=
ρVbuoyancy

ρVviscosity

is a measure of the influence of temperature on the mechanical motion of the
fluid.

It can be interpreted as a ratio of momentum gained due to the buoyant force,
resulting from thermal expansion of the fluid, and the momentum dissipated by the
viscosity.

Another interpretation of Rayleigh number is a ratio of the work of buoyant
forces and viscous shear stress:

Ra =
gΘβL3

νκ
=

ρgΘβL
ρν
T

=
Ebuoyancy

Pviscosity

In other words, Rayleigh number measures how far from the equilibrium a sys-
tem is: indeed, while the buoyant force destabilizes the motion, viscosity stabilizes
it through energy dissipation.

5.3.1. Limit of Infinite Prandtl Number. A common approximation in
mantle convection problems is the limit of infinite Prandtl number. By taking this
limit in the equations (5.7), (5.8), and (5.9), we obtain the following system of
equations in nondimensional form:

(5.10) Δv = ∇p−Ra θez

(5.11) ∇ · v = 0

(5.12) ∂tθ + (v ·∇)θ = Δθ

As we can see, the only parameter defining the system is the Rayleigh number,
which makes it especially suitable for numerical experiments.
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A.1. Introduction

The Buckingham Π-Theorem is discussed both from the perspective of revealing
the rank of a set of physical quantities, as well as from the perspective of reducing
the number of parameters in an equation linking physical quantities. It is shown
that the Buckingham Π-Theorem is simply a consequence of a fundamental theorem
of linear algebra relating the dimensions of the image, kernel, and the number of
columns of a matrix.

A.1.1. Content of Buckingham’s Π-Theorem. The content of Bucking-
ham’s Π-theorem is an answer to the question:

Why out of n physical quantities, of which k are dimensionally
independent, can we obtain n− k dimensionless parameters?

The answer is simply a consequence of a fundamental theorem of linear algebra.
[1,7,11,13]

A.2. Dimensionality Reduction of a System of Physical Quantities

A.2.1. Physical Dimensions Form a Linear Space. Physical quantities
are measured against a conventionally chosen system of unitsX =

�
[X1] . . . [Xn]

�
.

Therefore, the dimension of any physical quantity is simply an algebraic combina-
tion of the units of measurements:

[A] = [
n�

i=1

X
di
A

i ] =
n�

i=1

diA[Xi]

For example, in the unit system of massM , length L, and time T , the dimension
of P pressure is

[P ] =
M

LT 2
= [M ]− [L]− 2[T ]

We see that we can establish an isomorphism between the dimensions of physical
quantities and a linear space of vectors corresponding to these dimensions.

Indeed, consider the dimension of a product of two physical quantities:

[AB] = [

n�

i=1

X
di
A

i

n�

i=1

X
di
B

i ] = [

n�

i=1

X
di
A

i X
di
B

i ] = [

n�

i=1

X
di
A+di

B
i ] =

n�

i=1

(diA+diB)[Xi] = [A]+[B]

Evidently, vectors [Xi] form a basis of this linear space of dimensions. It is
convenient to choose a canonical orthonormal basis for the fundamental units of
measurements:

[Xi] ≡




0
...
1
...
0




where 1 is at the i-th component and 0 elsewhere.

For example, if we establish the following correspondence between the basis
vectors and the dimensions of mass M , length L, and time T :
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[M ] =



1
0
0


 , [L] =



0
1
0


 , [T ] =



0
0
1




the dimension of pressure will be expressed thus:

[P ] =
M

LT 2
= [M ]− [L]− 2[T ] =




1
−1
−2




A.2.2. Dimensional Matrix. Considering these facts and recalling the def-
inition of matrix-vector multiplication, we can see that X =

�
[X1] . . . [Xn]

�

forms a dimensional matrix of the system of physical quantities. Thus, the dimen-
sion vector dA of any physical quantity [A] in the basis X =

�
[X1] . . . [Xn]

�
is

linearly related to the dimensional matrix X:

[A] =

n�

i=1

diA[Xi] = XdA

A.2.2.1. Dimensionless Quantities and Kernel of the Dimensional Matrix. A
physical quantity [A] is dimensionless if

A =

n�

i=1

X
di
A

i = 1

which means that

[A] =

n�

i=1

diA[Xi] = XdA = [1] = 0 =⇒ dA ∈ kerX

Thus, there is a one-to-one correspondence between the kernel, or nullspace, of
the dimensional matrix X and the nondimensional quantities that can be formed
out of the system of physical quantities X =

�
[X1] . . . [Xn]

�
. Therefore, the

number of distinct nondimensional numbers that it is possible to produce out of
a system of dimensional quantities (X1, . . . , Xn) is equal to dim ker X, i.e. the
dimension of the nullspace of the dimension matrix X.

A.2.2.2. Dimensionally Independent Physical Quantities and the Rank of the
Dimensional Matrix. Physical quantities (X1, . . . , Xn) are dimensionally indepen-
dent if their only combination that can produce a dimensionless number is a trivial
combination. In other words, the dimension vectors of dimensionally independent
quantities are linearly independent:

n�

i=1

X
di
A

i = 1 ⇐⇒
n�

i=1

di[Xi] = 0 =⇒ di = 0

Thus, the dimension matrix composed of the dimensions of n dimensionally
independent physical quantities has full rank:

rank X = n
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A.2.3. Buckingham’s Theorem. Now it is possible to prove Buckingham’s
Π theorem. Usually, the number of dimensionally independent physical quantities
in the system is known, and it is interesting to know how many dimensionless
quantities can be produced out of this system. Such question is of interest since it
is preferable to work with as little number of parameters as possible.

Let (X1, . . . , Xk, . . . , Xn) be a system of n physical quantities of which the first
k are dimensionally independent. The dimensional matrix of this system

X = ([X1], . . . , [Xk], . . . , [Xn])

has k linearly independent columns and, hence, its rank is k:

dim im X = rank X = k

By a fundamental theorem of linear algebra, the sum of the dimensions of the
image and the kernel of a linear operator is equal to the number of columns of its
matrix:

dim ker X+ dim im X = dim ker X+ k = n

Since it was established that the number of distinct nondimensional numbers
characterizing the system (X1, . . . , Xk, . . . , Xn) is equal to the dimension of the
nullspace of its dimensional matrix, we obtain the result of the Π-theorem:

dim ker X = n− k

Thus, given n physical quantities of which k are dimensionally independent,
we can form n − k nondimensional numbers fully characterizing the system. This
allows us to reduce the number of parameters needed to describe the system.

In addition, we established that, given a dimensional matrix of a set of physical
quantities, the problem of finding the number of dimensionally independent quanti-
ties among them reduces to the problem of computing the rank of the dimensional
matrix.

A.3. Dimensionality Reduction of a Physical Functional Dependence

We have now established that given n physical quantities of which k are di-
mensionally independent, we can form n− k nondimensional numbers fully charac-
terizing the system. However, what does this imply for functional dependencies of
one physical quantity on others?

Based on the previous result we intuitively expect that a functional dependence
of the form

X0 = f(X1, . . . , Xk, . . . , Xn)

could be described by n − k nondimensional parameters instead of n original
dimensional parameters.

Indeed, let (X0, X1, . . . , Xk, . . . , Xn) be a system of physical quantities of which
k are dimensionally independent: the dimensionally independent quantities will be
used as the units of measurement.
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Furthermore, X0 is a function of other quantities:

(A.1) X0 = f(X1, . . . , Xk, . . . , Xn)

The dimensions of X0 and (Xk+1, . . . , Xn) can be expressed in terms of the
dimensions of the dimensionally independent quantities (X1, . . . , Xk), since they
are our units of measurement:

[X0] =

k�

i=1

di0[Xi] = [

k�

i=1

X
di
0

i ]

[Xk+j ] =

k�

i=1

dij [Xi] = [

k�

i=1

X
di
j

i ], j ∈ 1, n− k

If we change the scales for the units of measurements, i.e.

(A.2) Xi �→ aiXi, i ∈ 1, k

the dimensionally-dependent quantities must transform accordingly:

(A.3) X0 �→
k�

i=1

(aiXi)
di
0 = (

k�

i=1

a
di
0

i )

k�

i=1

X
di
0

i = (

k�

i=1

a
di
0

i )X0

(A.4) Xk+j �→
k�

i=1

(aiXi)
di
j = (

k�

i=1

a
di
j

i )

k�

i=1

X
di
j

i = (

k�

i=1

a
di
j

i )Xk+j , j ∈ 1, n− k

Since (X1, . . . , Xk) are dimensionally independent units of measurement, it is
possible to choose scales based on these quantities, i.e.

ai =
1

Xi
, ∈ 1, k

In such case, (A.2), (A.3), and (A.4) become

(A.5) aiXi = 1, i ∈ 1, k

(A.6) (

k�

i=1

a
di
0

i )X0 =
X0

(
k�

i=1

X
di
0

i )

= Π

(A.7) (

k�

i=1

a
di
j

i )Xk+j =
Xk+j

(
k�

i=1

X
di
j

i )

= Πj , j ∈ 1, n− k

Consequently, the physical functional dependence (A.1) transforms accordingly
under the change of scales (A.5), (A.6), and (A.7):

X0 = f(X1, . . . , Xk, . . . , Xn) �→ Π = f(1, . . . , 1,Π1, . . . ,Πn−k) = F (Π1, . . . ,Πn−k)
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Thus, a dimensional functional dependence involving n dimensional parameters

X0 = f(X1, . . . , Xk, . . . , Xn)

has been reduced to a nondimensional functional dependence involving only
n− k dimensionless parameters

Π = F (Π1, . . . ,Πn−k)

This relationship is particularly useful, for example, in nondimensionalization
of fluid dynamics equations because it reveals the relative influence of various terms
of the equations on the overall behavior of the flow.
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Poisson Equation for Pressure
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B.1. Introduction

Basic tensor notation is introduced and is used to derive the Poisson equation
for pressure for the incompressible flow. This Poisson equation relates pressure
and velocity and thus shows that in incompressible flows the pressure is completely
determined by the velocity field.

B.2. Tensor Notation

As will be seen later, tensor notation is convenient for writing the equations of
fluid dynamics. The purpose of this notation is to express the sums of large number
of terms compactly, which is achieved by implicit summation over repeating indices.

For our purposes, we establish the following conventions:

(1) Spatial coordinates xyz are denoted by numbers from 1 to 3
(2) xi is i-th component of a vector x, ∂i ≡ ∂

∂xi

(3) Summation is implicit over indices repeated within the same expression

(e.g. aibi =
�3

i=1 aibi)

For example, matrix-vector multiplication is expressed elegantly in tensor no-
tation:

(Ax)i =

n�

j=1

aijx
j ⇐⇒ Ax ≡ aijx

j

In this case, i is called running index since it denotes the component of the
resulting vector that can be chosen freely by us, whereas the index j is called dummy
index, since it is only used in the summation and has no other significance.

To further illustrate the convenience of this notation, consider an example of
the divergence of a vector field:

∇ · v = ∂xv
x + ∂yv

y + ∂zv
z =

3�

k=1

∂kv
k ≡ ∂kv

k

B.2.1. Navier-Stokes Equations in Tensor Notation. Considering previ-
ous explanation of tensor notation, the Navier-Stokes equations for incompressible
flow can be written thus:

(B.1) ∂tv
i + vk∂kv

i = −gδi3 −
1

ρ
∂ip+ ν∂2

kv
i

(B.2) ∂kv
k = 0

where δij is Kronecker’s delta function, which is 0 except when i = j: then it
is equal to 1.

B.3. Poisson Equation for Pressure Field in an Incompressible Flow

When the flow is incompressible, the pressure field is determined completely
by the velocity field of the flow. This can be shown with relative ease by using the
tensor notation discussed above.

Indeed, let’s apply the divergence operator to equation (1.1) term by term:

(1) ∇ · ∂tv = ∂t (∇ · v) = 0
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(2) ∇ · [(v ·∇)v] = ∂l((v ·∇)v)l = ∂l(v
k∂kv

l) = ∂lv
k∂kv

l + vk∂l∂kv
l

Since vk∂l∂kv
l = vk∂k(∂lv

l) = vk∂k(∇ · v) = 0 =⇒ ∇ · [(v · ∇)v] =
∂lv

k∂kv
l

(3) ∇ · gez = 01

(4) ∇ · 1
ρ∇p = 1

ρΔp

(5) ∇ · (νΔv) = ν∂l(Δv)l = ν∂l∂k∂kv
l = ν∂k∂k(∂lv

l) = 0

Thus, only terms 2 and 4 remain in (1.1), thus yielding the Poisson equation
for pressure:

(B.3) Δp = −ρ ∂lv
k∂kv

l

This means that equations (1.1) and (1.2) can be written in an equivalent form,
using tensor notation, which relates pressure and velocity fields more directly:

(B.4) ∂tv + (v ·∇)v = −gez −
1

ρ
∇p+ νΔv

(B.5) Δp = −ρ ∂kv
l∂kv

l

The utility of tensor notation is evident: without Einstein’s convention, equa-
tion (B.5) has 6 terms, even after complete simplification, versus one term in its
compact tensor representation. Furthermore, tensor notation allowed us to com-
pute complicated quantities such as ∇ · [(v ·∇)v] with just a few steps and basic
knowledge of algebraic properties of finite sums and differentiation.

Finally, equation (B.5) is useful for the dimensional and scaling analysis of the
Navier-Stokes equations. Indeed, the fact that a velocity field has zero divergence
is scale-invariant since the equation ∇ · v = 0 will hold under any choice of scale.
This means that this equation does not provide any additional information about
the behavior of the system under various choices of scales. On the other hand, the
coefficients in the equation (B.5) vary under different scales. Therefore, equation
(B.5) can reveal the relative importance of pressure and velocity fields under various
choices of scale.

B.4. Laplace Equation for Pressure in Stokes Equations

Considering the estimations of the nondimensional parameters presented in
(2.2.2), the equations (2.1) and (2.2) become:

(B.6) Re(∂tv + (v ·∇)v) = −gL2

νV
ez −∇p+Δv

(B.7) Δp = Re ∂kv
l∂kv

l

1This is true in general for any potential field when no sources are present inside the domain.
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