
Derivation of the Rayleigh-Benard
equations for modeling convection in

the Earth’s mantle

Ivan Cherkashin

Elbridge Gerry Puckett

July 7, 2015

The simplest from of equations of the Boussinesq approximation is nondi-
mensionalized in the context of numerical modeling of mantle convection.
Physical considerations underlying the appropriate choices of time, veloc-
ity, and pressure scales for nondimensionalization of these equation are
explained, which is not widely presented in the literature. The physical
meaning of all nondimensional numbers arising as a result of nondimen-
sionalization is discussed.
The main goal of this survey is to demonstrate the underlying physical

reasoning behind nondimensionalization and to obtain a nondimensional
form of the equations, commonly used in numerical modeling, that depends
only on a single parameter: the Rayleigh number.
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Introduction

Nondimensionalization is a powerful method of investigating complex systems when
the exact dynamics is practically impossible to compute yet it is still possible to esti-
mate the mutual importance of various factors on the overall dynamics. For example,
although, in general, the exact solution to the Navier-Stokes equations cannot be com-
puted, nondimensionalization of these equations may reveal the relative importance
of pressure, viscosity, and other factors on the overall behavior of the flow. Thus,
knowing that the dissipation of energy and momentum due to viscosity is negligible
compared to the vigor of the inertial motion of the fluid, which manifests itself in a
very large value of a nondimensional parameter called Reynolds number, it is possible
to neglect the viscous terms in the Navier-Stokes equations, thus turning them into
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Euler’s equations. Analogously, when Reynolds number is small and inertial motion is
negligible compared to viscous effects, Navier-Stokes equations turn into Stokes equa-
tions. These examples demonstrate how nondimensionalization may serve as a tool
leading to useful approximations and deeper understanding of the physics underlying
mathematical equations.
At a first glance, nondimensionalization appears to be a simple scheme: first, a

change of variables that would make the physical variables involved in the equations
nondimensional, followed by simple algebraic manipulations with the coefficients of
the equations and, finally, taking limits with respect to certain coefficients of interest,
such as Reynolds number mentioned above. However, such unintelligent approach
may lead to mistakes. For example, under incorrect choice of scales, it may lead to
disappearance of the pressure term in the Stokes equations when they are derived
from Navier-Stokes, which totally contradicts the physical fact that pressure is an
important factor even for highly viscous flows. Thus, correct nondimensionalization
requires understanding of the physics underlying the decision one makes when a certain
scale must be chosen in order to nondimensionalize a particular physical quantity.
Otherwise, nondimensionalization becomes a dull set of tricks, which cannot amount
to genuine knowledge and understanding of the natural world.
Unfortunately, although nondimensionalization has been successfully employed for a

long time as a powerful method of investigation, no universal algorithm was developed
for applying this method to all of the possible physical situations. It is natural, since
it is impossible to account for all of the possible combinations of physical factors in
an abstract mathematical scheme. Thus, when one wishes to nondimensionalize the
equations of mantle convection, the first difficulty that arises is an absence of a reliable
source devoted to this specific context. Because of that, a researcher is compelled to
search through a vast, inhomogeneous array of literature in order to answer questions
regarding the nondimensionalization of the equations of mantle convection. This is
obviously inefficient and the valuable knowledge is lost if a successful researcher never
shares his synthesis with the community.
The present work is attempts to address this very problem. It is a synthesis of

the numerous, oftentimes very little but important ideas from the sources the author
encountered. It is hoped to be a point of growth in the mantle convection community,
providing a source that explains nondimensionalization in the context of mantle con-
vection. The author hopes that this work save precious time for other researches and
students, which should be devoted to solving new interesting problems.
The goal of this work is to derive a nondimensional form of the equations of the

Boussinesq approximation in the context of mantle convection in a form that depends
on a single nondimensional parameter: the Rayleigh number. To do so, we start
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nondimensionalize the incompressible Stokes equations and the advection-diffusion
equation for temperature, explaining the physical meaning of this procedure and its
underlying subtleties. Only the simplest form of the equations is considered in which
the viscosity and thermal diffusivity are constant. This simplest case is, nevertheless,
important, since it is often used for validating competing computational software that
solve the same problem employing various numerical methodologies and algorithms.
In addition to presenting nondimensionalization of the equations commonly used

in the mantle convection community, the author hopes that his work is also useful
from a pedagogical perspective. Hopefully, it answers the questions that members of
the community, especially students, often have, and, even more importantly, that it
explains how the answers are actually found.
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1. Equations of Boussinesq Approximation in
Dimensional Form

We will consider the simplest form of equations used to model convection in the
mantle. Specifically, we will refer to the simplest special case of the equations used by
the ASPECT mantle convection numerical simulation software [2, p. 13].
Namely, our equations are based on the following assumptions. Firstly, linear rela-

tionship between density and temperature perturbations in the fluid is assumed. In
other words, Boussinesq approximation is used for the equation of state of the fluid:

ρ(θ0 + θ)− ρ(θ0) ≈ ρ(θ0)(
1

ρ(θ0)

∂ρ

∂θ

����
θ0

) θ = ρ0βθ (1)

where ρ(θ0) = ρ0 and θ0 are the reference density and temperature of the fluid,
respectively, and

β =
1

ρ0

∂ρ

∂θ

����
θ0

, [β] =
1

Θ
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is the volumetric coefficient of thermal expansion1 that characterizes the decrease of
density with temperature. Its name makes sense if we recall the relationship between
the specific volume and density:

v =
1

ρ
=⇒ β =

1

ρ0

∂ρ

∂θ

����
θ0

= v0
∂v−1

∂θ

����
θ0

= −v0
v20

∂v

∂θ

����
θ0

= − 1

v0

∂v

∂θ

����
θ0

Secondly, the viscosity ν of the fluid is also considered constant.
Thirdly, the coefficient of thermal diffusivity κ is considered constant. Finally, it is

assumed that no sources of heat are present in the fluid.
The following notation is used to describe the process of mantle convection. The

symbols L,M, T,Θ represent the dimensions of length, mass, time, and temperature,
respectively; [X] means the dimension of a physical quantity X.

[x] = L is the vector describing a location of a particle of the fluid in space.

[v] = LT−1 is the velocity field of the flow.

[t] = T stands for time.

ez is the unit normal to the surface of the Earth.

[ρ] = ML−3 stands for density.

[g] = LT−2 is the acceleration in the uniform gravitational field.

[ν] = [µ
ρ
] = L2T−1 is the kinematic viscosity of the fluid.

[p] = ML−1T−2 is dynamic pressure (i.e., the one due to inertial movement of
fluid, which should not be confused with thermodynamic pressure).

[θ] = Θ stands for temperature of the fluid.

[κ] = L2T−1 is the thermal diffusivity coefficient, which is a measure of the
intensity of the diffusion of temperature.

Based on these assumptions and notation, the equations simplify to the following
form:2

1Note that β < 0 since the density of the fluid generally decreases with the increase of temperature.
2Note that all the terms in the equation (2) were divided by ρ0.
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νΔv =
1

ρ0
∇p− gθez (2)

∇ · v = 0 (3)

∂tθ + v ·∇θ = κΔθ (4)

Naturally, these equations must be supplemented by appropriate boundary and
initial conditions in order to describe a concrete system.

1.1. Physical Meaning of the Equations

Equations (2) and (3) are known as incompressible Stokes equations. They accu-
rately approximate highly viscous or slow (”creeping”) flows and are different from the
incompressible Navier-Stokes equations by neglecting the inertial terms ∂tv + v ·∇v.
More specifically, equation (2) describes the conservation of momentum in the flow.

The equation (3) is the incompressibility constraint on the flow.
The equation (4) describes propagation of heat in the fluid in terms of the spatial

and temporal evolution of the temperature field. The terms ∂tθ + v ·∇θ describe the
transport of temperature by the flow.3 The term κΔθ describes the transport of heat
by conduction or, equivalently, diffusion of temperature.

2. Applications of the Boussinesq Approximation

The equations of Boussinesq approximation, both in the simplest form considered
here and in more complicated ones, are used extensively in the modeling of mantle
convection in Earth and other planets of the solar system. [23] Oceanography is an-
other important application of the Boussinesq approximation [17]. Moreover, there
are ”various thermal, geophysical, astrophysical and magnetohydrodynamic problems

3An alternative name is convection-diffusion equation. In terms of semantics, advection is preferable
to convection in this context. Indeed, convection means the flow of the fluid in response to the
temperature gradients present in the fluid. Advection, however, is a term used to describe a
transport of a quantity (such as temperature, concentration of a chemical, etc.) in response to
the fluid motion. That is why, in this case, temperature is advected. Of course, advection of
temperature (i.e. heat transfer) causes convection of a fluid an vice versa, so these processes are
interrelated. However, heat transfer by fluid motion is often referred to as convection, but, in the
light of our previous remarks, it would be more appropriate to call it advection and advective heat
transport. However, this is a terminological inconsistency rooted in history.
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in the framework of ’Boussinesquian fluid dynamics’” that are based on the equations
discussed in this survey. [26]
Naturally, it is important to thoroughly understand the simplest equations first

before proceeding to the more complicated models used in applications. Yet the list
of the above mentioned scientific fields in which Boussinesq approximation is used
serves as an effective illustration of the necessity to understand this approximation for
today’s researcher.

3. History of the Boussinesq Approximation

The history of scientific study of convection is well summarized in an article by A.V.
Getling [9]:

The role of non-uniform heating as the producer of most types of fluid
motions in the Universe was first recognised in the mid-eighteenth century,
nearly simultaneously by George Hadley and Mikhail Lomonosov. Well-
directed studies of convection in horizontal fluid layers heated from below
trace back to Benard’s experiments [3], in which the instability mechanism
was, however, not purely thermal and was closely related to the thermocap-
illary effect. Lord Rayleigh [22] was the first to consider a linear problem
of the onset of thermal convection in a horizontal layer, and a more com-
prehensive analysis of this problem was given by Pellew and Southwell [20].
A highly extensive survey of the linear stability problems, including inves-
tigations of the effects of rotation and magnetic field on Rayleigh-Benard
convection, was presented in a classical monograph by Chandrasekhar [6].
Subsequent studies mainly dealt with nonlinear convection regimes and
related pattern-formation processes. The volume of relevant publications
has grown dramatically, and a number of monographs of a more or less
wide scope summarize them [a concise review of many results that refer
specifically to Rayleigh-Benard convection and were obtained by the end
of the 1990s can be found in Getling [10]].

The first theoretical analysis of convection by Lord Rayleigh marks the beginning
of the study of the Boussinesq approximation and the accompanying equations. The
work [12, p. 545] presents a brief history of this subject matter:

Although these equations are named after Boussinesq [5], they seem to
have been first used by Oberbeck [19]. The plausibility argument given by
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Chandrasekhar [6] is often referenced, but the first attempt at a detailed
derivation in a dynamical situation was made by Spiegel and Veronis [25].
They considered a perfect gas of constant properties and used an order
of magnitude argument. Similar assumptions and methods were used by
Gebhart [7] and Plate [21].

Mihaljan [18] used a mathematically rigorous small parameter expansion
technique to derive the Boussinesq equations. He assumed that density
was a linear function of temperature only and that the other properties
were constant. A generalization of this approach was presented by Malkus
[15, 16] who considered a perfect gas and allowed thermal diffusivity and
viscosity to vary with temperature only.

The theoretical study of the equations of Boussinesq approximation continues and
has become especially relevant for understanding the validity of the computational
models of mantle convection.

4. Boussinesq Approximation in Computational Models
of Mantle Convection

We will provide a brief description of the software projects devoted to numerical
modeling of mantle convection problems that the author is familiar with. It must be
kept in mind that this software generally uses more complicated equations than those
considered in this survey, although the latter can be solved as a special case of the
more general equations and are often used to validate the results of the computations.
More specifically, the more general equations may contain additional terms such as
heat sources inside the mantle; the characteristics of the fluid such as viscosity and
thermal diffusivity may be non-constant. [2, p. 13].
A variety of computational software projects for modeling mantle convection has

been developed and supported by the Computational Infrastructure for Geodynamics
(CIG): [1]
ASPECT: Finite element parallel code to simulate problems in thermal convection

in both 2D and 3D models - currently in alpha testing.
CitcomCU: Finite element parallel code capable of modeling thermochemical con-

vection in a three-dimensional domain appropriate for convection within the Earth’s
mantle.
CitcomS: Finite element code designed to solve compressible thermochemical con-

vection problems relevant to Earth’s mantle.
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ConMan: Finite element program for the solution of the equations of incompress-
ible, infinite-Prandtl number convection in two dimensions, originally written by Scott
King, Arthur Raefsky, and Brad Hager.
Ellipsis3D: Three-dimensional version of the particle-in-cell finite element code

Ellipsis, a solid modeling code for visco-elastoplastic materials. The particle-in-cell
method combines the strengths of the Lagrangian and Eulerian formulations of me-
chanics while bypassing their limitations.
HC: Global mantle circulation solver following Hager & O’Connell (1981) which

can compute velocities, tractions, and geoid for simple density distributions and plate
velocities.
Taras Gerya’s Finite difference code: Professor Taras Gerya [8] provides sev-

eral examples of MATLAB programs that accompany his book. His computational
methodology is the finite-difference method, which makes his book valuable since this
method generally receives less attention in research papers and software projects than
the finite-element method.

5. Critique of the Boussinesq Approximation

Following the arguments presented in the work [11] by G.I. Barenblatt, we will show
that there is a flaw in the dimensional analysis of these equations that makes them,
in fact, inadequate for describing mantle convection. It is important to note, however,
that it does not mean that these equations have no value for other purposes, such as
validation of numerical algorithms.
The main deficiency of our analysis, besides assuming the characteristics of the fluid

constant and the fluid itself incompressible, is the assumption that ”the contribution
of viscous energy dissipation to the thermal balance of the fluid” is negligible [12, p.
545]:

”In principle, the contribution of viscous energy dissipation to the thermal
balance of the fluid should also be taken into account. To do this, one
additional parameter must be included, the mechanical equivalent of heat
J .” [11, p. 45].

As one can see in section 1, this parameter was neglected in our discussion.
Through dimensional analysis, the author obtains an important nondimensional

parameter [11, p. 46]

Π3 =
Jc

βgL
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As G.I. Barenblatt notes, neglecting this parameter is inappropriate for modeling
mantle convection since the layers of fluid representing the mantle are not thin, unlike
in the original experiments with convection in thin layers of fluid by Bernard4:

”In what follows, we shall discuss convective motion in thin layers, for
which the parameter Π3 is large (Π3 � 1), so that the effect of this pa-
rameter on the similarity conditions may be neglected ... However, when
modelling convection in the Earth’s mantle the parameter Π3 is of order
unity and cannot be neglected.” [11, pp. 46-47]

Thus, based on G.I. Barenblatt’s arguments, a more physically adequate model
of mantle convection must include generation of heat due to viscous energy dissipa-
tion5. This must be kept in mind when making conclusions based on the results of
computational simulations obtained by solving the equations (2), (3), and (4) numer-
ically. [23, cf. p. 772 for the discussion of the importance of viscous dissipation in
mantle convection]
Nevertheless, as was mentioned before, this critique does not render these equations

useless: at the very least, they are useful for numerical analysis and validation of
computations, as well as for demonstrating the idea of nondimensionalization.

6. Nondimensionalization and Choice of Scales

Given 9 parameters describing mantle convection in our simplified model
(x,v, ρ, ν,κ, g, p, θ, t) and 4 units of measurement (L,M, T,Θ), by Buckingham’s Π-
theorem we can form 9−4 = 5 nondimensional parameters describing the system. [11]
In order to nondimensionalize the equations (2), (3), and (4), we choose character-

istic scales for the length L, time T , velocity V , pressure P , and temperature Θ and
perform a change of variables such that these quantities are now measured against
these characteristic scales:

x� =
x

L
, t� =

t

T
, v� =

v

V
, p� =

p

P
, θ� =

θ

Θ

or, equivalently,

x = Lx�, t = Tt�, v = V v�, p = Pp�, θ = Θθ�

4The same assumption was made by Lord Rayleigh in his theoretical analysis of convection in a thin
layer of fluid heated from below.

5I.e. friction between layers of fluid.
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Substituting these new variables in the equations (2), (3), and (4) and dropping the
primes for convenience, we obtain the following system of equations:

νV

L2
Δv =

P

ρ0L
∇p− gΘθez (5)

V

L
∇ · v = 0 (6)

Θ

T
∂tθ +

ΘV

L
v ·∇θ =

κΘ

L2
Δθ (7)

or, after dividing by the terms both sides of the equations by the appropriate terms
such that the coefficients in front of the leftmost terms become 1, we obtain

Δv =
PL

ρ0νV
∇p− gΘL2

νV
θez (8)

∇ · v = 0 (9)

∂tθ +
V T

L
v ·∇θ =

κT

L2
Δθ (10)

The next problem in nondimensionalizing these equations is choosing the appro-
priate characteristic scales for the length L, velocity V , pressure P , time T , and
temperature Θ that adequately reflect the physical processes in the system.

6.1. Characteristic Length Scale

The characteristic length scale L is chosen based on the size of the physical domain
where the flow takes place. For example, in case of a flow past a cylinder, it may be
the radius of a cylinder. In case of convection in a box, it may be the length of a side
of the box.

6.2. Characteristic Temperature Scale

The characteristic temperature scale Θ is typically defined as either the average
temperature Θ = θavg in the fluid, or as the maximum temperature difference in the
fluid Θ = max θ −min θ.
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6.3. Characteristic Time Scale

There are two natural choices of time scale in the context of highly viscous flows
that are inherent to mantle convection. [10, pp. 19-20]
The first choice is based on the viscosity time scale:

Tviscosity =
L2

ν

The second choice is based on the heat conduction time scale:

Tconduction =
L2

κ

In order to choose the appropriate scale for the context of mantle convection, we
observe that their ratio is equal to the Prandtl number:

Tconduction

Tviscosity

=
ν

κ
= Pr

A commonly used approximation for the dynamics of Earth’s mantle is the limit
of infinite viscosity, which is equivalent to the limit of infinite Prandtl number since
thermal conductivity is usually fixed or bounded: [23, p. 267]

ν −→ ∞ ⇐⇒ Pr −→ ∞
Physically, this limit can be interpreted as

Tviscosity � Tconduction

or

Tviscosity −→ 0

The interpretation of this limit is that information due to viscous interactions prop-
agates infinitely fast. But infinitely fast processes cannot serve as a measure of real
physical processes because they are infinitely slow relative to infinitely fast processes.
Thus, the viscosity time scale becomes singular in the common mantle convection
approximation, which makes it an inappropriate choice for the time scale.
Therefore, the only choice left is the time scale associated with heat conduction,

T = Tconduction =
L2

κ
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Another argument supporting this choice of scale is the fact that heat conduction
takes place regardless of the macroscopic flow of the fluid. Since initially the fluid is at
rest in typical problems of mantle convection, measurable viscous dissipation processes
cannot start until the fluid has been set in an adequately intense macroscopic flow. At
the same time, heat conduction starts immediately because a gradient of temperature
is always present in the mantle.

6.4. Characteristic Velocity Scale

In typical problems of convection, the fluid is initially at rest and the researchers are
interested in modeling the development of convection from the state of equilibrium.
Therefore, there is no natural characteristic velocity in such context since in the early
phase of convection the average velocity is close to zero but may be rather large in the
developed phase.
Therefore, it is plausible to define characteristic velocity simply as a ratio of char-

acteristic length and time:

V =
L

T
=

L
L2

κ

=
κ

L

6.5. Characteristic Pressure Scale

An appropriate pressure scale for low Reynolds number flows (highly viscous or
”creeping flows”) is based on an estimate of viscous shear stress:

τ =
ρνV

L

Following [14, pp. 433-434], we shall verify that this choice of scale is appropriate
by comparing it with another possible choice of scale based on characteristic kinetic
energy density of the flow.
There are two physical choices for nondimensionalizing the pressure:

P1 = τ =
ρνV

L
=

ρνκ

L2

based on the characteristic viscous shear stress τ in the fluid, and

P2 = KE = ρV 2 =
ρκ2

L2

which is based on the characteristic kinetic energy density KE of the flow.
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Their ratio is equal to the Prandtl number :

P1

P2

=
τ

KE
=

ρνκ
L2

ρκ2

L2

=
ν
L2

κ
L2

=
Tconduction

Tviscosity

=
ν

κ
= Pr ⇐⇒ P2 =

1

Pr
P1

A commonly used approximation for the dynamics of Earth’s mantle is the limit
of infinite viscosity, which is equivalent to the limit of infinite Prandtl number since
thermal conductivity is usually fixed or bounded: [23, p. 267]

ν −→ ∞ ⇐⇒ Pr −→ ∞ =⇒ P2 −→ 0

That means that the viscous shear stress dominates the pressure balance in highly
viscous flows and that the kinetic energy of such flows is negligible.
In addition, since the scale associated with P2 vanishes, it implies that the gradient

of pressure term ∇p in the equation (8) vanishes as well. This contradicts the physical
fact that pressure influences highly viscous (”creeping”) flows. [14, pp. 433-434]
Thus, the appropriate choice of characteristic pressure scale is the one associated

with viscous shear stress:

P = P1 = τ =
ρνκ

L2

7. Nondimensional Form of the Equations of
Boussinesq Approximation

Substituting the scales discussed above into the equations (8), (9), and (10), we
obtain the following:

Δv = ∇p− gΘL3

νκ
θez (11)

∇ · v = 0 (12)

∂tθ + v ·∇θ = Δθ (13)

Considering the definition of Rayleigh number

Ra =
gΘβL3

νκ

we obtain the following system of equations in nondimensional form:
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Δv = ∇p−Ra θez (14)

∇ · v = 0 (15)

∂tθ + v ·∇θ = Δθ (16)

As we can see, the only governing parameter of the system is the Rayleigh num-
ber, which has made this approximation widely used for numerical experiments and
validation of numerical algorithms for solving mantle convection equations.

7.1. Physical Meaning of the Rayleigh Number

According to G.I. Barenblatt, ”the parameter Ra, the Rayleigh number, is named
after the great English physicist Rayleigh who was the first to study the onset of
convection in a horizontal layer theoretically,” [11, p. 47] and is a measure of the
influence of temperature gradients on the mechanical motion of the fluid.
Since

Ra =
gΘβL3

νκ
=

gΘβLT

ν
=

gΘβT
ν
L

=
ρVbuoyancy

ρVviscosity

it can be interpreted as a ratio of momentum gained due to the buoyant force,
resulting from thermal expansion of the fluid, and the momentum dissipated by the
viscosity.
Another interpretation of Rayleigh number is as a ratio of the work of buoyant force

and viscous shear stress:

Ra =
gΘβL3

νκ
=

ρgΘβL
ρνκ
L2

=
Workbuoyancy
Workstress

In other words, Rayleigh number measures how far from the equilibrium a system
is, or is a measure of the instability of the system. Indeed, while the buoyant force
destabilizes the motion, viscosity stabilizes it through energy dissipation.

A. Buckingham’s Π Theorem

The Buckingham Π-Theorem is discussed both from the perspective of revealing the
rank of a set of physical quantities, as well as from the perspective of reducing the
number of parameters in an equation linking physical quantities. It is shown that the
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Buckingham Π-Theorem is simply a consequence of a fundamental theorem of linear
algebra relating the dimensions of the image, kernel, and the number of columns of a
matrix.

A.1. Content of Buckingham’s Π-Theorem

The content of Buckingham’s Π-theorem is an answer to the question:

Why out of n physical quantities, of which k are dimensionally indepen-
dent, can we obtain n− k dimensionless parameters?

The answer is simply a consequence of a fundamental theorem of linear algebra.
[4, 13, 24, 27]

A.2. Physical Dimensions Form a Linear Space

Physical quantities are measured against a conventionally chosen system of units
X =

�
[X1] . . . [Xn]

�
. Therefore, the dimension of any physical quantity is simply

an algebraic combination of the units of measurements:

[A] = [
n�

i=1

X
diA
i ] =

n�

i=1

diA[Xi]

For example, in the unit system of mass M , length L, and time T , the dimension
of P pressure is

[P ] =
M

LT 2
= [M ]− [L]− 2[T ]

We see that we can establish an isomorphism between the dimensions of physical
quantities and a linear space of vectors corresponding to these dimensions.
Indeed, consider the dimension of a product of two physical quantities:

[AB] = [
n�

i=1

X
diA
i

n�

i=1

X
diB
i ] = [

n�

i=1

X
diA
i X

diB
i ] = [

n�

i=1

X
diA+diB
i ] =

n�

i=1

(diA+diB)[Xi] = [A]+[B]

Evidently, vectors [Xi] form a basis of this linear space of dimensions. It is convenient
to choose a canonical orthonormal basis for the fundamental units of measurements:
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[Xi] ≡




0
...
1
...
0




where 1 is at the i-th component and 0 elsewhere.

For example, if we establish the following correspondence between the basis vectors
and the dimensions of mass M , length L, and time T :

[M ] =



1
0
0


 , [L] =



0
1
0


 , [T ] =



0
0
1




the dimension of pressure will be expressed thus:

[P ] =
M

LT 2
= [M ]− [L]− 2[T ] =




1
−1
−2




A.3. Dimensional Matrix

Considering these facts and recalling the definition of matrix-vector multiplication,
we can see that X =

�
[X1] . . . [Xn]

�
forms a dimensional matrix of the system of

physical quantities. Thus, the dimension vector dA of any physical quantity [A] in the
basis X =

�
[X1] . . . [Xn]

�
is linearly related to the dimensional matrix X:

[A] =
n�

i=1

diA[Xi] = XdA

A.3.1. Dimensionless Quantities and Kernel of the Dimensional Matrix

A physical quantity [A] is dimensionless if

A =
n�

i=1

X
diA
i = 1

which means that
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[A] =
n�

i=1

diA[Xi] = XdA = [1] = 0 =⇒ dA ∈ kerX

Thus, there is a one-to-one correspondence between the kernel, or nullspace, of the
dimensional matrix X and the nondimensional quantities that can be formed out of
the system of physical quantities X =

�
[X1] . . . [Xn]

�
. Therefore, the number of

distinct nondimensional numbers that it is possible to produce out of a system of
dimensional quantities (X1, . . . , Xn) is equal to dim ker X, i.e. the dimension of the
nullspace of the dimension matrix X.

A.3.2. Dimensionally Independent Physical Quantities and the Rank of the
Dimensional Matrix

Physical quantities (X1, . . . , Xn) are dimensionally independent if their only com-
bination that can produce a dimensionless number is a trivial combination. In other
words, the dimension vectors of dimensionally independent quantities are linearly in-
dependent:

n�

i=1

X
diA
i = 1 ⇐⇒

n�

i=1

di[Xi] = 0 =⇒ di = 0

Thus, the dimension matrix composed of the dimensions of n dimensionally inde-
pendent physical quantities has full rank:

rank X = n

A.4. Buckingham’s Theorem

Now it is possible to prove Buckingham’s Π theorem. Usually, the number of dimen-
sionally independent physical quantities in the system is known, and it is interesting
to know how many dimensionless quantities can be produced out of this system. Such
question is of interest since it is preferable to work with as little number of parameters
as possible.
Let (X1, . . . , Xk, . . . , Xn) be a system of n physical quantities of which the first k

are dimensionally independent. The dimensional matrix of this system

X = ([X1], . . . , [Xk], . . . , [Xn])

has k linearly independent columns and, hence, its rank is k:
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dim im X = rank X = k

By a fundamental theorem of linear algebra, the sum of the dimensions of the image
and the kernel of a linear operator is equal to the number of columns of its matrix:

dim ker X+ dim im X = dim ker X+ k = n

Since it was established that the number of distinct nondimensional numbers char-
acterizing the system (X1, . . . , Xk, . . . , Xn) is equal to the dimension of the nullspace
of its dimensional matrix, we obtain the result of the Π-theorem:

dim ker X = n− k

Thus, given n physical quantities of which k are dimensionally independent, we can
form n − k nondimensional numbers fully characterizing the system. This allows us
to reduce the number of parameters needed to describe the system.
In addition, we established that, given a dimensional matrix of a set of physical

quantities, the problem of finding the number of dimensionally independent quantities
among them reduces to the problem of computing the rank of the dimensional matrix.

A.5. Dimensionality Reduction of a Physical Functional
Dependence

We have now established that given n physical quantities of which k are dimension-
ally independent, we can form n− k nondimensional numbers fully characterizing the
system. However, what does this imply for functional dependencies of one physical
quantity on others?
Based on the previous result we intuitively expect that a functional dependence of

the form

X0 = f(X1, . . . , Xk, . . . , Xn)

could be described by n−k nondimensional parameters instead of n original dimen-
sional parameters.
Indeed, let (X0, X1, . . . , Xk, . . . , Xn) be a system of physical quantities of which k

are dimensionally independent: the dimensionally independent quantities will be used
as the units of measurement.
Furthermore, X0 is a function of other quantities:
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X0 = f(X1, . . . , Xk, . . . , Xn) (17)

The dimensions of X0 and (Xk+1, . . . , Xn) can be expressed in terms of the dimen-
sions of the dimensionally independent quantities (X1, . . . , Xk), since they are our
units of measurement:

[X0] =
k�

i=1

di0[Xi] = [
k�

i=1

X
di0
i ]

[Xk+j] =
k�

i=1

dij[Xi] = [
k�

i=1

X
dij
i ], j ∈ 1, n− k

If we change the scales for the units of measurements, i.e.

Xi �→ aiXi, i ∈ 1, k (18)

the dimensionally-dependent quantities must transform accordingly:

X0 �→
k�

i=1

(aiXi)
di0 = (

k�

i=1

a
di0
i )

k�

i=1

X
di0
i = (

k�

i=1

a
di0
i )X0 (19)

Xk+j �→
k�

i=1

(aiXi)
dij = (

k�

i=1

a
dij
i )

k�

i=1

X
dij
i = (

k�

i=1

a
dij
i )Xk+j, j ∈ 1, n− k (20)

Since (X1, . . . , Xk) are dimensionally independent units of measurement, it is pos-
sible to choose scales based on these quantities, i.e.

ai =
1

Xi

, ∈ 1, k

In such case, (18), (19), and (20) become

aiXi = 1, i ∈ 1, k (21)

(
k�

i=1

a
di0
i )X0 =

X0

(
k�

i=1

X
di0
i )

= Π (22)
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(
k�

i=1

a
dij
i )Xk+j =

Xk+j

(
k�

i=1

X
dij
i )

= Πj, j ∈ 1, n− k (23)

Consequently, the physical functional dependence (17) transforms accordingly under
the change of scales (21), (22), and (23):

X0 = f(X1, . . . , Xk, . . . , Xn) �→ Π = f(1, . . . , 1,Π1, . . . ,Πn−k) = F (Π1, . . . ,Πn−k)

Thus, a dimensional functional dependence involving n dimensional parameters

X0 = f(X1, . . . , Xk, . . . , Xn)

has been reduced to a nondimensional functional dependence involving only n − k
dimensionless parameters

Π = F (Π1, . . . ,Πn−k)

This relationship is particularly useful, for example, in nondimensionalization of
fluid dynamics equations because it reveals the relative influence of various terms of
the equations on the overall behavior of the flow.
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