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SUMMARY
Combining finite element methods for the incompressible Stokes equations with particle-
in-cell methods for approximating the solution of certain advection equations is an
important technique in computational geodynamics that has been widely applied in
mantle convection, lithosphere dynamics, and crustal-scale modeling. There are several
benchmarks to measure the accuracy and convergence rate for these hybrid methods,
although usually these benchmarks are instantaneous problems or have only qualitative
comparison criteria. Thus, the convergence properties and accuracy of these hybrid finite
element / particle-in-cell methods in real time-dependent problems remain uncertain.
Moreover, the number of particles per cell that are necessary to achieve the design
accuracy of the finite element is currently not well understood.
In this paper we modify two existing instantaneous benchmarks and present a new
analytic benchmark for time-dependent incompressible Stokes flow in order to compare
the convergence rate and accuracy of various combinations of finite element, particle
advection, and particle interpolation methods. Using these benchmarks, we find that in
order to retain the design accuracy of the finite element formulation, one needs to use
a sufficiently accurate particle interpolation algorithm. Additionally, we observe that if
the convergence rate of the particle interpolation algorithm is lower than the expected
convergence rate of the finite element, one needs to increase the number of particles per
cell as the mesh resolution increases (i.e., grid cell size decreases) in order to avoid a
loss of accuracy in the numerical solution.
Our results will allow computational scientists to design new particle-in-cell methods
with specific convergence rates. In addition, our new time-dependent benchmark pro-
vides a simple, standardized test for different software implementations, for comparison
of existing algorithms, and for the assessment of new numerical methods for particle
interpolation and advection. We provide a reference implementation of this benchmark
in ASPECT (“Advanced Solver for Problems in Earth’s ConvecTion”), an open source
code for geodynamic modeling.
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1 INTRODUCTION

Computational geodynamic models have become important
tools that are used by researchers to understand the dy-
namic processes observed in the solid Earth; for example, to
model mantle convection, lithosphere dynamics, and crustal
deformation.

Most of these models involve solving the Stokes equa-
tions with variable rock properties, viscosity, and density
for the dependent variables velocity and pressure, cou-
pled to the time-evolution of an advection-diffusion equa-
tion for the temperature, and, more generally, the advec-
tion of additional quantities that influence rock proper-
ties, such as chemical composition [Tackley(1998), McNa-
mara & Zhong(2005),Dannberg & Gassmöller(2018)], grain
size [Rozel et al.(2011), Thielmann et al.(2015), Dannberg
et al.(2017), Mulyukova & Bercovici(2018)], or melt frac-
tion and depletion [Fischer & Gerya(2016), Gassmöller
et al.(2016)].

Consequently, a number of different techniques, with
various advantages and disadvantages, have been de-
veloped to solve advection or advection-diffusion equa-
tions, such as particle-in-cell or marker-and-cell meth-
ods [Evans et al.(1957), Harlow & Welch(1965)], finite-
difference or finite-element methods with various sta-
bilization mechanisms [Brooks & Hughes(1982), Guer-
mond & Pasquetti(2011)], and interface tracking meth-
ods, such as marker-chain or volume-of-fluid methods [Hirt
& Nichols(1981)]. For a recent comparison see [Puckett
et al.(2017)].

In particular, particle-in-cell (PIC) methods have a
long history of being used by researchers in geodynamics
computations [Tackley & King(2003), Poliakov & Podlad-
chikov(1992), Moresi et al.(2003), Gerya & Yuen(2003), Mc-
Namara & Zhong(2004),Popov & Sobolev(2008)], since they
are conceptually simple and do not require specialized algo-
rithms or other techniques to stabilize the solution of the
strongly advection dominated advection-diffusion equation.
In PIC or related methods, the advected property is trans-
ferred to a set of discrete particles that are then advected
with the flow. Since each particle’s movement is independent
of all of the other particles, this converts the partial differen-
tial equation for the advection of the quantity or quantities
carried by the particles into a set of ordinary differential
equations for each particle’s movement. When the particles’
properties are required for the solution of the Stokes equa-
tions for the next time step, they are interpolated or pro-
jected back onto the discrete grid and, if necessary, after
this Stokes solve the properties on the particles are updated
with the newly computed solution on the grid by interpo-
lating this new solution back onto the particles.

Despite the long history of researchers using PIC meth-
ods in geodynamic codes, many challenges continue to exist
in the implementation and application of these methods. In
particular, PIC methods are difficult to combine with adap-
tively refined and dynamically changing meshes, since the
number of particles per cell may vary widely during a com-
putation and the numerical error and convergence properties
of the method are difficult to determine precisely. Building
on the algorithms described in [Gassmöller et al.(2018)], in
Section 4 we will describe advances in determining the ac-
curacy of particle-in-cell methods with finite element based

Stokes solvers in a way that will allow other researchers to
quantitatively compare the results obtained with their codes
to ours. In particular, we quantify the influence of the follow-
ing building blocks of PIC methods on the accuracy of the
solution: (1) the number and distribution of particles, (2) the
interpolation of particle properties to field based properties,
and (3) the integration of the motion of the particles over
time. In order to achieve this we start by reproducing the
instantaneous benchmark results SolCx and SolKz [Duretz
et al.(2011),Zhong(1996)], and discuss how the convergence
rate of the computed solution depends on different finite
element and interpolation algorithm combinations. In par-
ticular, we will extend the previous work of [Thielmann
et al.(2014)] by investigating different numbers of particles
per cell, different initial positions for the particles and ex-
amine the difference between the error caused by interpo-
lating the density versus the the viscosity onto the grid. We
demonstrate that in order to recover the intrinsic conver-
gence rate of a given finite element for these benchmarks,
we need a sufficiently accurate particle interpolation algo-
rithm and sufficiently many particles per cell as a function
of the cell size. In addition, if the particles only carry den-
sity information the particle interpolation algorithm can be
of lower order than if the particles also carry viscosity infor-
mation.

In Section 5 we then present a new, time-dependent
benchmark (the derivation of which may be found in Ap-
pendix A) with a analytical solution that is independent of
time. This problem allows us to evaluate the error and con-
vergence rates for time-dependent computations of incom-
pressible Stokes flow coupled to a PIC advection method.
It also allows us to measure the influence of the method for
integrating the particle positions in time on the overall er-
ror between the computed solution and the true solution.
We present results for this benchmark as implemented in
the open-source geodynamic modeling code ASPECT [Kro-
nbichler et al.(2012), Heister et al.(2017)] and discuss the
conditions under which the particle advection algorithm af-
fects the accuracy of the Stokes solution. It is our intention
that these results will act as reference results for future code
comparison studies of time dependent PIC advection algo-
rithms, and will allow researchers to design PIC methods
that use a combination of techniques to ensure optimal accu-
racy of the numerical method as a whole. To our knowledge
this is the first time-dependent benchmark for hybrid finite
element / PIC methods in the computational geodynamic
community.

2 GOVERNING EQUATIONS

Geologic deformation over long time scales is commonly
modeled by the incompressible Stokes equations for a slow-
moving fluid, using a spatially and temporally variable den-
sity that depends nonlinearly on both the strain rate of
the fluid, as well as temperature, chemical composition, and
other factors. The driving force for the flow is provided by a
buoyancy term that results from the spatial variability of the
density, again due to temperature and chemical composition
differences.

The incompressible Stokes equations that describe this
type of flow are given by a force balance and a mass conti-
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nuity equation:

−∇ · η ε(u) +∇p = ρ g, (1)

∇ · u = 0, (2)

where u is the velocity, p the pressure, ρ the density, η the
viscosity, and g the gravity. Furthermore, ε(u) = 1

2
(∇u +

∇uT ) is the symmetric gradient of the velocity and denotes
the strain rate within the fluid.

In more realistic applications, the mass continuity equa-
tion (2) has to be replaced by an equation that allows for
compressible effects. However, as this is tangential to the
purpose of the current paper, we will simply assume that the
fluid is incompressible. In either case, the equations above
are augmented by appropriate boundary conditions.

A complete description of mantle convection would cou-
ple the equations above to a set of advection-diffusion equa-
tions for the temperature and chemical compositions that
are transported along with the velocity u (see [Schubert
et al.(2001)]). If we denote any of these fields by φ = φ(x, t),
then they typically satisfy an advection-diffusion equation of
the form

Dφ

Dt
+ κ∆φ =

∂φ

∂t
+ u · ∇φ+∇κ∇φ = H, (3)

augmented by appropriate initial conditions φ(x, 0) = φ0(x)
and, if necessary, boundary conditions. In typical appli-
cations the equation is dominated by the advection term
u · ∇φ, and the contributions by the diffusion term ∇κ∇φ
and source term H are rather small (if φ denotes the tem-
perature) or are completely negligible (if φ denotes chemical
compositions).

The importance of these additional fields lies in the fact
that the viscosity and density coefficients in the Stokes equa-
tions above depend on strain rate ε(u) and pressure p, but
also on the temperature and chemical composition variables.
Consequently, the resulting set of equations is coupled, non-
linear, and time dependent. An accurate solution of the com-
plete model therefore requires an accurate way of advecting
along these additional quantities.

3 NUMERICAL METHODOLOGY

The above equations can be solved by direct discretization
via finite element, finite volume, or finite difference meth-
ods, or a variety of other methods (see, for example [Donea
& Huerta(2003), Deubelbeiss & Kaus(2008), Gerya(2009),
Ismail-Zadeh & Tackley(2010)].

However, discretizing advection-dominated problems
such as (3) without introducing oscillations or excessive dif-
fusion is not trivial. As discussed above, many mantle con-
vection codes have instead used particle schemes to advect
along properties of rocks. In these schemes, a number of par-
ticles k = 1 . . . N are characterized by their location xk(t)
and associated properties φk. Their location then evolves
according to the ordinary differential equation

d

dt
xk(t) = u(xk(t), t), xk(0) = xk,0, (4)

and coefficients such as the viscosity η and density ρ in (1)
are computed at points x not only based on field quantities
such as velocity and pressure at x, but also based on the
quantities φk of particles located “close” to x.

While conceptually simple to implement, this approach
requires (i) transferring data from field-based quantities
to particle locations, (ii) advecting the particles according
to (4), and finally (iii) transferring data back from parti-
cle locations to quadrature points when assembling matrices
and right hand sides for the Stokes equation.

All of these three steps introduce errors into the solution
process: In the first step, the exact solution u(t) is not avail-
able, and one has to use the numerical approximation uh(tn)
that was found by solving the Stokes equation, and that is
only a spatial approximation and typically only available at
discrete time steps. This error therefore depends on the ac-
curacy of the computed velocity field, and the time-stepping
scheme. In the second step, the numerical integration of (4)
yields a trajectory xh(t) that is different from x(t) even if
the velocity were known exactly, depending on the accuracy
of the ODE solver scheme. Finally, no particle will typically
be located on a quadrature point, and the required property
φ(x) will need to be interpolated in one of many possible,
approximate way from the properties φk of nearby particles.

We will assess these errors in Section 4 and Section 5 in
a number of benchmarks, for different Stokes discretizations,
initial particle patterns, ODE solvers, and particle interpo-
lation methods, which we will describe in this section.

3.1 Discretization of the Stokes system

The advection of particles can only be as accurate as the
underlying velocity field that is used to advect them. In this
work, the velocity is obtained by using finite elements to
discretize and solve the Stokes equations. Specifically, we
will employ the common Qk×Qk−1 “Taylor-Hood” element
[Taylor & Hood(1973)] in which the velocity and pressure
are discretized by continuous finite elements of degrees k and
k− 1 on quadrilaterals or hexahedra, respectively. For com-
parison to the existing results of [Thielmann et al.(2014)],
we will also use Qk×P−(k−1) elements in which the pressure
is discretized using discontinuous polynomials of (total) de-
gree k − 1. Based on finite-element theory we expect both
the Qk×Qk−1 and the Qk×P−(k−1) elements to show opti-
mal convergence order [Bercovier & Pironneau(1979)], i.e. to
show a decay of the velocity and pressure errors, when mea-
sured in the L2 norm, as hk+1 and hk, respectively, where
h is the element size of the mesh. We show in Section 4
and 5 that this is indeed the case for our implementation and
model setups. In all of our experiments we assume that the
Stokes equation is solved either with a direct solver, or with
a sufficiently tight tolerance on an iterative solver, so that
the only remaining error stems from the spatial discretiza-
tion of the flow field intrinsic to the used finite-element.

3.2 Generation of particles

In time dependent problems, particles are transported along
with the flow; after some time, they will no longer be at spe-
cific locations. Therefore, algorithms that reconstruct coeffi-
cients from particles’ properties need to be general and deal
with both arbitrary particle numbers and locations on each
cell. However, the test cases we will consider in Section 4,
will only solve a single time step without advecting particles.
Thus, the particles are located where they were created, and
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we need to make sure not to rely on a particular particle dis-
tribution that controls our results. On the other hand this
experiment allows us to determine the influence of different
particle distributions on the accuracy of the solution.

We will consider two strategies for choosing the initial
particle locations xk(0) = xk,0:

(i) Create a number of particles NK on a regular grid of
points within the cell K̂ in the reference domain, from where
they are mapped to the corresponding points on each cell K
of the triangulation.

(ii) Create a number of particles NK within each cell K,
with locations drawn from a uniform probability distribu-
tion on K; here, NK is equal to the fraction of the volume
occupied by cell K relative to the volume of the global do-
main Ω, times the global number of particles N .

The practical implementation of both algorithms in ar-
bitrary geometries is described in [Gassmöller et al.(2018)].
Note, that approach (i) will lead to a constant particle count
per cell, while approach (ii) will lead to a constant particle
density per area.

For the time-dependent benchmark cases in Section 5
initial particle locations are less critical as they are moving
from their starting positions, and for simplicity we always
generate particles at regular grid locations (approach (i)).

3.3 Advection of particles

As described above the advection of particles involves solv-
ing (4) for their position, which we do using a Runge-Kutta
method of second (RK2) or fourth order (RK4). As expected
and as shown for our implementation before (see supporting
information of [Gassmöller et al.(2018)]) the error of particle
positions for a given static flow field reduces as ∆t2 and ∆t4

for RK2 and RK4 respectively. However, because we use a
time-stepping scheme for our Stokes solution that is second
order accurate at a finite time (BDF2) any particle advec-
tion method is limited for a time-varying velocity field to be
second order accurate in time. Since the analytic solution of
the benchmarks in Section 5 is time-independent, this will
not be a limiting factor for our experiments. Nevertheless,
this limitation has to be considered for realistic applications.
We also note that our discrete velocity solutions are only
divergence-free in an integral sense, and evaluating the ve-
locity at the particle locations introduces a spurious velocity
divergence that can lead to the clustering of particles in cer-
tain flow patterns. This phenomenon can be improved using
velocity corrections known as conservative velocity interpo-
lation [Wang et al.(2015), Pusok et al.(2017)]. We did not
employ such a pattern in our benchmarks, as we did not
observe this clustering, and we were mostly concerned with
the optimal convergence rate possible with the unmodified
advection schemes. Nevertheless, it would be an interesting
future study to quantify the influence of such velocity mod-
ifications on the accuracy of the particle advection.

3.4 Interpolation of particle data

Since particles carry material properties φk that enter the as-
sembly of the linear systems used to solve for the field-based
quantities, we need to define how these material properties

can be evaluated at quadrature points x that do not, in
general, coincide with the location of any of the particles. In
particular, let K be a cell, IK ⊆ [1, N ] be the set of indices
of those particles that are located on K, and NK = |IK | be
their number. Then we consider the following strategies to
evaluate property φ at an arbitrary location x based on the
information {φk}k∈IK that is available on K alone:

(i) Piecewise constant averages: To obtain this particle
interpolation function we average the material properties
among all particles located on cell K:

φ|K =
1

NK

∑
k∈IK

φk. (5)

The value φ(x) is then computed by finding the cellK within
which x is located, and taking the local average on K. In
theory one could use different averaging schemes than arith-
metic averaging, e.g. harmonic or geometric averaging, but
since it was shown before that these schemes converge with
the same order (though varying absolute accuracy) to the
correct solution [Thielmann et al.(2014)], we here limit our-
selves to arithmetic averaging.

(ii) Least squares (bi-/tri-)linear interpolation: In this al-
gorithm, we seek a function φ that is (bi-/tri-)linear on each
cell K. We will allow it to be discontinuous between cells,
and in that case it can be computed locally on each cell in-
dependently. Specifically, we seek φ|K so that it minimizes
the squared error,

ε2 =
∑
k∈IK

[φ|K(xk)− φk]2, (6)

where xk is the location of particle k with associated prop-
erty φk.
The minimizer φ|K is found by solving a 4 × 4 matrix in 2
dimensions, or an 8× 8 matrix in three dimensions, for the
coefficients of the (bi-/tri-)linear least-squares approxima-
tion.
To obtain material property values at an arbitrary x in K
then only requires evaluating φ|K(x), i.e., evaluating the (bi-
/tri-)linear shape functions of the approximand times their
corresponding coefficient values.

Our expectation for these interpolation methods is that
the difference between analytic and approximated density
and viscosity with interpolation option (i) will decrease lin-
early with cell-size, while it should decrease with h2 for op-
tion (ii). We will test and confirm this hypothesis in Sec-
tion 5, which allows us to interpret the error results for ve-
locity and pressure in terms of their dependence on the error
in viscosity and density.

4 INSTANTANEOUS BENCHMARKS

The first set of benchmarks we will consider only solve a
single time step; thus, the positions of particles are known
exactly. The benchmarks are therefore intended to test the
influence of initial particle distributions, Stokes discretiza-
tions, and the transfer of information from particles to field-
based quantities.

Specifically, we will consider the SolKz and SolCx
benchmarks [Revenaugh & Parsons(1987), Zhong(1996)]
that have previously been used to test the accuracy of
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Stokes solvers in the presence of a spatially variable viscos-
ity [Duretz et al.(2011), Kronbichler et al.(2012)]. For both
benchmarks, an exact solution for the velocity and pressure
fields is available. We can then compare the convergence or-
der we obtain if (i) we use the exact density and viscosity
when assembling the finite element matrix for the Stokes
system, or (ii) we use viscosity and density values that are
interpolated from a set of nearby particles that have each
been initialized using the exact values at their respective
location.

As we will show, in this benchmark the way we inter-
polate from nearby particles to quadrature points greatly
matters in retaining (or not retaining) the convergence order
of the finite element scheme. To assess this quantitatively,
we will evaluate the difference between the known, exact so-
lution and the computed, approximate solution in the L2

norm, which is defined as:

‖f‖L2 =

√∫
‖f(x, y, z)‖2dΩ (7)

Therefore, we compute ‖u − uh‖L2 for the velocity, and
‖p− ph‖L2 for the pressure, respectively. In both cases, the
involved integrals are approximated through quadrature us-
ing a Gauss formula with two more quadrature points in each
coordinate direction than the polynomial degree of the ve-
locity element; this guarantees both an accurate evaluation
of the integral and avoids inadvertent super-convergence ef-
fects.

We will defer to the next section a discussion of time de-
pendent cases where we also have to deal with the additional
error introduced by inexact advection of particle locations.

4.1 SolKz

The SolKz benchmark [Duretz et al.(2011)] uses a smoothly
varying viscosity on a 2D square domain with height and
width of one. It uses tangential boundary conditions on the
boundary, a vertical gravity of 1, and chooses the density
field in such a way that one can construct an exact solution
for the Stokes equation with the given viscosity.

Specifically, the viscosity varies with depth y as

η(x, y) = e2By, (8)

where B is chosen such that the viscosity ratio between top
and bottom is 106. The density is given by

ρ(x, y) = − sin(2y) cos(3πx). (9)

We begin by investigating the influence of the initial
particle locations on the convergence rate of the velocity and
pressure solution for either of the two interpolation methods
discussed before. We show these results in Table 1 for differ-
ent resolutions, and remark that although both investigated
methods converge with different rates (we will discuss this
difference later in this section), the initial particle locations
do not influence the convergence rate significantly. Never-
theless, the absolute errors are larger for random particle
locations, likely because some cells receive unfavorable par-
ticle locations (e.g. a high particle density in only a small
volume of the cell). We chose to present a large number
of particles per cell to ensure the optimal convergence rate
is reached, however we observed that for smaller numbers

Table 1. Velocity errors ‖u − uh‖L2
and pressure errors ‖p −

ph‖L2
for the SolKz benchmark using the Q2 × P−1 Stokes ele-

ment, for arithmetic averaging and bilinear least squares interpo-

lation methods, and for regular and random particle distributions
as discussed in Section 3.2. “PPC” stands for particles per cell.

Arithmetic average

regular random
h PPC ‖u− uh‖L2

rate ‖u− uh‖L2
rate

1
8

100 7.05 · 10−6 - 7.08 · 10−6 -
1
16

100 1.86 · 10−6 1.92 1.95 · 10−6 1.86
1
32

100 4.81 · 10−7 1.95 4.87 · 10−7 2.00
1
64

100 1.22 · 10−7 1.98 1.29 · 10−7 1.92
1

128
100 3.05 · 10−8 2.00 2.93 · 10−8 2.13

1
256

100 7.63 · 10−9 2.00 7.91 · 10−9 1.89

‖p− ph‖L2
‖p− ph‖L2

1
8

100 1.91 · 10−2 - 1.92 · 10−2 -
1
16

100 1.24 · 10−2 0.62 1.24 · 10−2 0.63
1
32

100 6.57 · 10−3 0.92 6.60 · 10−3 0.91
1
64

100 3.33 · 10−3 0.98 3.35 · 10−3 0.98
1

128
100 1.67 · 10−3 1.00 1.68 · 10−3 1.00

1
256

100 8.37 · 10−4 1.00 8.40 · 10−4 1.00

Bilinear least squares

regular random

h PPC ‖u− uh‖L2 rate ‖u− uh‖L2 rate

1
8

100 1.72 · 10−6 - 1.68 · 10−6 -
1
16

100 2.46 · 10−7 2.81 2.49 · 10−7 2.75
1
32

100 3.50 · 10−8 2.81 3.52 · 10−8 2.82
1
64

100 4.56 · 10−9 2.94 4.71 · 10−9 2.90
1

128
100 5.95 · 10−10 2.94 6.55 · 10−10 2.85

1
256

100 8.41 · 10−11 2.82 1.05 · 10−10 2.64

‖p− ph‖L2
‖p− ph‖L2

1
8

100 4.53 · 10−3 - 4.72 · 10−3 -
1
16

100 1.30 · 10−3 1.80 1.33 · 10−3 1.83
1
32

100 3.42 · 10−4 1.93 3.49 · 10−4 1.93
1
64

100 8.67 · 10−5 1.98 8.84 · 10−5 1.98
1

128
100 2.17 · 10−5 2.00 2.22 · 10−5 1.99

1
256

100 5.43 · 10−6 2.00 5.54 · 10−6 2.00

of particles per cell the difference between the two meth-
ods increases. This is intuitive, as for an infinite number of
particles the two methods should generate similar particle
locations, namely particles in every possible location, while
for few particles all of them could be randomly generated in
a very small part of the cell, leaving a large region unsam-
pled. Having established that the choice of initial particle
locations does not influence the achieved convergence rate,
we will conduct all other experiments with a regular par-
ticle distribution, which delivers more reproducable model
results.

Given that both viscosity and density in this benchmark
are smooth, we expect the velocity and pressure fields to also
be sufficiently smooth for a finite element method to obtain
the optimal convergence order if the coefficients are evalu-
ated exactly at each quadrature point during the assembly
of linear systems. In accordance with earlier studies [Thiel-
mann et al.(2014)] we will call this the “direct method”. As
discussed, for both the Qk×Qk−1 and the Qk×P−(k−1) ele-
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Table 2. Velocity errors ‖u − uh‖L2
and pressure errors ‖p − ph‖L2

for the SolKz benchmark using the Q2 × P−1 (top rows), and

Q3 ×Q2 (bottom rows) Stokes elements. Here “PPC” stands for particles per cell.

Q2 × P−1

‖u− uh‖L2 direct method arithmetic average bilinear least squares
h error rate PPC error rate PPC error rate

1
8

1.51 · 10−6 - 4 6.32 · 10−6 - 4 2.24 · 10−6 -
1
16

2.50 · 10−7 2.60 4 1.61 · 10−6 1.97 4 3.61 · 10−7 2.63
1
32

3.52 · 10−8 2.80 4 4.15 · 10−7 1.96 9 4.62 · 10−8 2.97
1
64

4.53 · 10−9 3.00 4 1.05 · 10−7 1.98 25 5.3 · 10−9 3.12
1

128
5.7 · 10−10 3.00 4 2.63 · 10−8 2.00 49 6.75 · 10−10 2.97

1
256

7.23 · 10−11 3.00 4 6.58 · 10−9 2.00 100 8.41 · 10−11 3.00
1

512
9.14 · 10−12 3.00 4 1.64 · 10−10 2.00 196 1.05 · 10−11 3.00

‖p− ph‖L2

1
8

5.02 · 10−3 - 4 1.93 · 10−2 - 4 4.58 · 10−3 -
1
16

1.33 · 10−3 1.90 4 1.24 · 10−2 0.64 4 1.31 · 10−3 1.80
1
32

3.44 · 10−4 2.00 4 6.58 · 10−3 0.92 9 3.43 · 10−4 1.94
1
64

8.68 · 10−5 2.00 4 3.33 · 10−3 0.98 25 8.67 · 10−5 1.98
1

128
2.17 · 10−5 2.00 4 1.67 · 10−3 1.00 49 2.17 · 10−5 2.00

1
256

5.43 · 10−6 2.00 4 8.37 · 10−4 1.00 100 5.43 · 10−6 2.00
1

512
1.36 · 10−6 2.00 4 4.19 · 10−4 1.00 196 1.36 · 10−6 2.00

Q3 ×Q2

‖u− uh‖L2
direct method arithmetic average bilinear least squares

h error rate PPC error rate PPC error rate

1
8

3.1 · 10−7 - 4 5.78 · 10−6 - 9 1.26 · 10−6 -
1
16

2.48 · 10−8 3.64 4 1.36 · 10−6 2.08 9 1.64 · 10−7 2.94
1
32

1.59 · 10−9 3.96 4 3.34 · 10−7 2.03 16 2.09 · 10−8 2.97
1
64

9.9 · 10−11 4.00 4 8.27 · 10−8 2.01 36 2.27 · 10−9 3.20
1

128
6.23 · 10−12 3.99 4 2.06 · 10−8 2.01 81 2.52 · 10−10 3.17

1
256

4 5.13 · 10−9 2.00 169 3.01 · 10−11 3.07
1

512
4 1.28 · 10−9 2.00 361 3.66 · 10−12 3.04

‖p− ph‖L2

1
8

7.04 · 10−4 - 4 1.86 · 10−2 - 9 1.37 · 10−3 -
1
16

1.15 · 10−4 2.61 4 8.27 · 10−3 1.17 9 1.18 · 10−3 0.21
1
32

1.68 · 10−5 2.78 4 3.06 · 10−3 1.43 16 3.52 · 10−4 1.74
1
64

2.3 · 10−6 2.89 4 1.11 · 10−3 1.47 36 9.19 · 10−5 1.94
1

128
3.03 · 10−7 2.92 4 3.99 · 10−4 1.48 81 2.32 · 10−5 1.98

1
256

3.89 · 10−8 2.96 4 1.43 · 10−4 1.48 169 5.83 · 10−6 2.00
1

512
4.94 · 10−9 2.98 4 5.07 · 10−5 1.49 361 1.46 · 10−6 2.00

ments, we expect that the velocity and pressure errors decay
as hk+1 and hk, respectively, where h is size of the elements
of the mesh. Indeed, we show this experimentally in the left-
most columns of Table 2 for Q2×P−1 (in the top rows), and
for Q3 × Q2 (in the bottom rows). These results – as well
as those in the remainder of the paper – omit data points
where the error is less than approximately 10−12, since at
that point round-off errors, ill-conditioning of the linear sys-
tems, and the finite tolerance of iterative solvers begin to
dominate the overall error.

To investigate the case where the viscosity and density
are not obtained from an exactly prescribed function, but
instead sampled from nearby particles, let us again solve
the same problem but use coefficients for the finite element
discretization that at every quadrature point are obtained
from particles in one of the two ways discussed in Section 3
(namely, cellwise constant averaging and a least squares pro-
jection onto a bilinear function).

The corresponding convergence orders for the velocity
and pressure errors are shown the second and third set of
columns in Table 2. For these results, we use between 4
and 361 particles per cell (PPC), distributed on a regular,
equidistant grid. For models that show variable results with
increasing PPC we always choose the smallest number of
particles that reaches the largest possible convergence rate.

Table 2 shows that a cellwise arithmetic average inter-
polation for the Qk × P−(k−1) element reduces the conver-
gence of the velocity error to second order, independent of
the number of particles per cell. We have verified that this
remains so if the number of particles per cell were larger than
the one used in the table, and consequently only show results
for a small number of particles per cell. In other words using
a cell-wise constant averaging is suboptimal by one order no
matter how many PPC are generated. Using a bilinear least-
squares interpolation shows an interesting behavior that was
briefly observed, but not fully explored before [Thielmann
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et al.(2014)]: At low resolutions and for a constant number
of particles per cell the velocity error decreases with nearly
the expected rate of the direct method, but then quickly
degrades to second order convergence (not shown in the ta-
ble, see Figure 1 and compare also Figure 6b of [Thielmann
et al.(2014)]). However, we here show that increasing the
number of particles per cell approximately linearly with in-
creasing resolution recovers the expected convergence rate
of the Stokes element (last set of columns in Table 2 and
Figure 1, top). This is a behavior that to our knowledge
has not been described in geodynamic benchmark results
before, and is worth exploring in more detail. The pressure
error for the Qk×P−(k−1) element shown in Table 2 behaves
as expected, it is suboptimal by one order for the arithmetic
averaging and is identical to the direct method for the bilin-
ear least squares interpolation, both results are independent
of PPC (not shown in the table).

Recomputing the results above for the Q3 ×Q2 Stokes
element reveals some similarities, but also noteworthy vari-
ations. For the velocity, the direct method decreases with
the expected fourth order. The arithmetic average interpo-
lation method again achieves second order accuracy, which
for this element is sub-optimal by two orders. The bilinear
least-squares interpolation results in second order conver-
gence with constant PPC (not shown in Table 2, but shown
in Figure 1, bottom), and third order convergence with in-
creasing PPC. However, it is impossible to recover the ex-
pected fourth order convergence rate with increasing PPC,
except at very coarse resolutions (rightmost data points in
Figure 1, bottom). This will be a significant difference of
the SolKz benchmark to the benchmarks we will present in
Section 4.2 and Section 5. The pressure error converges with
the expected third order rate for the direct method, a sec-
ond order rate for the bilinear least-squares interpolation –
independent of PPC (not shown in the table) – and a rate
of 1.5 for cell-wise constant averaging.

To further clarify the effect of the number of particles
per cell on the convergence rate, Fig. 1 shows convergence
data for the velocity error ‖u−uh‖L2 as a function of both
the mesh size and the number of particles per cell. The plots
show that the optimal convergence order can indeed be re-
covered for the Q2 × P−1 – but not the Q3 ×Q2 – element,
if one uses sufficiently many particles per cell. For both el-
ements, the error is well described by the approximation
‖u− uh‖L2 = O(h3) +O(h2PPC−1).

As a consequence, for a fixed number of particles per
cell – i.e., the only case that can be considered scalable to
large problems with fine meshes –, both elements only yield
an asymptotic convergence rate of ‖u − uh‖L2 = O(h2).
In addition, it is worth mentioning that using 196, 361, or
even 4,096 particles per cell would make particle advection
in time dependent problems far more expensive than solv-
ing the Stokes equation, and that using the corresponding
143 = 2, 744, 193 = 6, 859 or even 643 = 262, 144 par-
ticles per cell in three space dimensions is not a realistic
option. Consequently, unless additional measures are taken
(e.g. a higher order particle interpolation scheme) any prac-
tical use of particle methods combined with higher order
finite-elements will necessarily be prohibitively expensive,
or suffer from a sub-optimal convergence rate.

We here do not show corresponding figures for conver-
gence data for the pressure error. This is because for a bi-

10−2 10−1

h

10−11

10−10

10−9

10−8

10−7

10−6

‖u
−
u
h
‖ L

2

Q2 × P−1, Bilinear

PPC=4

PPC=16

PPC=64

PPC=256

2nd order

3rd order

10−2 10−1

h

10−12

10−11

10−10

10−9

10−8

10−7

10−6

‖u
−
u
h
‖ L

2

Q3 ×Q2, Bilinear

PPC=4

PPC=16

PPC=64

PPC=256

PPC=4096

2nd order

3rd order

Figure 1. Velocity errors ‖u− uh‖L2
for the SolKz benchmark

for the Q2 × P−1 element (top) and for the Q3 × Q2 element
(bottom). The error is plotted as a function of both mesh size

and number of particles per cell.

linear reconstruction, the pressure converges at a fixed rate
and is essentially independent of the number of particles per
cell. Increasing the number of particles therefore does not in-
crease the accuracy of the pressure, unlike for the velocity.

4.2 SolCx

The second instantaneous benchmark we investigate is
SolCx, where the viscosity is described by

η(x, y) =

{
1 if x < 0.5

106 if x ≥ 0.5,
(10)

and the density by

ρ(x, y) = − sin(πy) cos(πx), (11)
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Table 3. Velocity errors ‖u−uh‖L2
and pressure errors ‖p− ph‖L2

for the SolCx benchmark using the Q2 × P−1 Stokes element (top

rows), and the Q3 ×Q2 Stokes element (bottom rows). (“PPC” stands for particles per cell.)

Q2 × P−1

‖u− uh‖L2 direct method arithmetic average bilinear least squares
h error rate PPC error rate PPC error rate

1
8

1.32 · 10−5 - 4 3.16 · 10−5 - 4 1.36 · 10−5 -
1
16

1.66 · 10−6 2.99 4 7.30 · 10−6 2.12 4 1.93 · 10−6 2.81
1
32

2.08 · 10−7 3.00 4 1.79 · 10−6 2.03 9 2.36 · 10−7 3.03
1
64

2.60 · 10−8 3.00 4 4.44 · 10−7 2.01 25 2.79 · 10−8 3.08
1

128
3.26 · 10−9 3.00 4 1.11 · 10−7 2.00 49 3.50 · 10−9 3.00

1
256

4.08 · 10−10 3.00 4 2.77 · 10−8 2.00 100 4.39 · 10−10 3.00
1

512
5.13 · 10−11 3.00 4 6.92 · 10−9 2.00 196 5.87 · 10−11 2.90

‖p− ph‖L2

1
8

1.48 · 10−3 - 4 3.16 · 10−3 - 4 1.53 · 10−3 -
1
16

3.7 · 10−4 2.00 4 8.00 · 10−4 1.99 4 3.83 · 10−4 2.00
1
32

9.22 · 10−5 2.00 4 2.00 · 10−4 2.00 9 9.29 · 10−5 2.05
1
64

2.30 · 10−5 2.00 4 5.00 · 10−5 2.00 25 2.30 · 10−5 2.01
1

128
5.75 · 10−6 2.00 4 1.25 · 10−5 2.00 49 5.75 · 10−6 2.00

1
256

1.44 · 10−6 2.00 4 3.12 · 10−6 2.00 100 1.44 · 10−6 2.00
1

512
3.59 · 10−7 2.00 4 7.80 · 10−7 2.00 196 3.59 · 10−7 2.00

Q3 ×Q2

‖u− uh‖L2
direct method arithmetic average bilinear least squares

h error rate PPC error rate PPC error rate

1
8

6.04 · 10−7 - 4 3.15 · 10−5 - 100 9.10 · 10−7 -
1
16

4.03 · 10−8 3.90 4 7.29 · 10−6 2.11 400 5.84 · 10−8 3.96
1
32

2.60 · 10−9 4.00 4 1.79 · 10−6 2.03 1600 3.70 · 10−9 3.98
1
64

1.67 · 10−10 4.00 4 4.44 · 10−7 2.01 6400 2.34 · 10−10 3.97
1

128
1.98 · 10−11 3.10 4 1.11 · 10−7 2.00 25600 1.93 · 10−11 3.60

1
256

4 2.77 · 10−8 2.00

‖p− ph‖L2

1
8

8.81 · 10−3 - 4 8.87 · 10−3 - 100 8.89 · 10−3 -
1
16

6.22 · 10−3 0.50 4 6.18 · 10−3 0.52 400 6.22 · 10−3 0.51
1
32

4.39 · 10−3 0.50 4 4.38 · 10−3 0.50 1600 4.39 · 10−3 0.50
1
64

3.1 · 10−3 0.50 4 3.10 · 10−3 0.50 6400 3.1 · 10−3 0.50
1

128
2.19 · 10−3 0.50 4 2.19 · 10−3 0.50 25600 2.19 · 10−3 0.50

1
256

4 1.55 · 10−3 0.50

all again on the unit square Ω = (0, 1)2. The complete
derivation of the analytical solution uses a propagator ma-
trix method, and is described in [Zhong(1996)]. The defining
property of this benchmark is that the discontinuous viscos-
ity implies a nearly discontinuous pressure field and a ve-
locity field that has a kink. Consequently, we can generally
not expect optimal convergence rates unless (i) the mesh
is aligned with the discontinuity and (ii) we use a pressure
finite element that is discontinuous. While these properties
reduce the usefulness of the benchmark for general prob-
lems, it is useful for our investigation for an unrelated rea-
son: While the density of the benchmark problem can only
be approximated with the expected accuracy of the parti-
cle interpolation methods mentioned in Section 3.4 (namely
O(h) for arithmetic averaging and O(h2) for the bilinear
least squares method), the viscosity is cell-wise constant, for
a mesh that is aligned with the interface, such as ours. The
viscosity can therefore be interpolated exactly from parti-
cles to cells independent of the interpolation method. This

allows us to separate influences from density and viscosity
errors on the pressure and velocity solution.

Table 3 demonstrates convergence of the velocity and
pressure for the Q2×P−1 element (top rows), and the Q3×
Q2 element (bottom rows).

Starting with the Q2 × P−1 element and the direct
method, the velocity error decreases with O(h3) and the
pressure error with O(h2) just as expected and as reported
previously [Kronbichler et al.(2012)], although half an or-
der higher than reported elsewhere [Thielmann et al.(2014)].
Using particles and arithmetic averaging with a constant
PPC (the result is independent of PPC) achieves second or-
der convergence for velocity and pressure, i.e. suboptimal
by one order in the velocity; this is consistent with previ-
ous results [Thielmann et al.(2014)]. Using the bilinear least
squares interpolation mirrors the results described in Sec-
tion 4.1, the velocity error decays as O(h2) for constant PPC
and O(h3) if PPC increases with h−1. The pressure error is
unremarkable and reaches the design error convergence rate
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Figure 2. Velocity errors ‖u− uh‖L2
(top) and pressure errors

‖p − ph‖L2 (bottom) for the SolKz benchmark for the Q3 × Q2

element. The error is plotted as a function of both mesh size and

number of particles per cell. For this model, we interpolate only
density from particles (that is, we use the exact viscosity in the
assembly of the finite element linear system), and we recover 4th
order convergence rate in velocity and 3rd order in pressure.

of 2 for all methods. So far the SolCx benchmark behaves
exactly like SolKz, and the exact viscosity interpolation did
not influence the convergence rates of the solution.

As described before [Kronbichler et al.(2012), Thiel-
mann et al.(2014)], using a continuous pressure element
like Q3 × Q2 in general destroys the optimal convergence
rates of the pressure error, because of the discontinuity in
the pressure solution, and all methods (independently of
PPC choice) now only show a pressure convergence rate of
O(h1/2). Nevertheless, as expected for this benchmark de-
spite the suboptimal pressure solution, the velocity error is
still able to converge with the expected rates for the direct

method (O(h4)) and the arithmetic averaging (O(h2), inde-
pendent of PPC). Using the bilinear least-squares method
however not only allows convergence of the velocity error of
O(h2) for a constant PPC, and O(h3) for a PPC that scales
with h−1 as for the Q2 × P−1 element, but also O(h4) for
a PPC that increases with h−2. In other words, we can re-
cover the expected velocity convergence order of the Q3×Q2

element if the number of particles per cell increases quadrat-
ically with increasing cell size, a result that is not reprod-
ucable for the SolKz benchmark with identical numerical
methods. We therefore infer that if the error of the den-
sity interpolation converges with O(hk) by choosing PPC
in a way that facilitates this, then the velocity error can
converge with at least up to O(hk+2). However, if the par-
ticles are also used to interpolate the viscosity (as for the
SolKz benchmark), the velocity error converges with at most
O(hk+1).

To test this hypothesis we repeat the SolKz benchmark
with a density that is interpolated from particles, and a pre-
scribed viscosity (i.e., using the particles for density, but the
direct method for viscosity). The Q2 × P−1 element shows
no difference to the computations with interpolated viscos-
ity, as they already reached the designed convergence order.
However, the Q3×Q2 element now also reaches the designed
convergence order for velocity (namely, 4) and pressure (i.e.,
3), as can be seen in Fig. 2. Moreover, we now also require
an increase of PPC with h that goes as h−2.

In summary, these experiments show the importance
of the choice of PPC and particle interpolation method in
practical applications, and that their optimal choices differ
depending on whether the particles only carry density, or
also viscosity information. In particular, we may need to in-
crease the number of particles per cell as O(h−1) or even
O(h−2) to retain the convergence order of the finite element
scheme if the particle interpolation scheme converges with
a lower order than the Stokes discretization. This requires
choosing between one of three options: (i) One needs to use
a potentially very large number of particles per cell to retain
the accuracy of the Stokes discretization, in particular if high
accuracy is required or the computations are in three space
dimensions. This may be prohibitively expensive, however:
for example, in the Q3×Q2 solution of the SolCx case with
h = 1

128
and PPC = 25, 600 (see Table 3), all particle op-

erations associated with the one time step we solve account
for some 95% of the overall run time. (ii) One accepts the
loss of accuracy by using too few particles per cell, although
that then calls into question the use of higher order polyno-
mial spaces in the Stokes discretization. (iii) One uses meth-
ods with higher accuracy to project properties from particle
locations to fields. An alternative is to use field-based – in-
stead of a particle-based – descriptions of the temperature,
chemical composition, or other advected quantities as dis-
cussed in [Kronbichler et al.(2012)]; in that case, the effort
for the Stokes solve and the advection solve is automatically
balanced.

5 TIME DEPENDENT BENCHMARKS

The previous section presented benchmarks that evaluate
the transfer of information from (stationary) particle loca-
tions back to the finite element mesh, along with the error
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that was introduced by this operation. On the other hand, in
realistic applications, particles will be advected along, and
consequently the overall error will contain contributions that
are due to the transfer of particle information to the mesh,
but also due to the fact that we only know particle locations
up to the numerical error introduced in the integration of
particle trajectories, as discussed in Section 3. We will here
numerically test how large this overall error is, and what ef-
fect it has on the numerical solution of the Stokes equation
when feeding information back to the Stokes solver.

To this end, we derive a time-independent solution to
the Stokes equations (1)–(2) in an annulus in which the ex-
act density ρ is constant on streamlines. As we noted be-
fore a spatially varying viscosity would limit the convergence
rate we could achieve with our interpolation methods, and
might obscure the error of the particle advection method,
therefore we choose a constant viscosity. If one were to solve
the Stokes equations with this setup, the solution would of
course not change with time. However, if the density (as
part of the right hand side) is interpolated from particles in
each time step, and particles are advected along with the
computed velocity, then the numerical solution will change
with time, and we can assess the accuracy of the particle-
in-cell algorithm using the difference between exact (time
independent) and computed (time dependent) solution. In
our experiments, we will evaluate this numerical error for
different values of the (largest) grid size hmax and different
numbers of particles per cell (PPC).

5.1 A time dependent benchmark in an annulus

For the concrete realization of the approach outlined above,
we need to construct a testcase with a steady-state veloc-
ity field that depends on a spatially non-constant density
that we can advect along either as a field or with particles.
To make the situation not too trivial, we will choose the
domain as a two-dimensional annulus with inner and outer
radii R1 = 1 and R2 = 2, respectively.

In this situation, we can express the equations and the
solution in a cylindrical coordinate system in terms of the
radius r and the azimuthal angle θ. A solution of equa-
tions (1)–(2) can then be obtained by setting

η = 1, ρ(r, θ) = 48r5, g =
r3

384
er + eθ, (12)

where er and eθ are the radial and azimuthal unit vectors,
respectively. Such a gravity vector is not the gradient of a
gravity potential and consequently not physical, but this is
of no importance here. The Stokes system can then be solved
using a separation of variables approach and yields

u(r, θ) = 0er − r7eθ, p(r, θ) =
r9

72
− 512

72
, (13)

for the velocity and pressure. In other words, the flow field
is circular around the center with a velocity that varies with
radius. The friction induced by the variable velocity is coun-
tered by the tangential component of the gravity vector.
Importantly, while all solution fields in question are polyno-
mials in r and θ, their degrees are sufficiently high so as to
not be in the finite element spaces we use. The benchmark
is then completely defined by prescribing η and g as above,
along with prescribed tangential velocity boundary values
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Figure 3. Convergence rates for the velocity ‖u − uh‖L2
and

pressure ‖p − ph‖L2
for the time-dependent benchmark on the

annulus using Q2 × Q1 and Q3 × Q2 element combinations, re-
spectively. The results shown here use the exact density.

on the inner and outer boundaries of the annulus, and the
initial distribution of ρ. Note, that while it seems unintu-
itive for a gravity in eθ direction to cause a flow in −eθ
direction, one can think of this flow as being driven by the
prescribed tangential velocity at the outer boundary, which
is gradually reduced by the gravity with decreasing radius.
A detailed derivation and visualization of this solution can
be found in Appendix A and Fig. A1.

All experiments in this section show the error between
the (stationary) exact solution u, p, and ρ and the (time-
dependent) numerical approximation uh, ph, and ρh at time
t = 4π

27
≈ 0.0982, which equals two complete revolutions of

particles on the outer edge r = R2.

5.2 Convergence results

If we use the exact (and unchanging) density when com-
puting the numerical solution of the Stokes equation, one
expects convergence to the exact solution with an appropri-
ate power of the mesh size. We verify that our solver achieves
the expected convergence orders in Figure 3 for both Q2×Q1

and Q3 ×Q2 elements.
On the other hand, if the density in each time step is

interpolated from particles to quadrature points, then the
solution will vary from time step to time step due to the fact
that particle locations are advected along with the numerical
approximation of the velocity field u.

Figure 4 shows convergence results for the Q2 ×Q1 el-
ement for velocity, pressure, and density. As was shown in
the instantaneous benchmarks above (Section 4), the order
of convergence of the velocity and pressure error directly de-
pends on the averaging scheme, which also determines the
convergence order for the error in density. Calculating the
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Figure 4. The convergence rate of ‖u−uh‖L2
(top), ‖p−ph‖L2

(middle), and ‖ρ−ρh‖L2
(bottom) measured at t = 4π/27 for the time

dependent benchmark. Density is carried on particles and is interpolated as cell-wise arithmetic average (left) and bilinear least-squares
interpolation (right). All models use a Q2×Q1 element and RK2 to advect particles. Colored dots represent models with varying numbers
of PPC. Note that only with bilinear least-squares interpolation and an increasing number of PPC the third order convergence rate of

velocity is recovered. In all cases, ‖p− ph‖L2
converges at second-order rate with no apparent influence due to the number of PPC (i.e.,

all dots fall on each other), while the convergence rate of ‖ρ− ρh‖L2
depends on the interpolation scheme, but not on PPC.
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density as a cell-wise arithmetic average of particle densities
yields a first-order convergence in density, second-order in
pressure, and second-order in velocity. All errors are inde-
pendent of the number of particles per cell (in the tested
range). This means while the pressure solution reaches its
designed convergence order, the velocity solution loses one
order of convergence as seen in the instantaneous bench-
marks. Using a bilinear least-squares fit significantly reduces
the error in density and converges with a second-order rate,
while the pressure error remains unaffected. Both errors are
independent of PPC. Also, the error in velocity is signifi-
cantly reduced, but remains at a second-order convergence
rate for a constant PPC, unless one increases the number
of particles per cell as h goes to zero. In other words the
designed convergence rate is only recovered if the number of
particles per cell is increased when the mesh is refined and
the number of cells increased. This observation is consistent
with our instantaneous benchmarks above, and the observa-
tion in [Thielmann et al.(2014)] that the convergence rate is
reduced for constant PPC. All of these results are identical
for the RK2 and RK4, advection schemes, which is why we
only present the RK2 results.

Figure 5 shows the corresponding results for the Q3×Q2

element combination, and offers some interesting differences.
For lack of any new information we omit the arithmetic
averaging case and instead compare the RK2 integration
scheme to the RK4 integrator. Starting with the density er-
ror we point out that the integration scheme (RK2 vs. RK4),
the PPC (16 to 6400) and the finite element (Q2 × Q1

vs. Q3 × Q2) do not change the convergence rate of the
density, it remains second-order accurate. However pressure
and velocity show significant differences. The pressure errors
for RK2 and RK4 integration schemes are essentially identi-
cal to each other and show a second-order convergence rate
for a constant PPC and a third-order convergence rate (i.e.,
the design rate of the Q2 finite element) for an increasing
number of PPC. In other words the pressure error of these
models shows the same dependence on PPC as the velocity
error for the Q2 ×Q1 element. In combination this leads to
the following hypothesis: Whenever the design convergence
rate of a finite element surpasses the convergence rate of the
particle interpolation method of a particle-in-cell method it
requires an increasing number of PPC to recover the design
convergence rate of the solution.

Investigating the velocity error of the Q3 ×Q2 element
introduces another factor: When using a RK2 integration
scheme (top left) in combination with this element the ve-
locity error remains at the same second order convergence
for constant PPC and third order convergence for increasing
PPC, independent of the finite element degree (even though
the errors are smaller than for the Q2 ×Q1 element). How-
ever, when using an RK4 integrator the convergence order
for a constant PPC remains the same (second order), but
the convergence rate for increasing PPC recovers the fourth
order design rate of the Q3 element.

Consequently the hypothesis has to be modified to:
Whenever the design convergence rate of a finite element
surpasses the convergence rate of the particle interpolation
method of a particle-in-cell method it requires an increasing
number of PPC to recover the design convergence rate of the
solution. However the convergence rate of the particle advec-

tion method creates an upper bound for the convergence rate
that can be recovered.

Figure 6 plots selected information from the two pre-
vious figures as velocity error over number of PPC for dif-
ferent finite elements, particle interpolation schemes, and
mesh resolutions, which allows determining the influence of
the particular choice of PPC on the error. In general all of
the computations we made show a linear decrease of veloc-
ity error with increasing PPC, which eventually transitions
into a constant error at a model-specific number of PPC
when the finite element error begins to dominate the error
of the particle interpolation. The number of PPC at which
the transition occurs can be interpreted as optimal, in the
sense that it recovers the design rate of the finite element
with the minimum number of particles. As one can see from
this figure the optimal number of PPC is dependent on the
finite element type and in the case of the Q3 ×Q2 element
also the particle integrator and in all configurations the mesh
size. Most likely it will also depend on the problem one is
solving as well. Therefore, the optimal number of PPC can
not be accurately determined for practical applications ex-
cept by performing a convergence series test with increasing
PPC for the specific problem at the final resolution. Never-
theless, we hypothesize that the optimal values of PPC that
we have found in this work will be close to optimal values
for a variety of smooth problems.

6 CONCLUSIONS

In this manuscript we have developed new benchmarks to
measure the accuracy and convergence rate of hybrid finite
element/particle-in-cell methods and provided reference re-
sults for these benchmarks obtained with the geodynamic
modeling code ASPECT. In particular, we have presented
the first analytical benchmark that measures the accuracy
and convergence order of a time-dependent flow problem
in a 2D spherical annulus using particles to carry material
properties. Since the benchmark is simple to derive and im-
plement, it can be used as a convenient measure for the
correctness of future implementaions of similar algorithms,
or as a common model for code comparisons.

We have also investigated the influence of different in-
terpolation algorithms for transfering information from the
particles to the cells and determine that in order to retain
the design convergence rate of high-order finite element for-
mulations one needs to use a high-order particle interpola-
tion algorithm. Additionally, we have observed that if the
convergence rate of the particle interpolation algorithm is
lower than the expected convergence rate of the velocity
or pressure solution, one needs to increase the number of
particles per cell along with increasing the underlying grid
resolution in order to avoid a loss of convergence rate in
the numerical solution. While the exact number of particles
per cell necessary to achieve the designed convergence rate
may be problem-dependent, the fact that it is resolution de-
pendent to begin with raises the question of the scalability
of the method, since either a loss of convergence rate (e.g.,
with a constant number of particles per cell) needs to be
accepted or the number of particles will need to increase
substantially faster than the number of cells. A remedy to
this problem could be the implementation of higher order
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Figure 5. Panels as in Fig. 4, but for a Q3 × Q2 element. All models use the bilinear least squares interpolation. Columns represent

RK2 (left) and RK4 (right) particle integration. Note that only with RK4, bilinear least-squares interpolation and an increasing number
of PPC is the fourth order convergence rate of the velocity recovered. All properties with a design convergence rate higher than 2 require

an increasing PPC to reach their design rate, while constant PPC only allows for second order convergence. The density is limited to

second-order accuracy due to the interpolation scheme we have chosen.
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Figure 6. Convergence plots for velocity in the L2 norm for the time dependent annulus benchmark in dependence of PPC. Models

were computed using a Q2 × Q1 finite element (top) and Q3 × Q2 element (bottom) respectively and particles were advected using a
RK2 integration scheme (left) and RK4 integration scheme (right). Colored dots represent models of different cell sizes. Note that the
required PPC to reach the minimum error for a given mesh refinement depends on the finite element and the mesh refinement itself. The
integration scheme only plays a role if its convergence rate is lower than the convergence rate of the velocity element.

interpolation algorithms with an expected convergence rate
of at least that of the velocity. We will leave this to future
work.
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APPENDIX A: DERIVATION OF AN
INCOMPRESSIBLE STOKES SOLUTION ON
AN ANNULUS

In order to derive the solution of the Stokes problem dis-
cussed in Section 5.1, we consider the Stokes equations (1)–
(2) in polar coordinates. Since we will impose Dirichlet
boundary conditions along all boundaries, and since we only
consider an isoviscous fluid with η = 1, the equations can
be simplified to

−∆u +∇p = ρ g, (A.1)

∇ · u = 0. (A.2)

In a polar coordinate system with r =
√
x2 + y2 and

θ = arctan y
x

, we can express the Laplace operator, gradient,
and divergence operators in terms of ∂

∂r
and ∂

∂θ
. The incom-

pressible Stokes equations (A.1) and (A.2) then become
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r

∂uθ
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= 0. (A.5)

We can find a solution by introducing the “stream func-
tion” ψ(r, θ), and expressing the velocity through it:

ur =
1

r

∂ψ

∂θ
and uθ = −∂ψ

∂r
. (A.6)

By this construction, the velocity field u then automatically
satisfies the continuity equation (A.5).

We proceed by assuming that the the stream func-
tion is separable, i.e., that it can be expressed in the form
ψ(r, θ) = F (r)G(θ) for functions F,G still to be determined.
This form then immediately implies ur = 1

r
F (r)G′(θ) and

uθ = −F ′(r)G(θ). Thus, equations (A.3) and (A.4) become
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We can obtain a solution of this set of equations in the
spirit of manufactured solutions by choosing F (r) = 1

8c
r8

and G(θ) = c where c can be any nonzero constant. This
corresponds to a flow field with no radial component ur = 0
and a constant (but radially variable) angular velocity uθ =
−r7. Since F and G always appear as a product, c can be
chosen arbitrarily and we will set it to c = 1.

Using this form then still requires us to find appropri-
ate expressions for the pressure p(r, θ), the density ρ(r, θ),
and the gravity vector g = (gr, gθ) to satisfy the govern-
ing equations. Since ρ only appears in a product with the
gravity vector, we set

ρ(r, θ) = 48r5, (A.9)

ensuring that it is spatially variable but constant along
streamlines.

Further substituting all of these expressions into (A.7)–
(A.8) then yields

0 = −∂p
∂r

+ 48r5 gr, (A.10)

48r5 = −1

r

∂p

∂θ
+ 48r5 gθ. (A.11)

If we assume a radially outward gravity component gr = r3

384
,

this implies that

0 = −∂p
∂r

+
r8

8
. (A.12)

Integrating with respect to r and normalizing the pressure
such that at the outer boundary r = R2 = 2 we have p(r =
R2, θ) = 0, yields

p(r, θ) =
r9

72
− 512

72
(A.13)

Given this pressure, the final remaining equation, (A.11), is

48r5 = 48r5gθ. (A.14)

This results in gθ = 1.
In summary, our constructed solution is as follows:

u =

[
0
−r7

]
, p =

r9

72
− 512

72
, ρ = 48r5, g =

[
r3

384

1

]
.

(A.15)
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Figure A1. Solution of the annular flow benchmark. Top left: The velocity and pressure solution of the benchmark. Top right: Density

and gravity fields that determine the right hand side of the Stokes system. Bottom row: Initial and final particle distributions after one
full revolution of the outer edge, colored by particle index.


