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Abstract. Anomalous refraction in gases was discovered by J ahn (1956) during experiments with 

shocks refracting at an Air/C02 gas interface. Jahn's experiments were confined to the case when 
the wave impedance decreases during the refraction, IZt I < IZi I, in which case the incident shock is 
overrun by upstream-moving expansions that locally weaken it and cause it to curve backward. We 
show that Jahn's model for this phenomenon (classical anomalous refraction) must be modified in 
one important respect, namely that there is still a centered supersonic expansion at the node R. 
We also show that anomalous refraction can occur when the impedance increases, IZt I > IZi I, in 
which case the incident shock is overrun by upstream moving compressions that locally strengthen 
it and cause it to move forward. 
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1. The refraction law 

Suppose that a shock wave i is propagating with a velocity U i in a material whose properties 
and state are known, and suppose also that it enters another material with different properties, 
or state, that are also known, and that causes its velocity to change to U t . The shock will be 
said to refract whenever U i differs in either magnitude or direction from U t. For simplicity it will 
be assumed the boundary m between the two materials is a plane surface, and that i encounters 
it at some angle of incidence ai (Fig.I). If the incident and transmitted shocks meet at a single 
point on the interface, and travel at the same speed along it, then the angle of transmission at is 
related to ai by the refraction law, 

Ui 

Sill ai Sill at 
(1) 

where Ui,t = IUi,tl are the wave speeds measured in the laboratory frame (Fig.I). The relative 
refractive index 1] is defined as, 

Ui sinai 
1]=-=--

- Ut sin at 

from which it is concluded that the shock will be refracted by the materials whenever 1] i' 1. 

2. Wave impedance 

The wave impedance for an arbitrary one-dimensional shock i is defined as 

z. = P! - Po 
,- Upi 

(2) 

(3) 

where P is the pressure, the subscripts 0, 1 refer to the conditions upstream and downstream of 
the shock, and Upi is the (signed) speed of the piston associated with the i shock (see Henderson 

1989 or Henderson et al. 1991). In other words, Upi == U! - uo, where UO,! is the velocity of the 
material upstream (resp. downstream) of the shock. If Zi is interpreted as the mass flux, then 
Eq.3 is simply the momentum equation for the flow perpendicular to i. 

The impedance Ze of a one-dimensional expansion wave e may also be defined as in Eq.3. 

Thus, 
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where P2 ,1 are the pressure upstream and downstream of the wave, Upe is the magnitude of the 
piston velocity U pe == U2 - Ul associated with the expansion, and Ul,2 are the velocity of the 
medium upstream and downstream of the wave. Note that U pe is the velocity of a piston which 
is withdrawing in the direction opposite that of the wave propagation. 

When OOi = 0, there will in general be a reflected wave propagated back into the initial 
material as i passes into the receiving material. The reflection may either be a compression r, or 
an expansion e. More precisely it will be a compression if the magnitude of the wave impedance 
increases IZt I > IZi I and an expansion if it decreases IZt I < IZ;I, but there will be no reflection if 
there is no change in the impedance Zt = Zi. In this last case the wave system consists only of 
two shocks and we call it a shock pair (Henderson and Puckett 1993). 

For an oblique shock, that is one for which ai 1: 0, the theory is simplified if we define an 
effective impedance Zj by 

Z. = P1 - Po 
, - Upi cos (3i ' 

(5) 

where (3i is the angle that i makes with the disturbed (downstream) interface labelled din Fig.1. 
For the rand t waves Zr and Zt are defined in a manner analogous to Eq.5 with (3r,t and U pr,t 

defined as shown in Fig.1. The effective impedance is the natural generalization of the effective 
acoustic impedance (Kinsler et al. 1982) to shock waves. 

The definition of the effective impedance Ze for a centered expansion wave in two dimensions 
is a bit more difficult, since an expansion of the Prandtl-Meyer type is not a single plane surface, 
but a fan of such surfaces. We have, 

(6) 

where Upj denotes the magnitude of the piston velocity Upj associated with the "jth"wave in 
the expansion fan, (3j denotes the angle this wave makes with the disturbed gas and n is a unit 
vector normal to the disturbed gas interface. 

3. The classical model of anomalous refraction 

Anomalous refraction in gases was discovered by Jahn (1956) during his experiments with the 
Air/C02 combination of materials. When OOi was sufficiently small the refraction was regular, and 
its reflected wave was a centered (Prandtl-Meyer) expansion (Fig.3a), this is a regular-refraction­
with-a-reflected-expansion and is denoted by RRE. With ai increasing continuously, a critical 
condition was attained where the flow Mach number Ml downstream of, and relative to i, became 
sonic: Ml = 1. The critical angle of incidence at is: 

2 • ul q~o 
tan OOi = ai - (Ui - Upi)2 - ai - q~l . (7) 

Here Ui and Upi are measured in laboratory coordinates as shown in Fig.l, while qnO and qnl are 
the normal components of the particle velocity upstream and downstream of the incident shock 
i, measured in coordinates at rest with respect to the shock. It will be noticed that Eq.7 is valid 
for any material and that it does not depend on the properties of the receiving material, nor on 

any wave or boundary parameter of the transmitted shock t. 
Jahn observed that when ai > ai the expansion waves were able to overrun part of i and to 

cause some attenuation of it, and consequently that part if was swept in the downstream direction, 
and curved backward. At the same time the reflected wave spreads out into a distributed band of 
expansions (Fig.2 and Fig.3e). The result was an anomalous-refraction-with-reflected-expansions 
(ARE). (The upper case "E", indicates sonic or supersonic flow downstream of i.) The Jahn 
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m 

Fig. 1. Regular refraction Fig. 2. Classical anomalous refraction 

model assumes that the disturbed part of the shock i' has a sonic surface everywhere at its rear. 
Consequently Eq.7 is satisfied at every point on i'. This is only possible if i' weakens monotonically, 
and also the speed of sound al decreases monotonically, as i' approaches the refraction node R. 

4. A general theory of anomalous refraction 

Let ei == PO/PI denote the (inverse) incident shock strength. For a given ei let ap denote the 
angle at which equality of the (effective) impedance Zt = Zi occurs. Now define eip to be the 
shock strength for which the condition Zt = Zi coincides with the onset of anomalous refraction 
ai = a:. In other words, when ei = eit, we have ai = a: = ap . By examining the i and t shock 
polars one can show that for the Air/C02 gas combination ap < a: {:::=} ei > eip , and also 
that a; < a p {:::=} IZ;I > IZtI (Puckett et al. 1993). We call ei > eip weak refractions and 
e; < eip strong refractions. By chance rather than design Jahn only studied weak refractions, and 
hence (the magnitude of) the wave impedance was always decreasing IZtl < IZil in the anomalous 
regime ai > a;. In the following we examine numerically one of his experimental sequences, and 
then also examine a strong refraction sequence in Air/C02 . 

4.1 Air/C02 with ei = 0.85 (weak refractions) 
A sequence with ei = 0.85 held constant was studied experimentally by Jahn (1956). It is a weak 
refraction sequence since ei = 0.85 > eip = 0.29064. By the theory developed in Puckett et al. 
(1993) the only possible refractions are RRE and ARE. Some numerical results for this sequence 
are presented in Fig.3. We plot contours oflog Pin Figs.3a,c,e,g and contours of the Mach number 
.tV! in self-similar coordinates in Figs.3b,d,f,h. In these latter figures solid lines indicate the sonic 
and supersonic contours .tV! ~ 1. The sonic contour .tV! = 1 is the last solid contour. 

Figs.3a-b are for a; = 69° < a; = 71.116° which is an RRE. Transition to the anomalous 
system, RRE;=: ARE, takes place at a; = a: = 71.116°; the results are presented in Figs.3c-d. For 
ai = 75.0° > a;, there is an ARE (Figs.3e-f). The centered expansion wave has now partly spread 
out and over-run a portion of the incident shock i and thus produces the partly attenuated shock 
i'. In Fig.3f, the sonic contour coincides with the rear of i', which is as it should do if the Jahn 
model of ARE (Fig.2) is correct. However the results do differ from his model in one important 
respect, namely that there is still a centered supersonic expansion at the node. This has also been 
mentioned by Grove and Menikoff (1990). 
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Fig. 3. Shock refraction sequence in Air/C02 with ei = 0.85 
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Fig. 4. Shock refraction sequence in Air/C02 with ei = 0.1 

Anomalous refraction of shock waves 143 

\ 
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Fig.4d. Enlargement of Fig. 4c 
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Fig.4h. ARe at C<i = 85° (AI) 
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With further development to ai = 85° (Figs.3i-j) the centered fan has all but vanished, 
although the sonic condition remains everywhere at the rear of i' (Fig.3j). This last computation 
corresponds to the experiment shown in Fig.14h, Plate 11 of Jahn (1956). According to our results 
his interpretation of the structure of the refraction is essentially correct because the remains of 
the centered expansion wave has all but vanished in this case. It is concluded that the structure of 
an ARE is as described by Jahn, except for the addition of a centered (Prandtl-Meyer) expansion 
wave which emanates from the refraction node. 

4.2 Air/C02 with ei = 0.10 (strong refractions and variable impedances) 
When the refraction is weak ei > e;p, the equality of impedance condition Zi = Zt occurs in the 
regular range a p < aT for Air/C02 . Therefore in the anomalous range ai > ai > a p , and the 
only possible system is one with sonic expansions at the rear of i', that is an ARE. This was well 
supported by the numerical results presented in §4.1. The same conclusions apply to the other 
sequence (ei = 0.3) studied experimentally by Jahn, since here also ei = 0.3 > eip = 0.29064. 
If a reflected compression is to occur for the Air/C02 combination, then the Zi = Zt condition 
should lie in the anomalous range; that is, it must be a strong shock refraction, ap > at. 

In order to make numerical tests of this conclusion, an Air/C02 sequence was chosen with 
ei = 0.1 < eip = 0.29064, with three values of ai· One value was ai = 67.2428° which is midway 
between ai = 64.272° and ap = 70.2135°, so IZ;I < IZd. According to the theory this should be 
an anomalous-refraction-with-reflected-compressions (ARc), and indeed it is, as one can see in 
Figs.4a-d. (The lower case "c"indicates subsonic flow downstream of i.) Fig.4b is an enlargement 
of Fig.4a about the node R, and it will be noticed that i' now moves forward of i as it is overtaken 
by subsonic compressions arising downstream. The fact that the flow downstream of i' is subsonic 
is demonstrated in Figs.4c-d. The second value was ai = a p = 70.2135° where Zi = Zi' = Zt, and 
it is shown in Figs.4e-f. Notice that i and i' are now indistinguishable and that i = i' and tare 
all planar. Consequently the flows are all uniform about the node and are subsonic downstream 
of i = i' and supersonic downstream of t (Fig.4f). We call it a regular shock pair (RSP). The 
third value was ai = 85° > ap , where IZil > IZtl, and as expected i' now leans backward of i 
(Fig.4g-h), and the flow downstream of i' is subsonic, in other words it is an ARe. These results 
are also consistent with the predictions of the theory. The theory is also supported by experiment 
(Abd-el-Fattah and Henderson 1978) and numerical work (Puckett et a!. 1993) with the Air/SF6 

gas combination. 
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