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SECOND-ORDER ACCURACY OF VOLUME-OF-FLUID
INTERFACE RECONSTRUCTION ALGORITHMS

II: AN IMPROVED CONSTRAINT ON THE CELL SIZE

ELBRIDGE GERRY PUCKETT

In a previous article in this journal the author proved that, given a square grid
of side h covering a two times continuously differentiable simple closed curve
z in the plane, one can construct a pointwise second-order accurate piecewise
linear approximation Qz to z from just the volume fractions due to z in the grid
cells. In the present article the author proves a sufficient condition for Qz to be a
second-order accurate approximation to z in the max norm is h must be bounded
above by 2=.33�max/, where �max is the maximum magnitude of the curvature �
of z. This constraint on h is solely in terms of an intrinsic property of the curve z,
namely �max, which is invariant under rotations and translations of the grid. It is
also far less restrictive than the constraint presented in the previous article. An
important consequence of the proof in the present article is that the max norm of
the difference z� Qz depends linearly on �max.

1. Introduction

The topic of this article is the interface reconstruction problem for a volume-of-fluid
method in two space dimensions. This problem can be described as follows. Let
�� R2 denote a closed and bounded rectangular region in the plane, and let �1

and �2 be disjoint, connected (but not necessary simply connected) relatively open
regions such that�1[�2D� and that�1\�2 is the image of a twice continuously
differentiable simple closed curve in �, denoted by z.s/ D .x.s/;y.s//, where
s is arc length. The regions �1 and �2 contain “material 1” and “‘material 2”,
respectively, where each material may be a thought of as a gas, fluid or solid and z

is the boundary or interface between these two materials.
Let L be a characteristic length of the problem domain � and cover � with a

grid �h consisting of square cells, each of side h� L. Given integers i and j ,
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let xi D ih (resp. yj D j h) denote the location of the i-th vertical (resp. j -th
horizontal) grid line and let .xi ;yj / denote the lower left hand corner of the ij -th
cell

Cij
def
D Œxi ;xiC1�� Œyj ;yjC1� (1)

in the grid.
Denote the fraction of material 1 in the ij -th cell by ƒij . For each i; j the

numberƒij satisfies 0�ƒij � 1 and is called the volume fraction (of material 1) in
the ij -th cell. (Even though in two dimensions ƒij is technically an area fraction,
the convention is to refer to it as a volume fraction.) Thus 0 < ƒij < 1 if and
only if a portion of the interface z.s/ lies in the ij -th cell and ƒij D 1 (resp.
ƒij D 0) if and only if the ij -th cell contains only material 1 (resp. material 2). In
the volume-of-fluid interface reconstruction problem one is asked to determine an
approximation Qz.s/ to z.s/ in � given only the volume fractions ƒij .

Suppose the interface z.s/ passes through the ij -th cell Cij and can be written
as a single-valued function of x in Cij ; that is, for x 2 Œxi ;xiC1� the interface can
be written in the form z.s/D .x.s/;y.s//D .x.s/;g.x.s///. Let Qgij .x/ denote an
approximation to the interface in Cij . Then the max norm of the difference between
the interface .x;g.x// and the approximate interface .x; Qgij .x// in Cij is defined
in the usual way,

kg� Qgijk1.ij/
def
D max

x2Œxi ;xiC1�
jg.x/� Qgij .x/j: (2)

In the event the interface in the ij -th cell can only be expressed as a single-valued
function G.y/ of y2 Œyj ;yjC1� the max norm of the difference between the interface
.G.y/;y/ and the approximate interface . zGij .y/;y/ is defined analogously.

By Theorem A.1 in the Appendix, if the interface z.s/ 2 C 2 .R/ passes through
the ij -th cell Cij and the constraint in (5)–(6) below is satisfied, then it is possible
to represent z.s/ as either a single-valued function y D g.x/ or x DG.y/ of the
independent variable x (resp. y) in the 3� 3 block of cells Bij centered on Cij .
For convenience, in all of the following the interface is assumed to be of the form
y D g.x/ in the block Bij with material 1 lying below the graph of g in Bij ; it
being understood that all of the definitions, results, etc. in this article also apply to
the case in which the interface can only be expressed as a single-valued function
x DG.y/ in Bij . In Section 2.1 I will present an algorithm for determining which
of the four standard rotations of Bij about its center, 0, 90, 180, or 270 degrees,
will orient the block Bij so the interface can be expressed as either y D g.x/ or
x DG.y/ with material 1 lying below the interface.

Let �.s/ denote the curvature of the interface z.s/ and let

�max
def
D max

s
j�.s/j (3)
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denote the maximum of the magnitude of �.s/ in �. The main result of this article
is as follows. If conditions (I)–(V) below hold, then the piecewise linear volume-of-
fluid approximation Qgij .x/ defined in equations (7)–(10) below will approximate
the true interface z.s/D .x.s/;g.x.s// to second-order in h in the max norm,

kg� Qgijk1.ij/ � Cm�maxh2 for all i; j such that 0<ƒij < 1; (4)

where the constant Cm, defined in (59) below, is independent of h and �max. Note
the linear dependence of the bound in (4) on �max.

The following conditions are sufficient to ensure that (4) holds. Note that (II)–
(IV) constitute an algorithm for constructing the piecewise linear approximation Qz
to z. This algorithm is described in detail in [24].

(I) The interface zD .x.s/;y.s// is a two times continuously differentiable simple
closed curve in �.

(II) The grid size h and the maximum magnitude �max of the curvature of the
interface satisfy the following inequality with respect to one another,

h�
Ch

�max
; (5)

where
Ch

def
D

2

33
: (6)

(III) In each cell Cij that contains a portion of the interface .x;g.x// the piecewise
linear approximation

Qgij .x/
def
D mij xC bij (7)

to g in Cij has the same volume fraction ƒij . Qg/ in Cij as does the interface,

ƒij . Qg/Dƒij .g/: (8)

See Figure 1 for an example. Note that, once the slope mij in (7) is given, the
constraint in (8) uniquely determines bij .

(IV) In each cell Cij that contains a portion of the interface, the slope mij of the
piecewise linear approximation Qgij .x/ defined in (7) is given by

mij
def
D

SiC˛ �SiCˇ

˛�ˇ
for some ˛; ˇ D�1; 0; 1 with ˛ ¤ ˇ; (9)

where

SiC˛
def
D

jC1X
j 0Dj�1

ƒiC˛;j 0 and SiCˇ
def
D

jC1X
j 0Dj�1

ƒiCˇ;j 0 (10)

denote two distinct column sums of volume fractions from the 3� 3 block of cells
Bij D Œxi�1;xiC2�� Œyj�1;yjC2� centered on the ij -th cell Cij .
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xi−1 xi xi+1 xi+2xc = 0

|

yc = 0 −

yj−1

yj

yj+1

yj+2

g(x) = tanh(x)

(xi−1, yl)

(xi+2 , yr)

g̃ij(x) = mij x + bij

Figure 1. In this example the interface is g.x/ D tanh.x/ and all three of the column
sums Si�1, Si , and SiC1 are exact. The linear approximation Qgij .x/Dmij xCbij in the
center cell Cij is also plotted, where the slope mij is given by (9) with ˛ D 1 and ˇ D�1

and bij is determined by the constraint ƒij . Qg/Dƒij .g/ in (8).

For ˛ D�1; 0; 1 the column sum SiC˛ is said to be exact if

SiC˛ D
1

h2

Z xiC˛C1

xiC˛

.g.x/�yj�1/ dx: (11)

and exact to O.h/ ifˇ̌̌̌
SiC˛ �

1

h2

Z xiC˛C1

xiC˛

.g.x/�yj�1/ dx

ˇ̌̌̌
� C�maxh; (12)

where C > 0 is a constant, defined in (53) below, which is independent of h and
�max. Column sums are discussed in greater detail in Section 2.2.

(V) Each of the two column sums SiC˛ and SiCˇ in (9), where ˛ ¤ ˇ, is either
exact or exact to O.h/. Thus, by Theorem 23 of [23] the slope mij defined in (9)
is a first-order accurate approximation to g0.xc/,

jmij �g0.xc/j � C�maxh; (13)

where xc denotes the center of the interval Œxi ;xiC1�. It then follows from Theorem 4
on page 152 below that the approximation Qg defined in (7)–(10) is a second-order
accurate approximation to g in Cij ; i.e., the bound in (4) holds in Cij .
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Figure 2. In this example the interface is a line l.x/DmxC b that has two exact column
sums, Si�1 and Si , in the first and second columns of the 3�3 block of cells Bij centered
on the cell Cij . In this case the slope mij defined in (9) with ˛ D 0 and ˇ D�1 is exactly
equal to the slope m of the interface: mij Dm. It is always the case if the true interface is
a line; then one of the four standard rotations of Bij about its center will orient the block
so at least one of the divided differences of the column sums in (9) is exact and hence, the
approximation Qgij to the interface in the center cell Cij defined in (7)–(10) will exactly
equal the interface in that cell, Qgij .x/Dmij xC bij DmxC b D l.x/. In other words,
the approximation Qgij defined in (7)–(10) will always reconstruct a linear interface exactly.

1.1. Remarks concerning conditions (I)–(V).

(1) The proof of (4) is based on showing if the constraint in (5)–(6) holds, then for
all cells Cij that contain a portion of the interface, there are at least two distinct
column sums SiC˛ and SiCˇ , with ˛¤ ˇ, which are either exact or exact to O .h/

in one or more of the four standard rotations of the 3�3 block of cells Bij centered
on Cij . An algorithm for determining which of the four standard rotations of the
block Bij has this property is described in Section 2.1.

(2) The constraint on h in (5) may be viewed as dictating the number of cells
required to produce a pointwise second-order accurate approximation to a circle of
radius r on a grid with cell size h. To see this, note the curvature of the circle is
�max D r�1 and hence, by (5) and (6), one must have

16:5hD C �1
h h� r: (14)

This implies one needs a 35 � 35 square block of cells covering the circle (this
includes a border one cell wide outside the circle) in order to ensure the piecewise
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linear approximation defined in (7)–(10) is a pointwise second-order accurate
approximation to the circle in each cell Cij that contains a portion of the circle.

This could be an overestimate of the number of cells required to achieve pointwise
second-order accuracy. However, if this is so, then it is likely one will need to
employ ideas other than the ones presented in this article, and in [23], in order to
obtain a better result; that is, a larger value for Ch, thereby implying fewer cells are
required to reconstruct a circle of radius r to pointwise second-order accuracy in h.
In other words, the constant of proportionality Ch in (6) appears to be optimal in
the sense that it is about as large as one can obtain with the ideas and techniques
presented here and in [23].

(3) In [23] the constraint that corresponds to (5) is

h�min
˚
QCh�
�1
max; �

�2
max
	
; (15)

where

QCh
def
D C hŒ4�D

p
4�
p

2

4
p

2
p

4� 1
D

p
2� 1

4
p

3
; (16)

where C hŒa� is defined in Equation (A.1) in the Appendix. The principal new result
of this article is the elimination of the much more restrictive (and dimensionally
inconsistent) constraint

h� ��2
max (17)

in (15). Thus, for a given interface z, one can reconstruct z to second-order in h

using a larger value of h than dictated by (17). A notable consequence of this new
proof is that the bound on the error in (4) depends linearly on �max.

A minor change from [23] is the very slight increase in the value of Ch from
Ch D

QCh � .16:73/�1 to Ch D 2=33 D .16:5/�1. The reason for this change is
solely for the purpose of presenting the example in item (2) above in terms of an
integral number of grid cells. The details concerning how Ch and QCh are chosen
appear in the Appendix.

The majority of the work in this article is concerned with proving the more
restrictive constraint in (17) is unnecessary. This involves replacing the arguments
in Sections 3.2–3.4 of [23] with those in Section 4 here. Sections 2.2.2 and 3 of
this article contain a more detailed discussion of the modifications to the argument
in [23] required to eliminate the constraint in (17).

Although it is not necessary to modify the argument in [23] in order to increase
the value of Ch from

�p
2 � 1

�
=
�
4
p

3
�
� .16:73/�1 to Ch D 2=33 D .16:5/�1,

a more general version of Theorem 6 from [23] is presented as Theorem A.1 in
the Appendix in order to clearly show the considerations that influence the choice
of Ch.
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(4) Figure 1 contains an example of the volume-of-fluid approximation Qgij .x/D

mij xC bij defined in (7)–(10) to the interface g.x/D tanh.x/ in the center cell
Cij of a 3 � 3 block of cells in which all three column sums are exact. Hence,
Qgij is a pointwise second-order accurate approximation to g for any choice of
˛; ˇD 1; 0;�1 with ˛¤ˇ in (9) provided bij is chosen so (8) holds, whereƒij .g/

is the volume fraction in Cij lying under the curve g.
Figure 2 contains an example of a linear interface l.x/ D mx C b in which

only two of the column sums, namely, Si�1 and Si , are exact, yet the approximate
interface Qgij D mij x C bij , exactly reproduces the line l if mij is given by (9)
with ˛ D 0 and ˇ D�1 and bij is chosen so ƒij . Qg/Dƒij .l/ where ƒij .l/ is the
volume fraction in Cij lying below the line l . (See Example 1 on page 136 for
additional details.)

Figure 3 contains an example of the arc of a circle, c�.x/ that passes through
the center cell Cij of the 3� 3 block Bij , but for which the center column sum

Figure 3. This figure contains an example of an interface c�.x/, which is a circle that
satisfies (5)–(6), but for which the center column sum is not exact in any of the four
standard rotations of the 3� 3 block of cells Bij centered on the cell Cij . Consequently,
the only reasonable approximation mij to c�

0.xc/ of the form (9) is with ˛D 0 and ˇD�1,
which must necessarily have a nonexact center column sum Si . By Theorem 3 below,
which is the basis for the principal result of this article, if the constraint in (5) and (6) is
satisfied, then the center column sum Si must be exact to O.h/. In other words, in this
case the constraint in (5)–(6) implies (12) (with ˛ D 0) must hold. This is sufficient to
prove (13), namely, jmij � c�

0.xc/j � C�maxh, which is Theorem 23 of [23]. Finally, by
Theorem 4, the approximate interface Qgij .x/ with the slope mij as given above must be a
second-order accurate approximation to c�.x/ in the max norm.
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Si is not exact. However, by Theorem 3 below, Si is exact to O.h/, as defined in
(12). It follows from Theorem 23 of [23] and Theorem 4 in this article that the
approximation to the interface Qgij .x/, with the slope mij given by (9) with ˛ D 0

and ˇ D�1, will still be pointwise second-order accurate in h, even though Si is
only exact to O.h/.

The convention followed in each of these examples is that material 1 lies below
the interface. However, in practice the 3 � 3 block Bij centered on a cell Cij

containing a portion of the interface can have material 1 lying above, below, to
the right or to the left of the interface. In Section 2.1 I present an algorithm for
determining which of the four standard rotations of the 3� 3 block of cells Bij ,
namely, rotation clockwise by 0, 90, 180, or 270 degrees, will orient the block Bij

so material 1 lies below the interface.
Theorem 4, which is the main result of this article, follows from proving that if

(5)–(6) holds, then in at least one of these four standard orientations of the block
Bij there will always exist at least one column sum that is exact and a second
column sum that is either exact or exact to O.h/. A more detailed discussion of
these issues is contained in Section 3.

Figure 1 contains an example in which one orientation of Bij contains three exact
column sums. Figure 2 contains an example in which in two different orientations
of Bij contain two exact column sums. Figure 3 contains an example in which
in two different orientations Bij contain one exact column sum and one column
sum that is exact to O.h/. (Note: rotation of the block Bij in Figure 3 by 180 or
270 degrees clockwise results in a configuration in which material 1 lies above the
interface and therefore, neither (11) nor (12) is true.)

(5) The constraint in (5)–(6) is sufficient to ensure filaments or fingers of the
type shown in Figure 4 will not occur on a grid with cell size h where �max is
the maximum magnitude of curvature of the filament. In this article I have not
attempted to catalog all of the ways in which a filament of width w < h can occur
in an arbitrary C 2 simple closed curve lying in the domain �. It could be that the
constraint in (5)–(6) is sufficient to ensure if the interface is a simple closed curve
in �, then all such filaments will be resolved to pointwise second-order accuracy
in h. However, I have not attempted to prove this here. The result in this article
concerning filaments of the type illustrated in Figure 4 is only a local result. In other
words, in all of what follows I am explicitly excluding interfaces z such that for
two disjoint intervals .sl ; sr / and .Qsl ; Qsr / the two separate portions of the interface
z.s/D .x.s/;y.s// for sl < s < sr and z.Qs/D .x.Qs/;y.Qs// for Qsl < Qs < Qsr , occupy
the same 3� 3 block of cells Bij .

1.2. The volume-of-fluid interface reconstruction problem. Consider the follow-
ing problem. Given only the collection of volume fractions ƒij in the grid �h
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Figure 4. The interface p.x/ is a model of a filament of material 2 contained entirely
within the center column of the 3� 4 block of cells Œxi�1;xiC2�� Œyj�2;yjC1�. In this
example hD1, the interface is the parabola p.x/D32.x�xc/

2C.yj�1�h=2/ and hence,
it follows that �max does not satisfy the constraint in (5)–(6), since �maxD 64> 2=.33h/D

Ch=h. This indicates the filament is underresolved on this grid. In general, the constraint
in (5)–(6) ensures the interface does not have sharp or “hairpin” turns on the scale h of the
cell in which one wants to reconstruct the interface.

covering �, reconstruct z.s/ in the following way. For each cell Cij in �h for
which 0 < ƒij < 1, find a piecewise linear approximation Qz to z as shown, for
example, in Figure 1. Furthermore, the approximate interface Qz must have the
property that the volume fractions Qƒij due to Qz are identical to the volume fractions
ƒij due to z,

Qƒij Dƒij for all cells Cij in �h: (18)

An algorithm for finding such an approximation is known as a piecewise linear
volume-of-fluid interface reconstruction method. More generally, there are volume-
of-fluid interface reconstruction methods that produce other types of approximations
to the interface, such as with piecewise constant [18; 19] and piecewise parabolic
[26] functions. However, this article is only concerned with piecewise linear
approximations to the interface of the form (7).

Although these algorithms have historically been known as “volume-of-fluid”
methods, one can use them to model the interface between any two (or more)
materials, including two gases [7], a gas (or vacuum) and a solid [25], a liquid and
a solid [14], two solids and vacuum [15; 16], or any other combination of materials.
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The design of volume-of-fluid interface reconstruction methods for reconstructing
multiple interfaces in problems with more than two materials, especially a large
number of distinct materials, is currently a very active area of research.

The property (18) that Qƒij Dƒij in all cells in �h is the principal feature that
distinguishes volume-of-fluid interface reconstruction methods from other interface
reconstruction or tracking methods. It ensures the computational value of the total
volume of each material is exact to within machine precision. In other words,
all volume-of-fluid interface reconstruction methods are conservative in that they
conserve the volume of each material in the computation. This is essential if the
interface reconstruction method is part of a conservative finite difference method
designed to approximate solutions of a system of hyperbolic conservation laws
since, for example, in order to obtain the correct shock speed it is necessary for all
of the conserved quantities to be conserved by the underlying numerical method
(e.g., see [12]). More generally, a necessary condition for the numerical method to
converge to the correct weak solution of a system of hyperbolic conservation laws
is all of the quantities conserved in the system of conservation laws must also be
conserved by the numerical method [11; 13].

Volume-of-fluid methods have been used by researchers to track material inter-
faces since at least the mid 1970s (e.g., [18; 19]). Researchers have developed a
variety of volume-of-fluid algorithms for modeling everything from flame propaga-
tion [4] to curvature and solidification [5]. In particular, the problem of developing
high-order accurate volume-of-fluid methods for modeling the curvature and surface
tension of an interface has received a lot of attention [1; 3; 5; 6; 9; 32; 22; 26].
Volume-of-fluid methods were among the first algorithms to be implemented in
codes developed at national laboratories, both in the US [8; 10; 17; 18; 30; 31] and
elsewhere [20; 33; 34; 35], for tracking interfaces in a variety of difficult fluid flow
and material deformation problems.

The present article is only concerned with the accuracy one can obtain using a
volume-of-fluid interface reconstruction algorithm to approximate a given stationary
interface z.s/. The related problem of approximating the movement of the interface
in time, for which one would use a volume-of-fluid advection algorithm is not
addressed here. See, for example, [2; 21; 26; 27; 28] for a description and analysis
of several such algorithms.

2. Essential background material

2.1. Rotation and/or reflection of the 5� 5 block of cells zBij . Given a cell Cij

that contains a portion of the interface it is expedient to consider the 5� 5 block
of cells zBij centered on Cij rotated clockwise by 0, 90, 180, or 270 degrees about
.xc ;yc/ and/or reflected about the vertical line xD xc or the horizontal line yD yc ,
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where .xc ;yc/ is the center of the cell Cij as shown in Figures 2, 3 and 4. (Figure 1
on page 203 of [24] contains an illustration of the 5� 5 block of cells zBij .) This
is because, with the proper choice of one of these four rotations, one can orient
the block zBij so the interface can either be written as a single-valued function
y D g.x/ or xDG.y/ of the independent variable x (resp. y) such that in this new
coordinate frame the column sum Si corresponds to the integral of g.x/� yj�1

(resp. G.y/� xi�1) over the interval Œxi ;xiC1� (resp. Œyj ;yjC1�) and similarly
for the column sums Si�1 and SiC1. I use the reflection about the line x D xc to
transform cases such as the reflection of the case shown in Figure 3 about the line
x D xc into the case shown in Figure 3, and similarly for reflections about the line
y D yc . This enables one to reduce all of the various ways the interface can enter
the 3� 3 block of cells Bij , pass through the center cell Cij , and leave the block
Bij to two canonical cases, namely, Configuration A and Configuration B below.

It is important to note one does not need to perform these coordinate transforma-
tions in order to prove the piecewise linear volume-of-fluid interface reconstruction
algorithm defined in (7)–(10) produces a second-order accurate approximation to
the exact interface. Rather, these coordinate transformations are simply an expedient
that allows one to reduce consideration of all of the various ways the interface can
enter Bij , pass through Cij , and then leave Bij to two canonical cases. This is a
consequence of the symmetry lemma on page 119 of [24], from which it follows
that all such configurations of the interface with respect to the 3� 3 block of cells
Bij are equivalent to one of the following two cases.1

Configuration A: The interface enters Bij across its left edge and exits across its
right edge as shown, for example, in Figure 1. In this case the best slope for one to
use is mij defined by ˛ D 1 and ˇ D �1 in (9), although either of the other two
slopes given by ˛D 0 and ˇD�1 or ˛D 1 and ˇD 0 will also furnish a pointwise
second-order accurate approximation of the form (7)–(10) to the interface in the
center cell Cij .

Configuration B: The interface enters Bij across its left edge and exits across
its top edge as shown, for example, in Figures 2 and 3. In this case one must
use the slope mij in (9) with ˛ D 0 and ˇ D �1 in order to produce a pointwise
second-order accurate approximation of the form (7)–(10) to the interface in the
center cell Cij .

1The symmetry lemma in [23] ensures that if (5)–(6) holds, then each of the ways the interface can
enter the block Bij , pass through the center cell Cij , and exit Bij is equivalent to one of four canonical
cases: I-IV. By Lemma 11 in [23] Case I cannot occur and a rotation of the block Bij clockwise by
90ı transforms Case III into Case II, thereby leaving only Case II, which is Configuration A, and
Case IV, which is Configuration B.
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Note that each 5�5 block of cells zBij centered on a cell Cij containing a portion
of the interface will have its own rotation and/or reflection; that is, the rotation
and/or reflection is only performed locally, solely for the purpose of determining
the slope mij of the approximate interface in the ij -th cell Cij . Different rotations
and/or reflections will, in general, be required for different 5� 5 blocks of cells
centered on different cells Cij that contain parts of the interface. Furthermore,
one only uses these coordinate transformations to determine a first-order accurate
approximation mij to g 0.xc/ in the center cell. The grid �h covering the domain
� always remains the same. Thus, if one is using the interface reconstruction
algorithm as part of a numerical method to solve a more complex problem than the
one posed here, e.g., the movement of a fluid interface where the underlying fluid
flow is a solution of the Euler or Navier–Stokes equations, it is not necessary to
perform a coordinate transformation on the underlying numerical fluid flow solver.

There are a variety of techniques for determining which of the four rotations
and which reflection, if any, will orient the 3� 3 block Bij so the interface can
be written as a single-valued function of one of the independent variables x or y,
such that in the rotated coordinates the column sum Si corresponds to the integral
of g.x/� yj�1 (resp. G.y/� xi�1) over the interval Œxi ;xiC1� (resp. Œyj ;yjC1�)
and similarly for the column sums Si�1 and SiC1. The simplest technique is
probably the algorithm described in Section 3 of [24], a variation of which I will
now describe.

Step I: Given a cell Cij that contains a portion of the interface z.s/, or equivalently,
a cell Cij in which 0<ƒij < 1, rotate the 5� 5 block of cells zBij centered on Cij

together with their associated volume fractions by 0, 90, 180, or 270 degrees so in
the rotated coordinate frame the bottom row of cells in the 5� 5 block zBij satisfy

ƒi�2;j�2D 1; ƒi�1;j�2D 1; ƒi;j�2D 1; ƒiC1;j�2D 1; ƒiC2;j�2D 1:

This ensures that the interface does not cross the bottom edge of the 3� 3 block of
cells Bij .

Step II: Now examine the left and right edges of the 5� 5 block of cells zBij . If

ƒi�2;j�2D 1; ƒi�2;j�1D 1; ƒi�2;j D 1; ƒi�2;jC1D 1; ƒi�2;jC2D 1;

then the interface must cross the top and right-hand edges of the 3�3 block of cells
Bij . In this case reflect the cells together with their associated volume fractions
about the vertical line x D xc in order to orient the block zBij so the interface only
crosses the left-hand and top edges of the 3�3 block Bij as shown in Figures 2 and
3. (Lemma 11 of [23] ensures any interface of the form y D g.x/ on the interval
Œxi�1;xiC2� or x DG.y/ on the interval Œyj�1;yjC2� that satisfies the constraint



VOLUME-OF-FLUID INTERFACE RECONSTRUCTION ALGORITHMS 135

in (5)–(6) cannot enter the block Bij across a given edge, pass through the center
cell Cij , and then exit Bij across the same edge.)

Not only does this procedure reduce the number of cases one must consider during
the course of proving the results in this article and those in [23], it also reduces the
number of cases one must consider in the implementation of the algorithm described
in [24]. In all of what follows I will express the interface as y D g.x/ and, unless
noted otherwise, the coordinates of the edges of the cells in the 3� 3 block Bij

centered on a cell Cij containing the interface will be denoted by xi�1, xi , xiC1,
xiC2 and yj�1, yj , yjC1, yjC2, with it being understood that a transformation of
the coordinate system as described above may have been performed in order for
this representation of the interface to be valid, and that the names of the variables
x and y might have been interchanged in order to write the interface as y D g.x/.

2.2. Column sums. Let Cij be a cell such that 0<ƒij < 1 and assume the 3� 3

block of cells Bij centered on Cij has been rotated by 0, 90, 180, or 270 degrees as
described above, so the interface z.s/ can be expressed as a single-valued function
y D g.x/ or x DG.y/ of the independent variable x (resp. y). Thus, in this new
coordinate frame the column sum Si corresponds to the integral of g.x/�yj�1 (resp.
G.y/� xi�1) over the interval Œxi ;xiC1� (resp. Œyj ;yjC1�) and similarly for the
column sums Si�1 and SiC1. The accuracy of the piecewise linear approximation
to the interface in Cij defined in (7)–(10) depends entirely on the accuracy with
which the column sums Si�1, Si and SiC1 approximate the volume / area under
the interface in their respective columns from the base y D yj�1 of the block Bij

to the interface. The purpose of this section is to give the reader an understanding
of why this must be so.

2.2.1. Exact column sums. Consider the three columns in the 3�3 block of cells Bij

centered on the cell Cij . The column sums Si�1, Si , and SiC1 are a nondimensional
way of storing the total volume / area of material 1 in these three columns. In order
to approximate the portion of the interface g.x/ in the ij -th cell Cij to second-order
in h with the piecewise linear function Qgij .x/ defined in (7), one must use two of
the three column sums in Bij to compute the slope mij of Qgij .x/ as illustrated in
the examples in Figures 1 and 2.

To see why this is so, consider an arbitrary column consisting of three cells with
left edge x D xi and right edge x D xiC1 and assume the interface can be written
as a function y D g.x/ on the interval Œxi ;xiC1�. Assume also the interface enters
the column through its left edge and exits the column through its right edge and
does not cross the top or bottom edges of the column as, for example, is the case
for each of the three columns in the 3� 3 block of cells in Figure 1. Then the total
volume / area of material 1 that occupies the three cells in this particular column
and lies below the interface g.x/ is equal to the integral of g.x/�yj�1 over the
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interval Œxi ;xiC1�. Thus, (11) holds; in other words, the i-th column sum Si is
exact.

Exact column sums are the key to ensuring a volume-of-fluid interface recon-
struction algorithm of the form defined in (7)–(10) is second-order accurate. Given
the 3� 3 block of cells Bij centered on a cell Cij that contains a portion of the
interface y D g.x/, the main result in this article, Theorem 4, is based on how well
the column sums Si�1, Si and SiC1 approximate the normalized integral of g in
that particular column,

This is because, by (9), the slope mij of the piecewise linear approximation Qgij

to the interface g in Cij will be the divided difference of two of these column sums.
In other words, mij is chosen to be one of the following three quantities:

ml
ij D .Si �Si�1/; (19a)

mc
ij D

.SiC1�Si�1/

2
; (19b)

mr
ij D .SiC1�Si/: (19c)

A consequence of Theorem 23 in [23] is if two of the column sums SiC˛ and SiCˇ

for some ˛; ˇ D 1; 0;�1 with ˛ ¤ ˇ are exact, then the slope mij in (9) must
satisfy (13). Consequently, by Theorem 4 below, which is a stronger version of
Theorem 24 in [23], the piecewise linear approximation Qgij .x/ defined in (7)–(10)
will be a pointwise second-order accurate approximation to the true interface g.x/

for all x 2 Œxi ;xiC1�. In fact, Qgij .x/ will be a pointwise second-order accurate
approximation to g.x/ for all x 2 Œxi�1;xiC2�, albeit with a slightly larger constant
multiplying �maxh2.

Example 1. In order to see why the divided difference of two exact column sums
must produce a slope mij that is a first-order accurate approximation to g 0.xc/, the
slope of the interface at the center of the interval Œxi ;xiC1�, consider the case of a
linear interface l.x/DmxCb as shown in Figure 2. In this particular orientation of
the 3�3 block of cells Bij the interface g has two exact column sums; namely, the
first and second ones, Si�1 and Si , where Si denotes the column sum associated
with the interval Œxi ;xiC1� and Si�1 denotes the column sum associated with the
interval Œxi�1;xi �. It is easy to check that

mD
1

h2

Z xiC1

xi

.l.x/�yj�1/ dx�
1

h2

Z xi

xi�1

.l.x/�yj�1/ dx

D .Si �Si�1/Dml
ij :

In this example the divided difference ml
ij in (19a) of the column sums Si�1 and

Si is exactly equal to the slope m of the linear interface l.x/DmxC b and hence,



VOLUME-OF-FLUID INTERFACE RECONSTRUCTION ALGORITHMS 137

since (8) must also hold, the piecewise linear approximation Qgij .x/ defined in (7)
coincides with the true interface l.x/ in Cij ,

jl.x/� Qgij .x/j D 0 for all x 2 Œxi ;xiC1�:

If the exact interface is a line, then it is always the case that in one of the
four standard rotations of the 3� 3 block of cells Bij at least one of the divided
differences of the column sums in (19) is exact. For example, note that in the
case shown in Figure 2 one can rotate the 3 � 3 block of cells Bij 90 degrees
clockwise and in this new orientation the correct slope to use when forming the
piecewise linear approximation Qgij .x/Dmij C bij to the line l.x/DmxC b will
be mij Dmr

ij as defined in (19c), which again exactly equals the slope m of l.x/.
Of course, in general, the divided difference of two of the column sums will not

be precisely equal to the slope of the interface at the midpoint xc of the interval
Œxi ;xiC1� as in the preceding example. However, as a consequence of Theorem 3
below, and Theorem 23 of [23], if h satisfies (5)–(6), one can always find an
orientation of the 3�3 block of cells Bij such that at least two of the column sums
are sufficiently accurate that one of the divided differences in (19) satisfies (13).

Once one has chosen an orientation of the 3�3 block of cells Bij such that at least
two of the column sums are sufficiently accurate that one of the divided differences
in (19) satisfies (13), one uses the constraint in (8), namely, ƒij . Qg/Dƒij .g/, to
form the piecewise linear approximation Qgij .x/Dmij xC bij to the interface. In
other words, given mij , the constraint ƒij . Qg/Dƒij .g/ determines bij .

2.2.2. Column sums that are exact to O.h/. One might expect there exists a value
of Ch that will ensure if the cell size h satisfies the constraint in (5)–(6), then after
one of the four standard rotations of the 3� 3 block Bij about its center, the block
will always have at least two exact column sums. Unfortunately, as the following
example demonstrates, there is no bound of the form (5)–(6) which, for a fixed h,
will ensure a C 2 interface will always have at least two exact column sums in one
of the four standard orientations of the grid.

Example 2. Consider the curve c�.x/ shown in Figure 3 where 0 < � < h is a
small parameter. One can always find a circle c�.x/ that passes through the three
noncollinear points .xl ;yl/D .xi�1;yj C �/, .xm;ym/D .xi C �;yjC1� �/ and
.xr ;yr /D .xiC1� �;yjC2/ as shown in the figure. As �! 0 the arc of the circle
passing through .xl ;yl/, .xm;ym/ and .xr ;yr / tends to the chord connecting
.xl ;yl/ and .xr ;yr / which, since the curvature of the chord is 0, implies the radius
r � of c�.x/ tends to1. Therefore, no matter how small one chooses Ch there exists
�0 > 0, such that the radius r � satisfies h� Chr � , or equivalently, h� Ch

�
��max

��1

for all � � �0. Hence, for � � �0 the circle c�.x/ satisfies (5)–(6). However, since
by construction yj < yl and xr < xiC1, the center column sum will not be exact
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in any of the four standard orientations of the block Bij . Consequently, if one
wants to construct an approximation to c�.x/ based solely on the volume fraction
information contained in the 3� 3 block Bij centered on the cell Cij that contains
the point .xm;ym/ on the interface c�.x/, the best result one can hope for is that
the center column sum Si is exact to O.h/ in the sense defined in (12).

All of the work in Sections 4.1 to 4.3 of this article is devoted to proving if
(5)–(6) holds, then in cases such as the one shown in Figure 3 the error between the
column sum Si and the normalized integral of the interface g.x/ in that column is
O.h/; i.e., the inequality in (12) holds with ˛ D 0, where C > 0, defined in (53)
below, is a global constant independent of h and �max.

In [23], in order to prove if the center cell Si is not exact, but is exact to O.h/,
then one of the divided differences ml

ij or mr
ij is still sufficiently accurate that (13)

must hold, it was necessary to have a more stringent restriction on the cell size
than one of the form (5)–(6).2 This restriction was h� ��2

max, which for �max large
enough is more restrictive than the constraint in (5)–(6). In all of the other ways
in which the interface enters the 3� 3 block Bij , passes through the center cell
Cij and exits the block Bij , the constraint in (5)–(6) is sufficient to prove there
is an orientation of Bij such that at least two of the column sums are exact, and
hence one of the divided differences in (19) satisfies (13). The primary purpose of
this article is to prove if the center column sum Si is not exact the more restrictive
constraint h� ��2

max is not necessary. In other words, if the exact interface g satisfies
(5)–(6), then for every cell Cij that contains a portion of the interface, after one
of the four standard rotations of the 3� 3 block Bij about its center .xc ;yc/ there
are at least two column sums that are sufficiently accurate (meaning either exact or
exact to O.h/), that one of the divided differences in (19) satisfies (13).

The purpose of this article is to show the constraint in (5)–(6) is sufficient to
ensure in cases such as the one shown in Figure 3, the error between the center
column sum Si and the normalized integral of the interface g in the center column
satisfies (12) with ˛ D 0 and hence, the error in the approximation ml

ij to the slope
g 0.xc/ is small enough that (13) still holds. Once this is done, by (13) the slope ml

ij

is a first-order accurate approximation to the first derivative g 0.xc/ of the interface
at the center xc of the interval Œxi ;xiC1�. One can then show the piecewise linear

2A consequence of the proof of Theorem 10 in [23] is if the interface satisfies (5)–(6) and passes
through the center cell Cij of the 3� 3 block of cells Bij , then after one of the four standard rotations
of Bij about its center, either the left or right column sum must be exact. If it is the right column
sum SiC1 that is exact, then reflection of the block Bij about the vertical line x D xc results in the
block being oriented so the left column sum Si�1 is now exact as shown in Figure 3. Thus, it is only
necessary to consider the case in which the center column sum Si is exact to O.h/ and the left column
sum Si is exact, as illustrated in Figure 3.
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approximation Qgij .x/Dml
ij xC bij is a second-order accurate approximation to

the interface g.x/ on the interval Œxi ;xiC1�. This is Theorem 4.

3. An overview of the structure of the proof

Sections 3 and 4 of [23] contain a proof of the following. If h satisfies the constraint
in (15), then by rotating the 3� 3 block of cells Bij centered on Cij by 0, 90, 180,
or 270 degrees clockwise, one can find a coordinate frame in which there are at
least two distinct column sums SiC˛ and SiCˇ such that their divided difference (9)
satisfies (13). Section 3.1 of [23] contains a proof that the constraint h� QChi�

�1
max,

where QCh is defined in (A.6), is sufficient to ensure the interface has two exact
column sums in all but one of the ways in which the interface g enters the 3� 3

block of cells Bij , passes through its center cell Cij , and exits Bij . The exception
is the case in which the center column sum Si is not exact, but only exact to O.h/,
as illustrated in Figure 3. Sections 3.2–3.4 of [23] are devoted to proving that, in
this latter case, the center column sum Si is exact to O.h/. However, the proof
requires the second of the two constraints in (15) above, namely h� ��2

max, to hold.
The purpose of Section 4 is to prove the weaker constraint in (5), with Ch

defined in (6), is sufficient to ensure that in cases such as the one described above,
the center column sum Si is exact to O.h/. This, together with the results from
Section 4 of [23], ensure the approximation Qgij .x/ in (7) is a second-order accurate
approximation in the max norm to g.x/ on the interval Œxi ;xiC1�.

Theorem 4 in Section 5, which is the main result of this article, is a stronger
version of Theorem 24 of [23]. Namely, if h�Ch�

�1
max, then (4) holds. This theorem

in based on the results in Section 4 below.
The terms in the error bound on the right-hand side of (4) that have changed from

Theorem 24 of [23] are the positive constants �max and Cm. In particular, the linear
dependence on �max of the max norm of the difference z� Qz is explicitly displayed
in the present article. In [23] the constant Cm was of the form 50�max=3C CS ,
where CS is a constant, which is independent of �max and h. The new value of Cm

is defined in (59) below.

4. The center column sum Si is exact to O.h/

The purpose of the work in this section is to prove the constraint on h in (5)–(6) is
sufficient to ensure that if the center column sum Si is not exact, then it must be
exact to O.h/. This is the case in which the center column sum is not exact in each
of the four standard orientations of the block Bij as shown, for example, in Figure 3.
The main result of this section is stated explicitly in Theorem 3 below. Note that it
is only necessary to prove this result in one of the four standard orientations of the
grid, since the proof of the other three cases is essentially the same. Note also that
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in this one case the interface g.x/ is monotonically increasing. In Lemma 13 of
[23] it is proven if the interface is a nonmonotonically increasing function of x in
Bij , then the constraint in (5)–(6) is sufficient to ensure it has two exact column
sums, regardless of the manner in which it enters the 3�3 block of cells Bij , passes
through the center cell Cij and exits the block Bij again. See Section 3.1 of [23]
and, in particular, Lemma 13 for details.

Notation. For convenience, in this section the edges of the 3 � 3 block of cells
Bij will be denoted x0, x1, x2, x3, and y0, y1, y2, y3, as shown, for example,
in Figures 5, 6, and 7. Thus, the 3� 3 block Bij will be identified with the 3� 3

block B1;1 D Œx0;x3� � Œy0;y3� and the center cell Cij will be identified with
C1;1 D Œx1;x2�� Œy1;y2�, the center cell of B1;1. Furthermore, in Section 4.1 it
will be convenient to translate the coordinate system so the origin .0; 0/ coincides
with the point .x0;y1/. This results in the following relations, which will be
used in several of the proofs below: .x0;y1/ D .0; 0/, .x1;y2/ D .h; h/, and
.x2;y3/D .2h; 2h/. For example, see Figure 5.

4.1. The comparison circle Qz.s/. To begin, define the parameters  and R by


def
D

1

5

s
h�max

Ch

; (20a)

R
def
D 5

s
Chh

�max
; (20b)

where Ch is defined in (6), and note that R D h and, since 0< h� Ch�
�1
max,

0<  � 1
5
: (21)

Now consider the comparison circle Qz.s/D . Qx.s/; Qy.s//, which is defined by

Qx.s/DR sin.�0C s=R/�R sin�0; (22a)

Qy.s/D�R cos.�0C s=R/CR cos�0; (22b)

where �0 is a parameter defined by

�0 D
�

4
� sin�1 

p
2
: (23)

Note that Qz.s/D . Qx.s/; Qy.s// is a circle with radius R, center .�R sin�0;R cos�0/

and that s is arc length along the circle. In what follows .x; Qc.x// will sometimes be
used to denote the graph of Qz.s/ reparametrized as a function of x, just as .x;g.x//
is sometimes used to denote the graph of the interface z.s/.
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Figure 5. The interface g (shown in blue) is an arbitrary strictly monotonically increasing
function that enters the 3� 3 block Bij through its left edge at the point .x0;yl / with
y1 < yl < y2, passes through the center cell Cij , and exits Bij through the top of its
center column Si at the point .xr ;y3/, with x1 < xr < x2. By Corollary 2 in Section 4.2
if the maximum magnitude �max of the curvature �g of g satisfies �max � Chh�1, then
x2 � xr < QC

p
�maxh3=2, where the constant QC , defined in (32), is independent of h

and �max. The proof is based on forming a comparison function Qz.x/ D .x.s/; Qc.x.s//
(shown in red), which is a circle that passes through the points .x0;y1/ D .0; 0/ and
.x1;y2/D .h; h/, and proving the abscissa Qxr of the point . Qxr ; Qc. Qxr //D . Qxr ;y3/ where
Qc exits the 3� 3 block Bij satisfies x2 � Qxr < QC

p
�maxh3=2. One then uses Theorem 2

in Section 4.2, the “comparison circle theorem”, to prove the interface g must eventually
lie below the graph of Qc in the open interval . Qx0;x2/. This implies Qxr < xr and hence,
x2 � Qxr < x2 �xr < QC

p
�maxh3=2.

Lemma 1. Let

s1 D 2R sin�1 
p

2
; (24a)

s2 DR cos�1.cos�0� 2 /�R�0; (24b)

s3 DR sin�1.sin�0C 2 /�R�0: (24c)

Then

Qz.0/D .x0;y1/D .0; 0/; (25a)

Qz.s1/D .x1;y2/D .h; h/; (25b)

Qz.s2/D . Qx.s2/;y3/D . Qxr ; 2h/; (25c)

Qz.s3/D .x2; Qy.s3//D .2h; Qy.s3//: (25d)

The proof is left to the reader.



142 ELBRIDGE GERRY PUCKETT

Figure 6. To better visualize the upper and lower bounds on the arc between Qz.0/D .0; 0/
and Qz.s2/D . Qx.s2/; 2h/ in Lemma 4, this figure contains an example of the comparison
circle Qz.s/ in the 3� 3 block Bij D B1;1 centered on the cell Cij D C1;1.

Remarks. (a) In (25c) the variable Qxr D Qx.s2/ is the x-coordinate of the point
where the graph of the comparison circle Qz.s/D .x; Qc.x// exits the top of the
3� 3 block Bij . It plays the same role with respect to the function Qz.s/ as
the variable xr plays with respect to the interface z.s/ D .x;g.x//. In the
problem considered in this section only the case xr < x2 D 2h is relevant, for
otherwise the center column sum Si is exact. By Theorem 2 “The Comparison
Circle Theorem” below, the interface .x;g.x// must lie below the comparison
circle .x; Qc.x// for x � x1 D h and hence, xr < x2 implies Qxr < x2.

(b) Note also that Equation (25d) guarantees the comparison circle .x; Qc.x// must
extend all the way to the grid line x D x2, thereby ensuring the comparison
circle will lie above the interface .x;g.x// for all x2 Œx1;x2�. This is illustrated
in Figure 7.

(c) Finally, note the comparison circle Qz.s/ is a monotonically increasing function
of s for s in the interval Œ0; s3� and similarly, when written as a function of
x, .x; Qc.x// is a monotonically increasing function of x for x in the interval
Œx0;x2�D Œ0; 2h�.

The following three lemmas and one corollary concerning the quantities �0 and
s2 will be needed in the proof that x2� Qxr is O.

p
�maxh3=2/ and hence, x2�xr is

also O.
p
�maxh3=2/.
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Lemma 2. (cos�0� sin�0 D  ) Let �0 be defined as in (23):

�0 D
�

4
� sin�1 

p
2
:

Then

cos�0� sin�0 D : (26)

Proof. Define ˇ by

sinˇ def
D


p

2
so that

�0 D
�

4
� sin�1 

p
2
D
�

4
�ˇ:

Then (26) follows from writing �0 as �=4 � ˇ and applying the trigonometric
identities for the sine and cosine of the difference of two angles:

cos�0� sin�0 D
p

2 sinˇ D : �

Figure 7. This figure includes the row of cells that lie above the standard 3� 3 block of
cells Bij DB1;1 centered on Cij DC1;1D Œx1;x2�� Œy1;y2� in which the approximation
to the monotonically increasing interface g, shown in blue, will be constructed. The
difference between the center column sum Si and the exact volume (i.e., exact area) in
Bij under g.x/ is the region in the center column that lies under the graph of g and above
the line y D y3. By Theorem 2 the comparison circle Qc.x/, shown in red, bounds g.x/

from above for all x 2 Œ Qx0;x2�, and hence, allows one to bound the difference between Si

and the integral of g.x/�y0 over Œx1;x2�.
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Lemma 3. (cos�0C sin�0 D
p

2�  2) Let �0 be defined as in (23). Then

cos�0C sin�0 D
p

2�  2: (27)

Proof. As in the proof of the previous lemma let ˇ be defined by sinˇ D =
p

2.
Then (27) is a consequence of the trigonometric identities for the sine and cosine
of the difference of two angles, together with the trigonometric identity

cos.arcsin.x//D
p

1�x2;

as follows:

cos�0C sin�0 D
p

2 cosˇ D
p

2 cos
�

sin�1 
p

2

�
D
p

2�  2: �

Lemma 4. (s2 DO.h/) Let s2 be the parameter defined in (24b). Then s2 satisfies�
1C
p

2
�
h< s2 < 4h: (28)

Proof. Recall that s is arc length along the comparison circle Qz.s/D . Qx.s/; Qy.s//
starting at the point Qz.0/ D . Qx.0/; Qy.0// D .x0;y1/ D .0; 0/. The length of the
arc of the comparison circle from Qz.0/ to Qz.s2/ consists of two sections. The first
section is the arc from Qz.0/ to Qz.s1/D .x1;y2/D .h; h/ while the second section
is the arc from Qz.s1/ to Qz.s2/D . Qx.s2/;y3/D . Qxr ;y3/.

The length of the first section is bounded below by the length of the diagonal
joining .0; 0/ and .h; h/, which has length

p
2h, and is bounded above by the sum

of the lengths of the bottom and right edges of the cell that has .0; 0/ and .h; h/
as its opposite corners; i.e., the edge connecting .0; 0/D .x0;y1/ and the corner
.x1;y1/ and the edge connecting .x1;y1/ and the corner .h; h/D .x1;y2/. Since
both of these edges have length h, it follows that the portion of the arc joining Qz.0/
to Qz.s1/ is bounded above by 2h.

Since the point Qz.s2/ lies on the top edge of the 3� 3 block Bij and, since Qz.s/
is a monotonically increasing function of s for 0 � s � s3, Qx.s2/ D Qx2 must lie
between x1 and x2. It follows that a lower bound for the portion of the arc joining
Qz.s1/ to Qz.s2/ is the length of the side of the cell joining the point .h; h/D .x1;y2/

and the point .x1;y3/ on the top edge of Bij D B1;1. Since this edge has length
h, it follows that a lower bound for the length of the arc joining Qz.0/ to Qz.s2/, and
hence a lower bound for s2, is

p
2hC hD .

p
2C 1/h as shown in the inequality

on the left in (28).
One can find an upper bound for the portion of the arc joining Qz.s1/ to Qz.s2/

by using reasoning that is identical to that used to obtain the upper bound on the
portion of the arc joining Qz.0/ to Qz.s1/. This yields an upper bound of 2hC2hD 4h

for the entire length of the arc joining Qz.0/ to Qz.s2/, as shown in the inequality on
the right in (28). �
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The proof of the next theorem depends on the following corollary.

Corollary 1. (� is O. /) Let s2 be the parameter defined in (24b) and define � by

�
def
D

s2

R
: (29)

Then � satisfies �
1C
p

2
�
 < � < 4: (30)

Proof. One obtains the inequality in (30) by multiplying Equation (28) in Lemma 4
by R�1 and recalling that hDR . �

The following theorem is the key step in the proof that jx2�xr jDO
�p
�max h3=2

�
.

Theorem 1 (x2 � Qxr < QC
p
�max h3=2). The difference x2 � Qxr is bounded above

by
x2� Qxr < QC

p
�maxh3=2; (31)

where Qxr D Qx.s2/ is defined in (25c) and

QC
def
D

2
p

66

3 � 54

˚
736
p

2� 349
	
� 5:995421: (32)

Remark 1. (a) One of the consequences of replacing the Lemmas, Theorems, and
Corollaries in Sections 3.2–3.4 of [23] with those in Section 4 here is that the term
bounding the difference x2� Qxr in (31) above now depends linearly on

p
�max. As

a result, the term on the right-hand side of (12) and (52) depends linearly on �max,
which in turn leads to a linear dependence of the bounds in (13) and (58) on �max.
The analogous bounds in Theorems 15, 23, and 25 of [23] do not depend linearly
on �max.

(b) As mentioned in Remark 1(a), it is possible that Qxr � x2. In this case, by the
comparison circle theorem below, xr > x2 and hence, the center column sum Si

must be exact. Since the purpose of this section is to prove Si must be exact to
O .h/ if g satisfies (5)–(6) and Si is not exact, the case in which Si is exact, or
equivalently, Qxr � x2, is not of interest here.

Proof. Since the coordinate system has been arranged so the origin .0; 0/ coincides
with the point .x0;y1/ and hence, x2D 2hD y3 (e.g., see Figure 5), it follows that

x2 D 2hD Qy.s2/:

Thus

x2� Qxr D Qy.s2/� Qx.s2/

DR
˚
.cos�0� cos.�0C s2=R//� .� sin�0C sin.�0C s2=R//

	
: (33)
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Since RD 5
p

Chh=�max, it suffices to show that the quantity inside the curly braces
in (33) is O. 2/DO.h�max=Ch/. One can rewrite (33) as

x2� Qxr DR
˚
.cos�0C sin�0/� .cos.�0C �/C sin.�0C �//

	
DRA; (34)

where �D s2=R was defined in Corollary 1 above. Consider the quantity A obtained
by dividing (34) by R,

AD
˚
.cos�0C sin�0/� .cos.�0C �/C sin.�0C �//

	
: (35)

Now expand cos.�0C�/ and sin.�0C�/ in a Taylor series about cos�0 and sin�0,
respectively, to obtain

AD .cos�0C sin�0/� .cos.�0C �/C sin.�0C �//

D� .cos�0� sin�0/� C .cos�0C sin�0/
�2

2!

C .cos�0� sin�0/
�3

3!
� .cos�0C sin�0/

�4

4!

� .cos�0� sin�0/
�5

5!
C .cos�0C sin�0/

�6

6!

C .cos�0� sin�0/
�7

7!
� .cos�0C sin�0/

�8

8!
C � � � :

This expression for A can be rewritten as

AD�

�
.cos�0� sin�0/� .cos�0C sin�0/

�

2

�
�

C

�
.cos�0� sin�0/� .cos�0C sin�0/

�

4

�
�3

3!

�

�
.cos�0� sin�0/� .cos�0C sin�0/

�

6

�
�5

5!

C

�
.cos�0� sin�0/� .cos�0C sin�0/

�

8

�
�7

7!
C � � � : (36)

Using Lemmas 2 and 3 one can rewrite this series in terms of � and  as

AD�
�
 �

�

2

p
2�  2

�
� C

�
 �

�

4

p
2�  2

�
�3

3!

�

�
 �

�

6

p
2�  2

�
�5

5!
C

�
 �

�

8

p
2�  2

�
�7

7!
� � � � (37)

The first term, A1, in this series is O. 2/. To see this note that the upper bound
on � in (30) implies

A1 D

�
�

2

p
2�  2� 

�
� <

�
2
p

2� 1
�
4 2; (38)
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where the upper bound on
p

2�  2 follows from 0< � 1=5 in (21). Furthermore,
A1 > 0. To see this first note that since � is always positive the sign of A1 depends
only on the terms in parentheses on the right-hand side of the equal sign in (38).
Since � > .1C

p
2/ > 0 by (30),

A1

�
D

�
�

2

p
2�  2� 

�
>

�
.1C
p

2/

2

q
2� 1

25
� 1

�


D

�
7.1C

p
2/

10
� 1

�
 > 0;

(39)

where the lower bound on
p

2�  2 >
p

2� 25�1 also follows from (21).
In order to obtain an absolute upper bound on the entire series A in (37), and

thus on x2� Qxr DRA, begin by writing A in the form

ADA1CA2�B;

where

A2 D

�
 �

�

4

p
2�  2

�
�3

3!
;

and B is an alternating series of the form

B D b1� b2C b3� � � � ;

with the j -th term bj of this series given by

bj D

�
 �

�

2j C 4

p
2�  2

�
� .2jC3/

.2j C 3/!
for j D 1; 2; 3; : : : : (40)

Using the same techniques one uses to derive the upper and lower bounds on A1

in (38) and (39), respectively, one can derive the following upper and lower bounds
for A2,

�
1�
p

2
�.1Cp2/3

6
 4 <A2 D

�
 �

�

4

p
2�  2

�
�3

3!

<

�
1�

7.1C
p

2/

20

�
32

3
 4:

(41)

It is apparent from the bounds in (41) that A2 may be either positive or negative,
depending on the values of h and �max.

Now note that each of the terms bj defined in (40) of the series B are positive.
To see this, first note that, since � is positive by (30) , the sign of bj depends only
on the terms in parentheses immediately to the right of the equal sign in (40). For
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example,

b1 D

�
 �

�

6

p
2�  2

�
�5

5!
> 0;

since 0<  � 1=5, 0< � < 4 and
p

2�  2 <
p

2, and hence,�
 �

�

6

p
2�  2

�
>

�
1�

2

3

p
2

�
 > 0: (42)

Similarly, all of the subsequent terms in this series are also positive, since (42)
implies the terms in parentheses immediately to the right of the equal sign in the
definition of bj for j > 1 in (40) must also be positive,�

 �
�

2j C 4

p
2�  2

�
>

�
 �

�

6

p
2�  2

�
> 0 for all j D 2; 3; 4; : : : :

Furthermore, it is also the case that bj > bjC1 for all j D 1; 2; 3; : : :, since the terms
bj defined in (40) are (strictly) monotonically decreasing when viewed as a function
of j . (To see this recall  � 1=5 from (21) and hence, (30) implies � < 4 � 4=5.)
Finally, since bj > 0 and bj > bjC1 for all j D 1; 2; 3; : : : , it follows that the entire
series B is positive,

B D .b1� b2/C .b3� b4/C .b5� b6/C � � �> 0:

This leads to an absolute upper bound on the series A in (37),

ADA1CA2�B <A1CA2 <
�
2
p

2�1
�
4 2C

�
1�

7.1C
p

2/

20

�
32

3
 4: (43)

Finally, since  D
p

h�max=5
p

Ch, R D h and, by (21),  2 � 1=25, the upper
bound on x2� Qxr in (31) now follows from (34) and (43),

x2� Qxr DRA�R

��
2
p

2� 1
�
4 2C

�
1�

7.1C
p

2/

20

�
32

3
 4

�
�

p
33

5
p

2

�
8
p

2� 4C
8

3 � 25

�
13

5
�

7
p

2

5

��
p
�maxh3=2

D QC
p
�maxh3=2: �

4.2. The comparison circle theorem. Suppose the interface .x;g.x// satisfies h�

Ch�
�1
max and xr < x2 where .xr ;y3/ is the point at which g exits the 3� 3 block

of cells Bij . The following theorem states that once g.x/ < Qc.x/ for some x 2

.x0;x2/, then g.x/ must remain below Qc.x/ for all x 2 . Qx0;x2/, where . Qx0; Qy0/

denotes the point where g initially crosses below Qc as illustrated in Figures 5
and 7. An immediate consequence of this theorem is Qxr < xr . Consequently, if
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xr < x2, then Qxr < xr < x2 and hence, x2� xr < x2� Qxr . Since by Theorem 1,
x2 � Qxr < QC

p
�maxh3=2, it follows that x2 � xr < QC

p
�maxh3=2. This, together

with the bound on jg 0.x/j in (A.5a), is sufficient to ensure the error in the center
column sum Si associated with g is O.h/.

Theorem 2 (the comparison circle theorem). Let R as defined in (20b) be the radius
of the comparison circle (22) and let g 2C 2Œx0;x2� be a strictly monotonic function
that satisfies (5), where the constant Ch is defined in (6). Furthermore, assume the
interface g enters the 3�3 block of cells Bij across its left edge at the point .x0;yl/

with y1 < yl < y2, passes through the center cell Cij , and exits Bij through the top
of its center column at the point .xr ;y3/ with x1 < xr < x2. Let . Qx0; Qy0/ denote
the first point at which the graph of g crosses the graph of Qc as shown, for example,
in Figures 5 and 7. Then

g.x/ < Qc.x/ for all x 2 . Qx0;xr �: (44)

Proof. First note that, since the interface g satisfies (5) where Ch is defined by (6),
this ensures the maximum curvature �max of g is bounded above by the curvature
� Qc of the comparison circle,

�max <R�1
D � Qc :

The argument is as follows. Since the interface satisfies (5)–(6), it follows that
�max � Chh�1 and hence,

p
�max �

r
Ch

h
: (45)

Multiplying both sides of (45) by
p
�max yields

�max �

r
Ch�max

h
: (46)

Now, since .5Ch/
�1 D 3:3> 1, we can bound the right-hand side of (46) by

�max �

r
Ch�max

h
<

1

5Ch

r
Ch�max

h
�

1

5

r
�max

Chh
DR�1

D � Qc :

Thus, �max, the maximum magnitude of the curvature of g, is bounded above by
the curvature � Qc DR�1 of the comparison circle and therefore,

�g.x/� �max < �
Qc.x/DR�1 for all x 2 Œx0;x2�: (47)

The inequality in (44) is proven by contradiction. One begins by assuming

g.�/D Qc.�/ for some � 2 . Qx0;xr �, (48)
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and then showing that this implies the maximum curvature �max of g in . Qx0;xr /

must exceed � Qc , thereby contradicting (47). The argument is as follows. Let � denote
the first point in . Qx0;xr � that satisfies (48). Since g.x/ > Qc.x/ for x0 < x < Qx0 and
g.x/ < Qc.x/ for Qx0 < x < � , it follows that

g0. Qx0/ < Qc
0. Qx0/; (49)

However, since, by assumption, g.�/D Qc.�/ for some � > Qx0 (i.e., (48) holds), it
must be the case that eventually g0.x/� Qc 0.x/. Let x� 2 . Qx0; �/ be the first x such
that g0.x�/D Qc 0.x�/ so that

g0.x�/D g0. Qx0/C

Z x�

Qx0

g00.x/ dx D Qc0. Qx0/C

Z x�

Qx0

Qc 00.x/ dx D Qc 0.x�/:

By virtue of (49) this can only be true if g00.x/ > Qc 00.x/ on some subinterval of
. Qx0;x

�/. In particular,
g00.�/ > Qc 00.�/; (50)

for some � 2 . Qx0;x
�/.

Now recall the following three facts.

(1) By assumption g is strictly monotonic and hence, 0<g0.x/ for all x 2 .x0; Qxr �.

(2) For all x 2 . Qx0;x
�/, 0< g0.x/ < Qc 0.x/.

(3) For all x 2 Œx0;x2�, �g.x/D g00.x/
�p

1Cg0.x/2
��3 (e.g., see [29]).

Equation (50) together with items (1)-(3) above imply

�g.�/D
g00.�/�p

1Cg0.�/2
�3 > Qc00.�/�p

1C Qc0.�/2
�3 D � Qc.�/;

which contradicts (47). Therefore, g must be bounded above by the comparison
circle as claimed. �

Corollary 2 (x2 � xr < QC
p
�maxh3=2). Let g 2 C 2Œx0;x3� be a function that

satisfies the assumptions stated in Theorem 2. Then

x2�xr < QC
p
�maxh3=2; (51)

where QC is defined in (32).

Proof. By the Comparison Circle Theorem (Theorem 2) there exists a point Qx0 2

.x0;xr / such that
g.x/ < Qc.x/ for all x 2 . Qx0;xr /:

This implies Qxr < xr , and hence that x2 � xr < x2 � Qxr . Equation (51) follows
immediately from (31) in Theorem 1. �
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4.3. The column sum Si is exact to O.h/.

Theorem 3 (the column sum Si is exact to O.h/). Assume the interface g 2

C 2Œx0;x3� and g is a strictly monotonically increasing function that satisfies the
constraint in (5) with the constant Ch defined in (6). Furthermore, assume g enters
the 3� 3 block of cells Bij D B11 D Œx0;x3�� Œy0;y3� across its left edge at the
point .x0;yl/ with y1 < yl < y2, passes through the center cell Cij D C11 D

Œx1;x2�� Œy1;y2�, and exits Bij through the top of its center column at the point
.xr ;y3/ with x1 < xr < x2 as shown, for example, in Figure 7. Then the error
between the normalized integral of g over the center column and the column sum
Si is O.h/: ˇ̌̌̌

1

h2

Z x2

x1

.g.x/�y0/ dx�Si

ˇ̌̌̌
< C�maxh; (52)

where
C

def
D QC 2; (53)

and QC is defined in (32).

Proof. Since, by assumption,

min
Œx0;xr �

g.x/D yl > y1 > y0;

and the interface is a strictly monotonically increasing function of x on Œx0;x2�, it
follows that

Si D h�2

Z x2

x1

.minfg.x/;y3g�y0/ dx:

The error between the normalized volume (i.e., area) under the interface y D g.x/

in the center column and the center column sum Si is therefore

h�2

Z x2

x1

.g.x/�y0/ dx�Si D h�2

Z x2

xr

.g.x/�y3/ dx: (54)

An example is shown in Figure 7. Thus, it suffices to showˇ̌̌̌Z x2

xr

.g.x/�y3/ dx

ˇ̌̌̌
� C�maxh3: (55)

By (A.5a) jg 0.x/j< 2, which impliesˇ̌̌̌Z x2

xr

.g.x/�y3/ dx

ˇ̌̌̌
�

ˇ̌̌̌Z x2

xr

L.x/ dx

ˇ̌̌̌
; (56)

where L.x/ is the line with slope 2 that passes through the point xr . The region of
integration on the right hand side of (56) is a right triangle with corners .xr ;y3/,



152 ELBRIDGE GERRY PUCKETT

.x2;y3/, and .x2;y3C 2.x2�xr //, and hence the integral on the right-hand side
of (56) is the area of this triangle, namely .x2�xr /

2. Thus,ˇ̌̌̌Z x2

xr

.g.x/�y3/ dx

ˇ̌̌̌
�

ˇ̌̌̌Z x2

xr

L.x/ dx

ˇ̌̌̌
� .x2�xr /

2 < QC 2�maxih
3
D C�maxih

3;

(57)
where the bound .x2�xr /

2 < QC 2�maxh3 between the third and fourth terms in (57)
follows from Equation (51) in Corollary 2. Equation (52), and hence the theorem,
now follows immediately from (54) and (57). �

5. Second-order accuracy in the max norm

All of the results in Section 4 (“Second-order accuracy in the max norm”) of [23]
now hold provided the interface is a C 2 simple closed curve, the constraint in (5)–(6)
is satisfied, the constant CS in the statement of Theorem 23 in [23] is replaced by
the constant C defined in (53), and the term .50�max=3CCS / that appears in the
statement of Theorem 24 of [23] is replaced by Cm�max, where the constant Cm is
defined in (59) below.

The key theorem that has changed between the two papers is Theorem 15 of
[23]. Theorem 3 above is a stronger version of this theorem. Theorem 3 ensures
that in cases such as the one shown in Figure 3, if the interface is C 2 and the
constraint in (5)–(6) is satisfied, then in some orientation of the 3 � 3 block of
cells Bij centered on the cell Cij in which one wishes to reconstruct the interface,
there is a parametrization of the interface of the form y D g.x/ or x DG.y/, such
that the center column sum Si in the new orientation of the 3� 3 block is exact
to O.h/. This result provides the basis for the main result of this article, namely
Theorem 4 below, which is a stronger version of Theorem 24, the main result of
[23]. As has been the case throughout this article, in the statement of Theorem 4
below the interface Qz.s/ is written in the form yD g.x/ with material 1 lying below
the graph of g, with the understanding the theorem also holds in those cases in
which one must instead express the interface in the form x DG.y/ with material 1
lying below the graph of G.

Theorem 4. Assume the interface g 2 C 2Œxi�1;xiC2� and the grid size h and the
maximum magnitude of the curvature �max of the interface in the 3�3 block of cells
Bij centered on the cell Cij in which one wishes to reconstruct the interface satisfy

h� Ch�
�1
max D

2
33
��1

max: (5)

Then there exists ˛; ˇ D 1; 0;�1 with ˛ ¤ ˇ such that the column sums SiC˛ and
SiCˇ in Bij are either exact or exact to O.h/. Furthermore, let

Qgij .x/Dmij xC bij
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be a piecewise linear approximation to g.x/ for x 2 Œxi ;xiC1� such that g.x/ and
Qgij .x/ have the same volume fraction in the center cell

ƒij .g/Dƒij . Qg/ and mij D
.SiC˛ �SiCˇ/

.˛�ˇ/
:

Then Qgij .x/ is a pointwise, second-order accurate approximation to g.x/ in the
interval Œxi ;xiC1�,ˇ̌

g.x/� Qgij .x/
ˇ̌
�

25
12
�maxh2

CC�maxh2
D Cm�maxh2 for all x 2 Œxi ;xiC1�;

(58)
where

Cm
def
D
˚

25
12
CC

	
; (59)

and the constant C is defined in (53).

Proof. The proof of this theorem is identical to the proof of Theorem 24 in [23]
after one replaces the constant CS defined in equation (89) of [23] with C �max,
where C is defined in (53) above. �

6. Conclusions

This article contains a proof of the following result. Suppose one is given a square
grid with cells of side h covering a closed and bounded rectangle � � R2 and a
C 2 simple closed curve z.s/ in �. If

h� Ch.�max/
�1
D

2
33
.�max/

�1; (5)

where �max is the maximum magnitude of the curvature �.s/ of the interface z in
�. Then in every cell Cij D Œxi ;xiC1�� Œyj ;yjC1� that contains a portion of the
interface there exists a piecewise linear function Qgij .x/ D mij x C bij that is a
second-order accurate approximation to the portion of the interface y D g.x/ that
lies in Cij ,

jg.x/� Qgij .x/j � Cm�maxh2 for all x 2 Œxi ;xiC1�;

where Cm is a constant, defined in (59) above, which is independent of h and �max.
For convenience, the interface z.s/ has been written here as a function y D g.x/

of the independent variable x with it being understood that in some cells it may
be necessary to express the interface as a function x D G.y/ of the independent
variable y. Theorem A.1 in the Appendix ensures if h satisfies the constraint in
(5)–(6), then the interface can be written as a single-valued function of at least one
of the coordinate variables x or y in every 3� 3 block of cells centered on every
cell Cij that contains a portion of the interface.
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In an earlier paper [23] the author proved a similar result, but with a constraint on
the cell size h that was more restrictive than the one in (5)–(6). In order to obtain the
less restrictive constraint on h in (5)–(6) Sections 3.2–3.4 of [23] required extensive
modification. These modifications constitute Section 4 of the present paper.

The algorithm described in [24] is an example of a volume-of-fluid interface
reconstruction algorithm that satisfies conditions (I)–(V) on page 125 of this article
and hence, by Theorem 4 above, produces a pointwise second-order accurate
approximation to the interface z.s/.

Future work in this area should include the analysis of fingers and other regions
of large curvature in both stationary and moving interfaces in an effort to determine
conditions such as (5)–(6) that will ensure all filaments and similar regions are
accurately resolved on grids that satisfy these conditions. Future work should
also include proving the volume-of-fluid interface reconstruction algorithm cou-
pled to a volume-of-fluid advection algorithm produces a second-order accurate
approximation to the solutions of the advection equation.

Appendix: Considerations that affect the value of Ch

Definition. Let a> 2 be a real-valued parameter and define C h Œa� by

C hŒa�
def
D

p
a�
p

2

4
p

2
p

a� 1
: (A.1)

The following theorem is a generalization of Theorem 6 of [23].

Theorem A.1. For sL � s � sR with z.sL/D z.sR/ let s be arclength along the
two times continuously differentiable simple closed curve z.s/ in �. Given some
s0 2 ŒsL; sR � such that

Py2.s0/�
1
2
� Px2.s0/; (A.2)

suppose one wants to reconstruct the interface in a neighborhood of the point
z.s0/D .x.s0/;y.s0//. Let a> 2 be a real-valued parameter as in (A.1) above and
let sl � sL be the greatest number less than s0 and sr � sR be the smallest number
greater than s0 such that

Px2.sl/D
1

a
D Px2.sr /; (A.3)

so a�1 � Px2.s/� 1 for all s 2 Œsl ; sr �. Let x0 D x.s0/ and let

hmax
def
D C hŒa��

�1
max (A.4)

where C hŒa� is defined in (A.1) above. Then one can represent the interface as a
single-valued function y D g.x/ of x on the interval

Œxl ;xr �D Œx0� 2hmax;x0C 2hmax�:
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In addition, for all x 2 Œxl ;xr �,

max
x2Œxl ;xr �

jg 0.x/j �
p

a� 1; (A.5a)

max
x2Œxl ;xr �

jg 00.x/j �
�p

a
�3
�max: (A.5b)

Furthermore, if the roles of Px and Py in (A.2) and (A.3) are reversed, then one can
represent the interface as a single-valued function x D G.y/ of y on the interval
Œyl ;yr � D Œy0 � 2hmax;y0C 2hmax� and the bounds in (A.5) hold on the interval
Œyl ;yr � with the function g.x/ replaced by G.y/.

Proof. Let a> 2 be the parameter in the definition of C h Œa� in (A.1) above. The
proof of this theorem is identical to the proof of Lemmas 3–5 and Theorem 6 in
[23] after one replaces the constants 1=4 and 3=4 in equation (23) in Lemma 3
of [23] with 1=a and .a� 1/=a, respectively, and makes similar substitutions in
Lemmas 4–5 and Theorem 6 of the same. �

Remarks. (1) Theorem 6 of [23] is the special case of Theorem A.1 with aD 4.

(2) If necessary, one can periodically extend the interval ŒxL;xR �
def
D Œx.sL/;x.sR/�

to the interval ŒxL�D;xRCD�, where D D xR �xL, with

y.s˙D/D y.s/ for all s 2 ŒsL; sR �;

in order to ensure one can find sl and sr with sL�D� sl � s0 and s0� s� sRCD

such that (A.3) holds.

(3) In the statement and proof of Lemmas 3–5 and Theorem 6 of [23] the value of
a is aD 4, which yields a value for Ch, which is denoted QCh in this article in order
to avoid confusion, of

QCh
def
D C hŒ4�D

p
4�
p

2

4
p

2
p

4� 1
D

p
2� 1

4
p

3
: (A.6)

(4) The conclusions of Theorem A.1 remain valid if the assumption the interface
z.s/ is a simple closed curve is replaced by the assumption z.sL/ and z.sR/ lie
on the boundary @� of the computational domain �, subject to the assumptions
stated in the second paragraph of (5) on page 130. In addition, one must modify
the proof of Lemma 5 in [23], since in this case there may not be a point sl such
that Px2.sl/D 1=a or sr such that Px2.sr /D 1=a; i.e., (A.3), which is the analog of
equation (37) in [23], may not hold. See the comments concerning Lemma 4 in
item (2) on pages 109–110 of [23] for the reason, if z.sL/ and z.sR/ lie on @�,
then this does not change the conclusions of Theorem A.1.
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(5) If one chooses aD 4:053301, then the constant C hŒa� in (A.1) becomes

Ch
def
D C hŒa�D

p
a�
p

2

4
p

2
p

a� 1
D

2

33
;

and the bound on the first derivative of the interface in (A.5a) becomes

max
x2Œxl ;xr �

jg 0.x/j �
p

a� 1�
p

3:053301< 2: (A.7)

The value of
p

a� 1 in (A.7) is a deliberate overestimate, the purpose of which is
to simplify the bound on the expression in (56) that appears on the right-hand side
of (57), and subsequent expressions that depend on the bound in (52).

(6) Theorem A.1 ensures h is small enough that the interface can always be written
as a single-valued function of one of the independent variables x or y in any 3� 3

block centered on a cell containing a portion of the interface. This places a upper
bound on Ch through (A.3) and (A.4). In addition, Ch is constrained both from
above and below by the need to show inequalities of the form

�max �
g 00.x/�p

a
�3 > Ch

h
; (A.8)

hold in Equations (61), (69), and (78) in the proofs of Lemmas 11–13 of [23],
respectively, where (A.5b) has been used to bound �max from below by g 00=.

p
a/3.

Since in each of Equations (61), (69), and (78) of [23] the bound on g 00 is of the
form

g 00.x/ >
zM

h
for all x 2 Œxi�1;xiC2�; (A.9)

equations (A.1), (A.8), and (A.9) lead to the requirement that a > 2 must satisfy
the following inequality,

4
p

2 zM
p

a� 1�
�p

a
�4
�
p

2
�p

a
�3
: (A.10)

A careful study of this inequality will reveal the range of permissible values for a

and hence, for Ch D C h Œa�, is quite narrow.
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