
Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

Flexible and scalable particle-in-cell methods with adaptive1

mesh refinement for geodynamic computations2

Rene Gassmöller1, Harsha Lokavarapu1, Eric Heien2, Elbridge Gerry Puckett3 and3

Wolfgang Bangerth4
4

1Department of Earth and Physical Sciences, University of California, Davis5

2Computational Infrastructure for Geodynamics, University of California, Davis6

3Department of Mathematics, University of California, Davis7

4Department of Mathematics, Colorado State University, Fort Collins8

Key Points:9

• Particle-in-cell methods require new algorithms when used with finite element cal-10

culations on dynamically partitioned, adaptively refined, unstructured meshes.11

• We present approaches for particle generation, sorting, and hybrid load balancing in12

hierarchically refined finite celement computations.13

• We show scalability and applicability of the developed methods for problems in14

computational geodynamics.15

Corresponding author: Rene Gassmöller, rene.gassmoeller@mailbox.org

–1–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

Abstract16

Particle-in-cell (PIC) methods couple mesh-based methods for the solution of continuum17

mechanics problems with the ability to advect and evolve properties on particles. PIC18

methods have a long history and numerous applications in geodynamic modeling. How-19

ever, they are historically either implemented in sequential codes, or in parallel codes with20

structured, statically partitioned meshes. Yet, today’s codes increasingly use adaptive mesh21

refinement (AMR) of unstructured coarse meshes, dynamic repartitioning, and scale to22

thousands of processors. Optimally balancing the work per processor for a PIC method in23

these environments is a difficult problem, and many existing implementations are not suffi-24

cient for this task. Thus, there is a need to revisit these algorithms for future applications.25

Here we describe challenges and solutions to implement PIC methods in the context26

of large-scale parallel geodynamic modeling codes that use dynamically changing meshes.27

We also provide guidance for how to address bottlenecks that impede the efficient imple-28

mentation of these algorithms and demonstrate with numerical tests that our algorithms29

can be implemented with optimal complexity and that they are suitable for large-scale,30

practical applications. We provide a reference implementation in ASPECT (Advanced31

Solver for Problems in Earth’s convection), an open source code for geodynamic model-32

ing built on the deal.II finite element library.33

1 Introduction34

Most methodologies to numerically solve flow problems are based on a continuum35

description in the form of partial differential equations, and include the finite element, fi-36

nite volume, and finite difference methods. On the other hand, it is often desirable to cou-37

ple these methods with discrete, “particle” approaches for a number of applications. These38

include, for example, visualization of flows, tracking interfaces and origins, or tracking the39

history of material. Use cases and discussions of computational methods can be found as40

far back as Harlow [1962] and are often referred to as particle-in-cell (PIC) methods.41

Different implementations of such methods can be found in the geodynamic litera-42

ture [Poliakov and Podladchikov, 1992; Moresi et al., 2003; Gerya and Yuen, 2003; McNa-43

mara and Zhong, 2004; Popov and Sobolev, 2008; Thielmann et al., 2014], but almost all44

of these methods were developed for either structured meshes and/or sequential computa-45

tions. However, over the past two decades adaptive finite element methods have demon-46

–2–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

strated that they are vastly more accurate than computations on uniformly refined meshes47

[Carey, 1997; Ainsworth and Oden, 2000; Bangerth and Rannacher, 2003; Kronbichler48

et al., 2012; Heister et al., 2017], and have been successfully combined with PIC meth-49

ods in other fields [Wallstedt and Guilkey, 2010; Adams et al., 2015; Balay et al., 2018;50

Almgren et al., 2013]. While many parts of existing particle-in-cell algorithms can still51

be used in this context, a number of new algorithmic challenges arise. The present con-52

tribution is therefore primarily an assessment of possible algorithms when implementing53

particle methods for computational geodynamics in the following two situations:54

1. Unstructured, hierarchically refined quad-/octree, 2D/3D meshes that change dy-55

namically and potentially utilize higher order polynomial mappings to represent56

curved geometries;57

2. Large parallel computations that run on thousands of cores, using tens of millions58

of cells, and billions of particles.59

Specifically, we will discuss the following components, along with an assessment of60

their practical performance:61

1. Parallel generation of particles in unstructured meshes;62

2. Treatment of particles as they cross cell and processor boundaries;63

3. Treatment of particles during mesh refinement and coarsening, including appropri-64

ate load balancing.65

Other components in our reference implementation use well understood algorithms:66

We use standard C++-containers as data structures; integrate the particle trajectories us-67

ing Forward-Euler, Runge-Kutta 2 or 4 integration schemes with higher order accuracy68

in space and time; store variable scalar, vector, or tensor-valued properties on particles;69

and transfer information between particles and mesh using simple arithmetic or harmonic70

cell averaging schemes, or least-squares projections. Massively parallel output capability is71

provided by the VTK [Schroeder et al., 2006] and HDF5 [Folk et al., 1999] data formats.72

As our manuscript is focussed on the particular difficulties of combining particle methods73

with adaptive finite element computations, we do not discuss traditional difficulties of par-74

ticle methods, such as memory locality or particle clustering, as these have already been75

addressed elsewhere [Mellor-Crummey et al., 2001; Wang et al., 2015].76

–3–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

We provide a reference implementation of the presented methods in the geodynamic77

modeling code ASPECT [Kronbichler et al., 2012; Bangerth et al., 2017a; Heister et al.,78

2017], and include most of the discipline-independent methods in the deal.II finite ele-79

ment library [Bangerth et al., 2007; Arndt et al., 2017], thus making them available for a80

variety of applications and scientific disciplines. Given that our implementation is based81

on deal.II, we will henceforth only consider quadrilateral and hexahedral, hierarchically82

refined meshes, which are balanced by a 2:1 refinement ratio between neighboring cells.83

Exploiting these assumptions allows us to optimize our algorithms, but we believe that84

generalizations to other situations are often straightforward.85

2 Computational methods86

2.1 Parallel particle generation87

The first step in using particles in mesh-based solvers is their creation on all in-88

volved processors, and depending on their purpose, initial particle distributions may vary89

widely. Two broad classes of initial distributions come to mind:90

Random particle positions. Randomly chosen particle locations are often used in91

cases where particles represent the values of a field; e.g., the origin and movement of a92

specific type of material. In these cases, one is not interested in prescribing exact initial93

particle locations, and randomly chosen locations are acceptable. The probability distri-94

bution, ρ(x), from which locations are drawn is often chosen as uniform over the domain.95

Alternatively, one can use a higher particle density in regions of interest, for example to96

better resolve steep gradients, which can be interpreted as equivalent to AMR in mesh-97

based methods.98

We propose the following algorithm, running on each processor:99

1. Compute and store local cell weights as integral of ρ(x) over each local cell.100

2. Compute the global sum of the local cell weight integrals.101

3. Compute the local number of particles as ratio between local and global weight102

integral times global number of particles.103

4. Compute the local starting particle index based on the partial sum of local number104

of particles of all processes with lower rank.105

–4–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

5. Either: Compute the number of particles per cell by randomly drawing cells K ac-106

cording to their weight repeatedly and tallying up how many times each cell was107

selected.108

6. Or: Compute the number of particles per cell according to their share of the local109

integral of ρ(x)110

7. Generate local particles in each cell K by drawing random locations inside its axes-111

parallel bounding box BK until we find a position in K (see Supplementary Text S1112

for details).113

Apart from the two global reductions to determine the global weight and the local114

start index, all of the operations above are local to each processor. Thus, the overall run115

time for generating particles is proportional to the number of particles on the process with116

the largest number of particles, i.e., of optimal complexity in the global number of par-117

ticles and, if the number of particles per process is balanced, also in the number of pro-118

cesses. However, this balancing is often not the case in practice (see Section 2.3).119

We note that our algorithm yields a number of particles on each process that is de-120

terministic. Consequently, the distribution of particles is not entirely random. However, in121

practice we find this does not matter for sufficiently many particles.122

Prescribed particle locations An alternative to the random arrangements of parti-123

cles is to exactly prescribe initial locations, either algorithmically (e.g., a regular grid), or124

by reading locations from a file. Surprisingly, for distributed unstructured meshes this case125

is more computationally expensive than randomly generated particle locations.126

Let us assume that the initial positions of all particles are given in an array {xk},127

k = 1 . . . N . Then for each particle one has to find its surrounding cell, which in the worst128

case, is of complexity global number of particles times local number of cells. This is be-129

cause, for general unstructured meshes, we can not predict whether a given particle’s lo-130

cation lies inside the locally owned cells without searching through all cells. This limits131

the usefulness of the algorithm to moderate numbers of particles. However, the algorithm132

can be accelerated by checking whether a particle’s location lies inside the bounding box133

of the locally owned cells, before checking each cell.134

On hierarchically refined meshes, one can alternatively find the cell K by finding135

the coarse level cell in which it is located, and then recursively searching through its chil-136

–5–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

dren. This reduces the complexity to the global number of particles times the logarithm137

of the local number of cells. However, it only works if child cells occupy the same vol-138

ume as their parent cell; this condition is often not met when using nonlinear polynomial139

mappings to represent curved geometries.140

In the paragraphs above we assume that the particle positions are known in the141

global coordinate system, and we have to search for the surrounding cell. If however, the142

particle coordinates are known in the local cell coordinate system (e.g. the center), then143

the algorithm is much simpler. A loop over all cells and all local particle coordinates that144

are then mapped into the real space [as used in Puckett et al., 2017] will generate the par-145

ticles in the optimal order, and will be cheap.146

2.2 Transport between cells and subdomains147

PIC codes in geodynamics contain a time integration in which one computes a ve-148

locity field (usually on some grid), and then moves the particles with the flow field. To149

parallelize these computations the grid is usually fully distributed, which means each pro-150

cess only knows about local cells and one layer of “ghost” cells around the local domain.151

Thus, after each particle movement the new particle location is either inside its original152

cell K or in a different cell K ′. To be able to transfer data between particle and grid we153

then need to find its new cell that may be owned by the same processor or a different154

one. The challenge, in the context of adaptive, distributed meshes lies in constructing al-155

gorithms that can efficiently search for the new surrounding cells of particles, as well as156

potentially transfer the particle to a different processor. In practice, communication pat-157

terns that cover the exchange of particles between processes that own adjacent parts of the158

mesh are often sufficient to implement, i.e., using point-to-point messages. In particular,159

this is possible if the (ODE) time step is chosen such that the CFL number is less than or160

equal to one, because then particles travel no more than one cell diameter in each step.161

Following these arguments our reference implementation employs the following algorithm,162

executed for each particle that is not in its old cell:163

1. Search for the locally known current cell K ′.164

2. If K ′ is owned by the current process, mark the particle as being in K ′.165

3. If K ′ is in a ghost cell owned by the process p, mark the particle for transmission166

to p.167

–6–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

K

K'1

K'2

p

p'

K

1 2
3

K

a
bK'

2 1
3

bK'

bK'

K'3

v
cK'

cK'

cK'

Figure 1. In 2:1 balanced quadtree meshes finding the new cell K ′ for a particle that has left its old cell K

is a nontrivial problem. Limiting the search to the cells that contain the vertex of the old cell that is closest

to the new particle position (left panel) reduces the search cost. Note that sorting neighbor cells according to

angle between a and bK′ (right panel, see main text for definitions) correctly predicts the search order (red

numbers) in most cases, while a simpler criterion like particle–cell–center distance mispredicts the new cell

(center panel).

186

187

188

189

190

191

4. If K ′ cannot be found, mark particle for deletion.168

After the algorithm has finished, (1) all particles marked for transmission are com-169

municated to their neighbors that now own them, (2) all particles that have been lost or170

communicated are removed from local storage, and (3) all particles with a new cell as-171

sociation (local or communicated) are reinserted into local storage. This bulk handling is172

advantageous, since particles of the same cell tend to move into the same neighbor cells,173

and a collective insertion reduces copies and reallocation of memory.174

The vast majority of particles remain in the current cell, end up in a new local cell175

(option 2), or a cell owned by another process (option 3). A few cases, however, do not176

fall in these categories. First, the ODE integrator error during particle movement can177

carry a particle over a processor boundary, and out of the one-cell ghost layer. Second,178

the integrator error can transport a particle across a geometry boundary, after which it179

is not contained in any cell. For a benchmark model setup (see Supplementary Dataset180

S1) we have found that only a negligible fraction of particles is lost because of these two181

mechanisms. As expected, an explicit Euler scheme loses significantly more particles than182

the RK2 methods, while decreasing the time step significantly reduces the loss. Given the183

small overall loss and added computational expense to reduce the timestep, dropping parti-184

cles that fall out of bounds (option 4) seems like a reasonable approach to us.185

–7–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

The algorithm above requires finding the cell a particle is in now (Step 1). As dis-192

cussed in Section 2.1, without additional information this requires O(Nlocal cells) operations,193

all of which are expensive. Furthermore, because many of the local particles cross to a194

different cell, this step is not of optimal – i.e., O(N) for N particles – complexity. While195

the tree structure of the mesh makes it possible to implement global tree-search algorithms196

with logarithmic complexity in the number of cells [Isaac et al., 2015], we found that the197

algorithm spends the majority of its works on determining whether a particle is inside a198

cell K ′, i.e., inverting the mapping of K ′ for the position of the particle. Since in our ap-199

plication the vast majority of particles only cross from one cell to its neighbors, we can200

accelerate the global algorithms significantly by first searching all neighbor cells in an or-201

der that makes it likely that we find the correct one early. Only the very small fraction202

that does not end up in a neighbor then requires an expensive search over all cells. We203

note that for problems without this local property other algorithms might be more appro-204

priate [e.g. Mirzadeh et al., 2016; Burstedde, 2018].205

Following some experimentation, we found that the following strategy to pre-sort lo-206

cal neighbor cells works best (see also Fig. 1): Let p′ be the particle’s current position,207

K the known previous cell of the particle, v be the vertex of K closest to p′, and cK′ be208

the center of the potential new cell K ′, which is a vertex neighbor of K adjacent to vertex209

v (see Fig. 1). Let a = p′ − v be the normalized vector from the closest vertex of K to210

the particle, and bK′ = cK′ − v be the normalized vector from the closest vertex to the211

center of cell K ′. Then we search through all K ′ in the order of descending scalar product212

a · bK′ (Fig. 1, right panel). In other words, cells with a center in the direction of the par-213

ticle movement are checked first. This algorithm is somewhat similar to the one proposed214

by [Capodaglio and Aulisa, 2017], with the difference that we know our particle is in one215

of the neighbors of the old cell, and we therefore search through a sorted list of neighbor216

cells, instead of along a computed search path through multiple cells. While there are cor-217

ner cases in which our algorithm fails to find the new cell in the first try, in practice more218

than 98% of the particles moving to a new cell in the models discussed in Section 3 are219

found immediately. The rest of the particles is found in at most 2 (2D) or 4 (3D) searches,220

except if the particle left the immediate neighbors of the old cell as discussed above. Sim-221

pler criteria – like searching by distance between particle and cell center (Fig. 1, middle222

panel) – fail more often, in particular for adaptively refined neighbors.223

–8–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

If particles crossed a process boundary they are communicated to neighboring pro-224

cesses in two steps. First, two integers are exchanged between every neighbor and the225

current process, representing the number of particles that will be sent and received. In a226

second step every process transmits the serialized particle data and receives its respective227

data from its neighbors. This allows us to implement all communications as non-blocking228

point-to-point MPI transfers, only generating O(1) transmissions and O(Nlocal particles) data229

per process. Since we already determined which ghost cell contains this particle on the230

old process, we also transmit this information. Because ghost cells are guaranteed to ex-231

ist on the owning process we thus avoid another search for the enclosing cell on the new232

process.233

2.3 Handling adaptively refined, dynamically changing meshes234

In the current context, adaptively refined, dynamically changing meshes present two235

particular challenges.236

Mesh refinement and repartitioning Typically, refinement and coarsening happens237

in two steps: First, cells are refined or coarsened separately on each process, and particles238

are distributed to the children of their previous cell (upon refinement), or are merged to239

the parent of their previous cell (upon coarsening). The second step of mesh adaptation240

consists of redistributing the resulting mesh to achieve an efficient parallel load distribu-241

tion [Burstedde et al., 2011; Bangerth et al., 2011]. To keep this process simple we append242

the serialized particle data to other data already attached to a cell (such as vertex locations243

and values of field based solution variables), and transmit all data at the same time. We244

can therefore utilize existing software for parallel mesh handling [Burstedde et al., 2011],245

which uses well-optimized bulk communication patterns, and thereby avoid sending parti-246

cles individually or having to re-join particles with their cells.247

Load balancing The mesh repartitioning discussed in the previous paragraph is de-248

signed to redistribute work equally among all available processes. For mesh-based meth-249

ods, this typically means equilibrating the number of cells each process “owns”. On the250

other hand, in the context of PIC methods for adaptive meshes, the number of particles251

per cell frequently ranges from zero to a few hundred. Consequently, the described pro-252

cess leads to unbalanced workloads during particle-related parts of the code. Conversely,253

rebalancing the mesh to equilibrate the number of particles leaves the mesh-based algo-254

–9–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

rithms with unbalanced workloads. Both situations reduce the overall parallel efficiency of255

the code.256

The only approach to restore perfect scalability is to partition cells differently for the257

mesh-based and particle-based parts of the code. On the other hand, one can not avoid258

transporting all mesh and particle data during these rebalancing steps, because each phase259

of the algorithm might require all data from the other. Consequently, the amount of data260

that has to be transported twice per time step is significant.261

In practice, some level of imbalance can often be tolerated. One can work with the262

following compromise solutions:263

1. Repartition the mesh according to the combined particle and cell load (“Balanced264

repartitioning”). Instead of estimating the workload of each cell during the rebal-265

ancing step as constant (pure mesh-based methods) or proportional to the number266

of particles in a cell (pure particle-based methods), one can estimate it as an appro-267

priately weighted sum of the two. The resulting mesh is optimal for neither of the268

two phases, but is better balanced than either of the extremes (see Section 3.2 and269

Supporting Figure S1).270

2. Ignore imbalance. As long as the number of particles is small one may simply ig-271

nore the imbalance. A typical case is when particles are only used to output in-272

formation for a few specific points of interest, e.g. an accumulated strain profile273

through a subducting slab.274

3. Adjust particle density to mesh during particle generation. The particle density can275

be chosen to follow the mesh resolution, if the region of highest mesh resolution276

is known in advance. This is most useful for tracking pre-existing interfaces. The277

higher particle density close to the interface then not only increases the accuracy in278

regions of interest, but it also improves parallel efficiency and scalability.279

4. Adjust mesh to particle density. Instead of prescribing the particle density following280

the mesh, the mesh resolution can also be adjusted to the particle distribution. As281

in the previous alternative, the alignment of mesh and particle density yields better282

parallel efficiency and scaling.283

5. Adjust particle density to mesh by particle population management. In cases of a pri-284

ori unknown regions of high mesh density it can be necessary to manage the par-285

ticle density actively during the model run. This includes removing particles from286

–10–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

regions with high particle density or adding particles in regions of low density. If287

done appropriately, the result will be a mesh where the average number of particles288

per cell is managed so that it remains approximately constant.289

While the last three approaches lead to better scalability, they may of course not suit290

the problem one originally wanted to solve. On the other hand, generating additional parti-291

cles upon refinement of a cell, and thinning out particles upon coarsening, is a common292

strategy in existing codes [Popov and Sobolev, 2008; Leng and Zhong, 2011]. We also293

note that while load balancing is particularly important for dynamically changing adap-294

tive meshes, it is also beneficial for uniform meshes if the particle distribution happens to295

be non-uniform.296

3 Scalability297

To verify our claims of performance and scalability, we show that our algorithms298

scale well to typical model sizes in computational geodynamics. Technical information299

about the used hardware, and the definition of the timing events is provided in Supple-300

mentary Text S2. Additional benchmarks confirming the correctness of the implemented301

advection schemes is provided in Supporting Text S3, and Figure S1.302

3.1 Uniform meshes303

We first show scalability using a two-dimensional benchmark case with a static and311

uniformly refined mesh. We employ a circular-flow setup in a spherical shell, with no flow312

across the boundary. Particles are distributed randomly with uniform density (see Fig. 2,313

top left), and are advected using a RK2 integration scheme.314

The top row of Fig. 2 shows excellent weak and strong scaling over at least three or-315

ders of magnitude of model size. For a fixed problem size (strong scaling), we use a mesh316

with 786, 432 = 12 ·2562 cells and 1.536 ·107 particles. Increasing the number of processes317

from 12 to 12,288 shows an almost perfect decrease in wall time for all operations, despite318

the rather small problem each process has to deal with for large numbers of processes.319

Note that the scaling of the “Exchange particles” event is likely specific to the used net-320

work topology and probably shows the transition from a large-throughput large-latency321

mode of transfer to a small message-size small-latency transfer.322

–11–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

0.001

0.01

0.1

1

10

100

1000

10000

10 100 1000 10000

W
al

lc
lo

ck
 ti

m
e 

[s
] /

 E
xe

cu
tio

n

#Cores

Uniform grid - Strong scaling

Generate particles
Advect particles

Search for new cell
Exchange particles

Optimal scaling

0.001

0.01

0.1

1

10

100

10 100 1000 10000

W
al

lc
lo

ck
 ti

m
e 

[s
] /

 E
xe

cu
tio

n

#Cores

Uniform grid - Weak scaling

Generate particles
Advect particles

Search for new cell
Exchange particles

0.001

0.01

0.1

1

10 100 1000 10000

W
al

lc
lo

ck
 ti

m
e 

[s
] /

 E
xe

cu
tio

n

#Cores

Adaptive grid - Strong scaling

0.001

0.01

0.1

1

10 100 1000 10000

W
al

lc
lo

ck
 ti

m
e 

[s
] /

 E
xe

cu
tio

n

#Cores

Adaptive grid - Weak scaling

Figure 2. Scaling of algorithms. Top row: Results for a uniformly refined mesh. Bottom row: Results

for an adaptively refined mesh. Left column: Model geometry and initial parallel partition. Center column:

Strong scaling for a constant number of cells and particles. Top right: Weak scaling for a uniform mesh with

a constant number of cells and particles per process. Bottom right: Weak scaling for an adaptive mesh with

a fixed (though increasingly unbalanced) number of cells and particles per process. The dashed models use

the common cell load balancing, while the solid models use balanced repartitioning as described in Subsec-

tion 2.3.

304

305

306

307

308

309

310

Keeping the number of cells and particles per core fixed and increasing the problem323

size and number of processes accordingly (weak scaling, Fig. 2, top right panel), the wall-324

clock time stays constant between 6 and 6,144 processes. In this test each process owns325

512 cells and 1.0 · 104 particles. Each refinement step leads to four times as many cells,326

and consequently processes. 6,144 cores was the last multiple to which we had access for327

timing purposes. Results again show excellent scalability, even to large problem sizes, in328

this case approximately 3 million cells and 61 million particles.329

3.2 Adaptively refined meshes330

Discussing scalability for adaptive meshes is more complicated because increasing331

level of refinement does not create a predictable number of cells. We apply the same332

particle distribution and integration as for the uniform mesh case, but use a model setup333

based on the benchmarks presented in [van Keken et al., 1997], extended to three spatial334

–12–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

dimensions. Specifically, we use a rectangular domain [0, 0.9142] × [0, 1] × [0, 1] that con-335

tains a sharp non-horizontal interface separating a less dense lower layer from a denser336

upper layer. The shape of the interface then leads to a Rayleigh-Taylor instability. For the337

strong scaling tests, we create an adaptive mesh of at most 2563 cells, retaining fine cells338

only in the vicinity of the interface. This mesh consists of approximately 1,000,000 cells,339

and we generate approximately 30 million, uniformly distributed particles, and run this340

setup on increasing numbers of processors.341

The results in Fig. 2 show that strong scaling for the adaptive grid case is nearly as342

good as for the uniform grid case, decreasing the total runtime essentially linearly from 96343

to 3,072 cores. The small worse-than-linear component of the cell-search algorithm seems344

to be related to the imbalance between particles and cells that will be further discussed345

in the weak scaling results, but since this part is one order of magnitude cheaper than the346

particle advection it will only limit the scalability beyond 10,000 cores. As for the uni-347

form mesh the “Exchange particles” algorithm shows some variations, likely caused by the348

interaction between the allocated compute nodes and the network topology used for the349

tests. Because this scaling test actually solves for the Stokes solution on the finite element350

mesh we are more restricted in the number of possible model sizes compared to the syn-351

thetic test for uniform meshes above. Increased memory consumption excludes very small352

core numbers and limited scaling of the Stokes solver for very small number of degrees of353

freedom per core limits the maximum number of cores. Nevertheless, 100 to 3000 cores354

is the most common model size for our application and increasing or decreasing the model355

size has not revealed significant changes to the scaling behavior outside of the here pre-356

sented range.357

Setting up weak scaling tests requires further consideration. Since we can not pre-358

dict the number of cells for a given number of mesh refinements, we use a 163 mesh and359

adaptively refine it a variable number of times taking note of the resulting numbers of360

cells. We then run this model series with increasing number of cores to keep the number361

of cells per process approximately constant at 550 cells per process. Each of the models362

uses ≈ 25 times as many particles as cells, uniformly distributed across the domain.363

The weak scaling results are more difficult to interpret than the strong scaling case.364

In a first series, we only strive to balance the number of cells per process (Option 2 in365

Subsection 2.3). However, because the particle density is constant while cell sizes increas-366

–13–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

ingly vary, the imbalance in the number of particles per process grows with the size of the367

model. This is easily seen in the bottom left panel of Fig. 2 in which all four processes368

own the same number of cells, but vastly different volumes and consequently numbers of369

particles. Therefore, the run time for some parts of the algorithm – in particular for par-370

ticle advection – grows as the model size increases (dashed lines, bottom right panel of371

Fig. 2).372

As discussed in Section 2.3, this effect can be addressed by balancing cell and par-373

ticle numbers. The solid lines in the bottom right panel of Fig. 2 show that with appro-374

priately chosen weights, the increase in runtime can be reduced from a factor of 30 to a375

factor of 4. To achieve this, we introduce a cost factor W for each particle. The total cost376

of each cell in load balancing is then one (the cost of the field-based methods per cell)377

plus W times the number of particles in this cell. W = 0 implies that we only consider the378

number of cells for load balancing, whereas W = ∞ only considers the number of parti-379

cles. In practice, one will typically choose 0 ≤ W < 1; for realistic applications, we found380

W = 0.01 to be adequate. On the other hand, computational experiments suggest that it is381

not important to exactly determine the optimal value since the overall runtime varies only382

weakly in the vicinity of the minimum (see Supporting Figure S1).383

4 Example application: Convection in the Earth’s mantle384

We illustrate the applicability of our algorithms to realistic applications by model-385

ing compressible Stokes flow in the Earth’s mantle constrained by known movements of386

the tectonic plates at the surface for the past 250 million years. The equations we solve387

and the model setup are identical to a previously published model [Heister et al., 2017],388

but enhanced by adding 4.8 million particles, which are used to track material movement389

over time. The particles are generated randomly with a uniform distribution, are integrated390

with a RK2 integration scheme, and in order to enforce balanced parallel workloads we391

limit the maximum number of particles per cell to 25 and remove additional particles dy-392

namically during the model run. Therefore, at the final time regions with coarse cells have393

a lower particle density than finely resolved regions (see right panel of Fig. 3). As the394

number of particles is relatively small, it was not necessary to use balanced repartition-395

ing to improve load balancing. Material properties such as density and heat capacity are396

computed from a database for basaltic and harzburgitic rocks, following [Nakagawa et al.,397

2009], and the viscosity is based on a published viscosity model incorporating mineral398

–14–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

Figure 3. Illustration of a 3D mantle convection model with particles. Left: Subducting plates below the

Western United States (brown particles) push material at the core-mantle boundary (dark blue sphere) towards

the west. Only a selection of particles is shown, and each is colored by the distance from its initial position

(blue: small to green: large). Right: Vertical slice through the subduction zone. All particles close to the

slice are shown, and they are colored by the radius of their initial position (red: surface; blue: core-mantle

boundary).

402

403

404

405

406

407

physics properties, geoid deformation, and seismic tomography [Steinberger and Calder-399

wood, 2006]. The prescribed surface velocities use reconstructions of past plate movement400

on Earth [Seton et al., 2012].401

In the first time steps of this example model (before the number of particles is in-408

fluenced by particle deletion) particle advection takes approximately 2.0 s per time step,409

particle cell-search requires 1.4 s per time step, particle generation is a one time process410

requiring 6.7 s, and particle communication was negligible, compared to a total time per411

time step of 26 s. A linear extrapolation to a larger number of particles (e.g. 20 per cell,412

as needed for active particles) would suggest a total particle cost of about 50 % of the413

total runtime, although this is highly simplified as for more particles a balanced reparti-414

tioning strategy could save significant amounts of runtime.415

Fig. 3 shows a part of the example model, the present-day state of the Farallon sub-416

duction zone below the Western United States. Particles that are initially close to the core-417

mantle boundary are colored by the displacement they have experienced. This reveals that418

the Farallon slab (orange) has primarily pushed the easternmost material. Particles in the419

–15–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

Central Pacific have not moved significantly, illuminating the limited influence of the West420

Pacific subduction zones.421

5 Conclusions422

In this article, we have presented strategies for implementing PIC methods in com-423

putational geodynamic problems that use unstructured adaptive meshes. We have de-424

scribed our algorithms for the parallel generation of particles including both random and425

prescribed particle locations, and how utilizing information about the neighbors of cells426

can efficiently help to predict the owning cell of a particle. We discussed different load427

balancing techniques during mesh repartitioning and explained how balanced repartition-428

ing can improve scalability significantly even in the presence of imbalanced workloads429

such as the ones that occur when combining unstructured AMR and PIC methods. Finally,430

we have documented in scaling tests and application examples that the expected optimal431

complexities can indeed be realized in practice. While there is certainly room for opti-432

mization in the presented algorithms, we are convinced that the present state allows for433

useful combination of unstructured AMR and PIC techniques in geodynamic modeling434

codes. Our implementation is freely available as part of the ASPECT and deal.II soft-435

ware.436

Acknowledgments437

All models were computed with the open-source software ASPECT [Bangerth et al., 2017b,438

http://aspect.geodynamics.org] published under the GPL2 license, and the439

necessary data to reproduce the models is included in the supplementary material. We440

thank the Computational Infrastructure for Geodynamics (http://geodynamics.org) which441

is funded by the National Science Foundation under awards EAR-0949446 and EAR-442

1550901.443

R. Gassmöller and W. Bangerth were partially supported by the National Science444

Foundation under award OCI-1148116 as part of the Software Infrastructure for Sustained445

Innovation (SI2) program; and by the Computational Infrastructure in Geodynamics ini-446

tiative (CIG), through the National Science Foundation under Award No. EAR-0949446447

and The University of California – Davis. E. G. Puckett was supported by the National448

Science Foundation under Award ACI-1440811 as part of the SI2 Scientific Software Ele-449

ments (SSE) program.450

–16–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

The computational resources were provided by the North-German Supercomputing451

Alliance (HLRN) as part of the project bbk00003 “Plume-Plate interaction in 3D mantle452

flow – Revealing the role of internal plume dynamics on global hot spot volcanism”.453

References454

Adams, M., P. O. Schwartz, H. Johansen, P. Colella, T. J. Ligocki, D. Martin, N. Keen,455

D. Graves, D. Modiano, B. Van Straalen, et al. (2015), Chombo software package for456

amr applications-design document, Tech. rep.457

Ainsworth, M., and J. T. Oden (2000), A Posteriori Error Estimation in Finite Element458

Analysis, John Wiley and Sons.459

Almgren, A. S., J. B. Bell, M. J. Lijewski, Z. Lukić, and E. Van Andel (2013), Nyx: A460

massively parallel amr code for computational cosmology, The Astrophysical Journal,461

765(1), 39.462

Arndt, D., W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier, J.-P.463

Pelteret, B. Turcksin, and D. Wells (2017), The deal.II library, version 8.5, Journal464

of Numerical Mathematics, doi:10.1515/jnma-2016-1045.465

Balay, S., S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,466

V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes,467

R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and468

H. Zhang (2018), PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.9, Argonne469

National Laboratory.470

Bangerth, W., and R. Rannacher (2003), Adaptive Finite Element Methods for Differential471

Equations, Birkhäuser Verlag.472

Bangerth, W., R. Hartmann, and G. Kanschat (2007), deal.II – a general purpose object473

oriented finite element library, ACM Trans. Math. Softw., 33(4), 24.474

Bangerth, W., C. Burstedde, T. Heister, and M. Kronbichler (2011), Algorithms and data475

structures for massively parallel generic adaptive finite element codes, ACM Trans.476

Math. Softw., 38(2).477

Bangerth, W., J. Dannberg, R. Gassmöller, T. Heister, et al. (2017a), ASPECT: Advanced478

Solver for Problems in Earth’s ConvecTion, User Manual, doi:10.6084/m9.figshare.479

4865333, doi:10.6084/m9.figshare.4865333.480

Bangerth, W., J. Dannberg, R. Gassmöller, T. Heister, , et al. (2017b), Aspect v1.5.0 [soft-481

ware], doi:http://doi.org/10.5281/zenodo.344623.482

–17–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

Burstedde, C. (2018), Parallel tree algorithms for AMR and non-standard data access,483

ArXiv e-prints.484

Burstedde, C., L. C. Wilcox, and O. Ghattas (2011), p4est: Scalable algorithms for par-485

allel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33(3), 1103–486

1133, doi:10.1137/100791634.487

Capodaglio, G., and E. Aulisa (2017), A particle tracking algorithm for parallel finite ele-488

ment applications, Computers & Fluids, 159, 338–355.489

Carey, G. F. (1997), Computational Grids: Generation, Adaptation and Solution Strategies,490

Taylor & Francis.491

Folk, M., A. Cheng, and K. Yates (1999), HDF5: A file format and I/O library for high492

performance computing applications, in Proc. ACM/IEEE Conf. Supercomputing (SC’99).493

Gerya, T. V., and D. A. Yuen (2003), Characteristics-based marker-in-cell method with494

conservative finite-differences schemes for modeling geological flows with strongly vari-495

able transport properties, Physics of the Earth and Planetary Interiors, 140(4), 293–318.496

Harlow, F. (1962), The particle-in-cell method for numerical solution fo problems in fluid497

dynamics.498

Heister, T., J. Dannberg, R. Gassmöller, and W. Bangerth (2017), High accuracy mantle499

convection simulation through modern numerical methods – II: realistic models and500

problems, Geophys. J. Int., 210(2), 833–851, doi:https://doi.org/10.1093/gji/ggx195.501

Isaac, T., C. Burstedde, L. C. Wilcox, and O. Ghattas (2015), Recursive Algorithms for502

Distributed Forests of Octrees, SIAM Journal on Scientific Computing, 37(5), C497–503

C531, doi:10.1137/140970963.504

Kronbichler, M., T. Heister, and W. Bangerth (2012), High accuracy mantle convection505

simulation through modern numerical methods, Geophysics Journal International, 191,506

12–29.507

Leng, W., and S. Zhong (2011), Implementation and application of adaptive mesh refine-508

ment for thermochemical mantle convection studies, Geochemistry, Geophysics, Geosys-509

tems, 12(4), doi:10.1029/2010GC003425, q04006.510

McNamara, A. K., and S. Zhong (2004), Thermochemical structures within a spherical511

mantle: Superplumes or piles?, Journal of Geophysical Research, 109(B7), 1–14, doi:512

10.1029/2003JB002847.513

Mellor-Crummey, J., D. Whalley, and K. Kennedy (2001), Improving memory hierarchy514

performance for irregular applications using data and computation reorderings, Interna-515

–18–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

tional Journal of Parallel Programming, 29(3), 217–247.516

Mirzadeh, M., A. Guittet, C. Burstedde, and F. Gibou (2016), Parallel level-set methods517

on adaptive tree-based grids, Journal of Computational Physics, 322, 345–364, doi:10.518

1016/J.JCP.2016.06.017.519

Moresi, L., F. Dufour, and H. B. Muhlhaus (2003), A Lagrangian integration point finite520

element method for large deformation modeling of viscoelastic geomaterials, J. Comp.521

Ph., 184, 476–497.522

Nakagawa, T., P. J. Tackley, F. Deschamps, and J. A. Connolly (2009), Incorporating self-523

consistently calculated mineral physics into thermochemical mantle convection simula-524

tions in a 3-D spherical shell and its influence on seismic anomalies in Earth’s mantle,525

Geochemistry, Geophysics, Geosystems, 10(3).526

Poliakov, A., and Y. Podladchikov (1992), Diapirism and topography, Geophysical Journal527

International, 109(3), 553–564.528

Popov, A. A., and S. V. Sobolev (2008), SLIM3D : A tool for three-dimensional thermo-529

mechanical modeling of lithospheric deformation with elasto-visco-plastic rheology,530

Physics of the Earth and Planetary Interiors, 171, 55–75, doi:10.1016/j.pepi.2008.03.007.531

Puckett, E. G., D. L. Turcotte, Y. He, H. Lokavarapu, J. M. Robey, and L. H. Kellogg532

(2017), New numerical approaches for modeling thermochemical convection in a com-533

positionally stratified fluid, Physics of the Earth and Planetary Interiors, doi:https:534

//doi.org/10.1016/j.pepi.2017.10.004.535

Schroeder, W., K. Martin, and B. Lorensen (2006), The Visualization Toolkit: An Object-536

Oriented Approach to 3D Graphics, 3rd ed., Kitware, Inc.537

Seton, M., R. Müller, S. Zahirovic, C. Gaina, T. Torsvik, G. Shephard, a. Talsma, M. Gur-538

nis, M. Turner, S. Maus, and M. Chandler (2012), Global continental and ocean539

basin reconstructions since 200Ma, Earth-Science Reviews, 113(3-4), 212–270, doi:540

10.1016/j.earscirev.2012.03.002.541

Steinberger, B., and A. R. Calderwood (2006), Models of large-scale viscous flow in the542

Earth’s mantle with constraints from mineral physics and surface observations, Geo-543

physical Journal International, 2, 1461–1481, doi:10.1111/j.1365-246X.2006.03131.x.544

Thielmann, M., D. A. May, and B. J. P. Kaus (2014), Discretization errors in the hybrid545

finite element particle-in-cell method, Pure and Applied Geophysics, 171, 2165–2184.546

van Keken, P. E., S. D. King, H. Schmeling, U. R. Christensen, D. Neumeister, and M.-P.547

Doin (1997), A comparison of methods for the modeling of thermochemical convection,548

–19–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

Journal of Geophysical Research: Solid Earth, 102(B10), 22,477–22,495, doi:10.1029/549

97JB01353.550

Wallstedt, P., and J. Guilkey (2010), A weighted least squares particle-in-cell method for551

solid mechanics, International Journal for Numerical Methods in Engineering, 85(13),552

1687–1704.553

Wang, H., R. Agrusta, and J. Hunen (2015), Advantages of a conservative velocity inter-554

polation (cvi) scheme for particle-in-cell methods with application in geodynamic mod-555

eling, Geochemistry, Geophysics, Geosystems, 16(6).556

–20–



Figure 1.



K

K'1

K'2

p

p'

K

1 2
3

K

a
bK'

2 1
3

bK'

bK'

K'3

v
cK'

cK'

cK'



Figure 2.



0.001

0.01

0.1

1

10

100

1000

10000

10 100 1000 10000

W
al

lc
lo

ck
 ti

m
e 

[s
] /

 E
xe

cu
tio

n

#Cores

Uniform grid - Strong scaling

Generate particles
Advect particles

Search for new cell
Exchange particles

Optimal scaling

0.001

0.01

0.1

1

10

100

10 100 1000 10000

W
al

lc
lo

ck
 ti

m
e 

[s
] /

 E
xe

cu
tio

n

#Cores

Uniform grid - Weak scaling

Generate particles
Advect particles

Search for new cell
Exchange particles

0.001

0.01

0.1

1

10 100 1000 10000

W
al

lc
lo

ck
 ti

m
e 

[s
] /

 E
xe

cu
tio

n

#Cores

Adaptive grid - Strong scaling

0.001

0.01

0.1

1

10 100 1000 10000

W
al

lc
lo

ck
 ti

m
e 

[s
] /

 E
xe

cu
tio

n

#Cores

Adaptive grid - Weak scaling



Figure 3.




	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3

