
Replication in one-dimensional cellular automata

Janko Gravner
Mathematics Department
University of California

Davis, CA 95616
e-mail: gravner@math.ucdavis.edu

Genna Gliner
Mathematics Department
University of California

Davis, CA 95616
e-mail: grgliner@ucdavis.edu

Mason Pelfrey
Mathematics Department
University of California

Davis, CA 95616
e-mail: mtpelfrey@ucdavis.edu

(Second version, June 2011)

Abstract. In cellular automata (CA), replication is the ability to indefinitely generate copies of
a finite collection of patterns, starting from finite seeds. A transparent feature of additive CA,
replication mechanisms are less clear in the absence of additivity; this paper investigates such
dynamics through several examples. For the 1 Or 2 rule and its generalizations, replication is
inevitable and we investigate self-organization properties. In the Perturbed Exactly 1 rule we
study frequency of replicators and the new phenomenon called quasireplication. The last CA is
the Extended 1 Or 3 rule, which allows for replication on different backgrounds. We employ a
mixture of rigorous and empirical techniques.
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1 Introduction

During the evolution of many simple cellular automata (CA) rules, especially those related
to the Game of Life, the following phenomenon is frequently observed: “a configuration of
occupied sites makes copies of itself, then the copies make copies of themselves, and these copies
move toward one another. [. . . ] When the innermost copies collide, they annihilate, [while]
the outermost [ones] continue to reproduce. This pattern repeats, ad infinitum” [Eva2]. The
resulting space-time picture is sometimes called fractal [CD] or nested [Wol3], but we prefer the
more descriptive term replication [Eva1, Eva2]. Traditionally associated with additivity [CD],
this type of behavior occurs for no a priori reason in numerous CA, in one and two dimensions
[Epp]. In the present paper, we focus on selected one-dimensional examples.

To illustrate our main ideas, two CA (whose rules are defined later in this section) were run
from a small random seed. Fig. 1 depicts the resulting space-time configurations; the time axis in
all our pictures and descriptions is oriented downward , as is common in this field. In each case of
Fig. 1, triangular regions appear, either empty or filled with a simple periodic pattern. Is this a
beginning of a recursive behavior, with larger and larger regular regions? What kind of periodic
patterns can be generated? What mechanisms govern the initial self-organization phase? How
typical is such a dynamics for a given CA? Much of the rest of the paper is devoted to precise
formulations of such questions, and to techniques for obtaining at least partial answers.

Fig. 1. Two replicator examples, both at time 100. Left: Quota with θ = 2, started from
1111001101101101100011; right: Extended 1 Or 3 , started from 2221032011102133101.

We present a basic replication setup in Section 2, defining the ingredients that go into the
description of a replication scheme. Given the diverse circumstances in which replicators appear
[Eva1, Eva2, Epp], it seems unlikely that one could formulate either wide-ranging necessary
and sufficient conditions on existence of replicators, or estimate the likelihood of their appearance
from random initial states independently of the details of a particular rule. Instead, we develop
a list of issues one might look at when presented with a CA rule capable of replication. We
also do not close the book on any of the presented examples, and conclude the paper with an
inventory of interesting open problems.

We call a configuration a finite or infinite sequence of elements from S, where S = {0, 1, . . . , s−
1} is a finite set of states. When the sequence is doubly infinite, a configuration gives each site
in Z either the empty state 0, or one of s − 1 occupied states. We will assume that time in-
creases in discrete steps, t = 0, 1, 2, 3, . . . , and that configurations ξt evolve by a CA rule. A
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configuration is finite if it has only finitely many occupied sites; the initial configuration ξ0 will
be typically assumed finite, and will in this case often be referred to as a seed . As we follow the
usual convention [GG4] that the state of a site, when unspecified, is assumed to be 0, we may
give a finite configuration as a finite sequence of states. Finally, when S = {0, 1} we identify
the configuration ξt with its set {ξt = 1} of occupied sites at time t. In all examples we present,
the quiescent (all 0’s) state is mapped into itself; to avoid the trivial case we will always assume
that a seed is non-quiescent.

We are interested in cases when a CA replicates, that is, makes copies of a finite collection
of finite configurations, called replicating elements, indefinitely. Such dynamics may occur for
all, or only for some, seeds. As in [GG4], we identify the seed with the attractor, calling it
a replicator if it leads to replication regardless of whether the seed is among the replicating
elements.

The easiest to study are additive CA, which for our purposes have S = {0, 1} and are given
by a finite (neighborhood) N ⊂ Z. Then the CA λt is given for t = 0, 1, . . . by addition modulo
2 over the neighborhood given by N :

λt+1(x) =
∑

k∈N
λt(x + k) mod 2.

The most basic example is known as Rule 90 [Wol1] and has N = {−1, 1}. It has been long
known that, at large enough times of the form 2n, the occupied set consists of two identical
copies of the seed (which, we emphasize again, is finite), separated by 0’s. Another additive
rule, 1 Or 3 or Rule 150 , in which N = {−1, 0, 1}, behaves in the same way, except that the
number of copies is now three; in fact, every additive CA replicates any seed, and the number
of copies at large dyadic power times equals cardinality of N . Additive rules commute with
addition modulo 2 and seem to be the only class of CA rules amenable to general mathematical
theory (e.g., [Wol1, CD, Wil1, Wil2, FLM, HPS]), thus they play a role analogous to linear
dynamical systems, and are for this reason sometimes called linear .

As we will see more formally in Section 2, a CA started from a particular seed replicates if it
simulates an additive CA started from a single 1 at the origin. This is a very weak version of the
important notion of intrinsic simulation, which demands that one CA is able to simulate another
started from any initial configuration (see [Oll] and subsequent work of the same author). We
also remark that, if a seed is a replicator, its trajectory can be efficiently predicted ([Moo]).

We now introduce the examples of nonadditive CA considered in this paper. These have
all previously appeared in the literature, and are selected for connections to other interesting
dynamics, such as two-dimensional CA growth [GG1, GG2, GG3] and coupled logistic-type
maps [GG4], and especially for their simplicity. In particular, each of our CA uses ether a range
1 or a range 2 neighborhood, i.e., the neighborhood of an integer point x is either {x−1, x, x+1}
or {x− 2, x− 1, x, x + 1, x + 2}.

We begin by the rule we consider the prototypical nonadditive dynamics [GG4], namely the
Exactly 1 CA (often called Rule 26 [Wol1]), in which x becomes occupied at time t + 1 if and
only it has exactly 1 occupied nearest neighbor at time t:

ξt+1(x) = 1 ⇐⇒ |ξt ∩ {x− 1, x, x + 1}| = 1.
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(The vertical bars denote cardinality.) Replication is common in this CA among small seeds.
For large seeds, chaotic evolution is by far the likeliest, and periodic seeds also exist. The paper
[GG4] contains a detailed study including many replication examples.

The next rule is also quite well-known. We call it the 1 Or 2 CA, but it is also known as
Rule 126 [Jen3, Jen4, GG3]. It has binary states and its rule mandates that the state of x is
occupied at time t + 1 if and only if either one or two of its range 1 neighbors of x are occupied
at time t:

ξt+1(x) = 1 ⇐⇒ |ξt ∩ {x− 1, x, x + 1}| ∈ {1, 2}.
This rule is not additive; nevertheless it replicates for every seed, and it always has essentially
a single replicating element. We call such CA quasiadditive, and two additional such examples
(which are not additive) have been studied [Jen2, Jen3, Jen4]. The replicating element can
be very different from the seed, due to a long onset time before the replication commences. We
will study the distribution of onset times in Section 3.

We also prove that two natural generalizations of Jen’s rules to range 2 are both quasiadditive.
These are Quota rules [CD] with a threshold parameter θ and stipulate that a point becomes
occupied if it sees at least θ 1’s and at least θ 0’s in its range 2 neighborhood:

ξt+1(x) = 1 ⇐⇒ |ξt ∩ {x− 2, x− 1, x, x + 1, x + 2}| ∈ [θ, 5− θ].

As described in Section 4, these have an extra self-organizing period before they enter the Jen
regime. When θ = 1 this period is trivial and lasts a single time step, but when θ = 2 a
Lyapunov function drives the dynamics toward a configuration with sufficient regularity.

Next we describe a CA we call Perturbed Exactly 1 , introduced in [BP]. This rule also has
binary states but now x is occupied at time t+1 if and only if at time t either (1) it has exactly
2 occupied sites among its five nearest neighbors or (2) the single occupied site among its five
nearest neighbors is positioned among the three nearest neighbors:

ξt+1(x) = 1 ⇐⇒ |ξt ∩ {x− 2, x− 1, x, x + 1, x + 2}| = 2 or
|ξt ∩ {x− 1, x, x + 1}| = 1 and ξt(x− 2) = ξt(x + 2) = 0.

First few experiments with small seeds, as well as the account in [BP], suggest that replication
always happens for Perturbed Exactly 1 , but this is not the case. However, as we demonstrate
in Section 5, replication is indeed quite common, although, as is Exactly 1 , this CA is capable of
chaotic behavior. Even more interesting, and challenging to study, is a new type of behavior we
call quasireplication, whereby the occupied set within space-time is fractal, in the appropriate
limit, even in the absence of replication (see Section 6).

In the examples presented so far, all the known instances of replication proceed on an empty
background, but nonzero periodic backgrounds, called ethers, are also possible. Rule 186 [Wol3],
for instance, always replicates on the fully occupied ether (which can be easily proved because its
evolution is the“photographic negative” of the one for Rule 146 studied in [Jen4]). Perhaps the
simplest example which admits both the zero ether and a nonzero one is the Embossed Triangles
CA, introduced by M. Wójtovicz in [Woj]. In this range 2 rule, a 1 survives by contact with
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two or three 1’s (including itself), and a 0 changes to 1 by contact with two, three, or four 1’s:

ξt+1(x) = 1 ⇐⇒ ξt(x) = 1 and |ξt ∩ {x− 2, x− 1, x, x + 1, x + 2}| ∈ {2, 3}
or ξt(x) = 0 and |ξt ∩ {x− 2, x− 1, x, x + 1, x + 1}| ∈ {2, 3, 4}.

Both Quota and Embossed Triangles fit into context of Larger Than Life CA [Eva1], which
seem to be a particularly fertile ground for replication.

To our knowledge, the best case to investigate multiple ethers is our last rule, which requires
a little motivation. One of the most interesting two-dimensional solidification CA is Box 13
[GG3]. In this dynamics on Z2 with binary states, an occupied site always stays occupied,
while an empty state becomes occupied if it has either 1 or 3 already occupied sites in its Moore
neighborhood, i.e., among its nearest eight sites. Assume that all of the initially occupied sites
are initially on or below the x-axis, and that the x-axis contains at least one occupied site. Then,
for any CA that uses the Moore neighborhood, the configuration at time t on the line y = t only
depends on the configuration on the line y = t − 1 at time t − 1, and this dependence defines
the extreme boundary dynamics (EBD) for the CA.

For the Box 13 solidification, EBD is the additive 1 Or 3 rule; thus, by analogy to Hex
[GG2] or Diamond [BDR] rules, one expects at first that this solidification CA is amenable to
complete analysis. However, a new problem appears: the web of occupied sites generated by the
EBD “leaks,” and therefore fails to divide the lattice into independent regions with a renewal
structure. A more successful approach involves keeping track of two extreme lines, y = t and
y = t−1. The resulting one-dimensional CA, which we call 2-level EBD for Box 13 , or Extended
1 Or 3 , is no longer additive. For a given x, we code the four occupation possibilities of (x, t−1)
and (x, t) at time t as 00 = 0, 01 = 1, 10 = 2 and 11 = 3 to obtain a CA with S = {0, 1, 2, 3},
and the following convoluted rule. First compute

c1 = (ξt(x− 1) + ξt(x) + ξt(x + 1)) mod 2,

c2 =
⌈

ξt(x− 1)
2

⌉
+

⌈
ξt(x)

2

⌉
+

⌈
ξt(x + 1)

2

⌉
,

and then let

ξt+1(x) =

{
c1 + 2, if either ξt(x) mod 2 = 1 or c2 ∈ {1, 3},
c1, otherwise.

Replication in Extended 1 Or 3 is common, on a zero ether or on one of many other ethers
(see Section 7). In fact, an overwhelming proportion of large seeds seem to replicate. On the
other hand, we will demonstrate that a simple seed is a non-replicating quasireplicator. There is
some empirical evidence for existence of a much more complex evolution with different properties
than, say, the Exactly 1 chaos [GG4]. However, some seeds take an extraordinarily long time
to organize and the possibility of ethers with enormous periods cannot be eliminated; thus
conjectures of asymptotic behavior based on even millions of updates are precarious.

The above cautionary note is important, but the role of the computer experimentation in
present investigations cannot be overstated. Many of our results were first conjectured through
computer experimentation, using MCell [Woj], or one of our many ad hoc programs. Reading
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this paper would be greatly facilitated by seeing some of the described dynamics in action, thus
we will maintain a collection of experiments related to this project at [GGM].

2 Preliminaries

We start by listing a few common conventions. We will call a finite configuration’s left endpoint
its placement . This is often important, as we build configurations from appropriately placed
finite pieces. If left unspecified, the placement is at the origin. Another useful rule is that the
state of a site, when not given, is 0. As is customary we put a configuration η in a superscript to
indicate that it is used as the initial configuration, e.g., ξη

t indicates that ξt evolves from ξ0 = η.

Assume that π is a doubly infinite configuration with spatial period σ, i.e., π(x + σ) = π(x)
for every x. Assume also that it is periodic with temporal period τ for the CA ξt, i.e., ξπ

t+τ = ξπ
t

for all t ≥ 0. Then we call π a periodic solution; we will assume that both periods σ and τ are
minimal. We may give such a configuration by its repeating segment; for example, 10∞ stands
for . . . 0101010 . . ., a fixed point (i.e., τ = 1) of Exactly 1 . We will not study periodic attractors
in this paper (see [GG4] for an extensive investigation in the Exactly 1 case), but instead merely
use periodic solutions as backgrounds for interaction between replication elements; accordingly,
we will call them ethers.

A replicator rule consists of the following ingredients:

1. an ether π;

2. a finite nonempty set K of finite configurations that comprises the replicating elements;

3. a finite set N ⊂ Z, the neighborhood for the additive rule λt started from a single 1; and

4. a function successor : (K ∪ {0∞, 0π})N → K. If n = |N |, we may represent successor
as a n-ary operation which we denote by ⊕.

A finite initial configuration ξ0 is a replicator for a CA ξt if, after a proper placement, there
exist a replicator rule (π, K, N , successor), and t0 ≥ 0, n0 ≥ 0, so that the configurations ξt

at times t = t0 + 2n0(k − 1), k = 1, 2, . . . , satisfy the following:

• for every x such that λk(x) = 1 there is a copy of a Kk,x ∈ K placed at 2n0x;

• the remaining sites consist of two infinite intervals, filled with 0’s, and a number of bounded
intervals, each of which contains a segment of the ether π;

• each placed replicating element is distinguishable from the ether, i.e., if [a+1, b−1] contains
a placed element, then [a, b] is not a segment of the ether;

• Kk,x is given by successor(Kk−1,y : y ∈ x+N ); if λk−1(y) = 0, then Kk−1,y is interpreted
as 0π if y ∈ [k ·min(N ), k ·max(N )] and as 0∞ otherwise.
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We will assume, without loss of generality, that a fixed replicating element K, when in
contact with the ether π from either side, encounters π in the same spatial phase: the first σ
states of π are the same on either side of every occurrence of K.

Thus all Kk,x are determined by the initial elements K1,x, x ∈ N , and successive applications
of the succession rule successor. Also note that the replicating elements may be replaced by
their successors by the original CA rule, so K is not unique. In our examples and in Section 3, we
will take a K with the smallest cardinality and assume not all of its elements can be shortened
(while still remaining a set of replicating elements). Then we will assume that the onset time
t0 and the replication time 2n0 are minimal (note that selection of t0 and the two elements at
that time determines n0). The final, and very important, remark is that the specification of
the rule successor may not be complete; then one has to give an argument that the missing
interactions never happen.

We call ξ0 a maternal replicator if the ether is the zero configuration, and there exists a
configuration K so that any configuration in K equals K, possibly with 0’s appended at either
end. Any replicator which is not maternal is fraternal .

We call a CA for which every seed is a maternal replicator quasiadditive. Every additive CA
is quasiadditive; this well-known folk result is easy to prove [CD]. Not too many quasiadditive
CA that are not additive are known, but three are introduced in [Jen3]: 1 Or 2 , Rule 18, and
Rule 146 . Existence of a fraternal indicator is thus a sign of an essential nonadditivity in a CA
rule.

We remark that the definition of a replicator can be substantially simplified when the ether
is zero and λt is Rule 90 , that is, when N = {−1, 1}. See [GG4] for the definition in that case,
and for many illustrative examples of maternal and fraternal replicators for Exactly 1 rule. For
higher-dimensional emulation of additive rules, see [Eva2].

It is important to realize that one could formulate a condition to verify that an initial state
is a replicator after only finitely many replications, when all possible interactions have taken
place; see [GG3] for some examples, and we give another below. Thus in every particular
instance a computer can be used to verify that a seed is replicator. Invariably, the details of
such verifications do not translate well from the computer screen to text, hence they are largely
omitted from the paper.

Fig. 2 depicts two illustrative examples. The Extended 1 Or 3 one, being maternal, has
a very simple description. (See Theorem 6 in Section 7 for the general result that covers this
example.) The Embossed Triangles one is more complicated and for once we give a complete
description of its replicator algebra. There are 12 replicating elements. Six of them,

A = 1110110111110000,
B = 1110111100000011,
C = 1110100011001100,
D = 1111001111110000,
E = 0011110011001100,
F = 1100111100000011,
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inhabit the left portion of the space-time configuration. The remaining six, distinguished by
the superscript R, inhabit the right portion, and are mirror images, with appropriate segments
of the ether (ten sites in each case) added to make their placement correct. The only left-right
interactions are between A and AR at the beginning, and between D and DR later on, both of
course giving 0π. Here is the list of other interactions, denoted by the noncommutative operation
⊕:

A⊕ 0π = E, 0∞ ⊕A = B,

B ⊕ 0π = D, 0∞ ⊕B = C,

C ⊕ 0π = F, 0∞ ⊕ C = A,

D ⊕ 0π = E, 0π ⊕D = F,

E ⊕ 0π = F, 0π ⊕ E = D,

F ⊕ 0π = D, 0π ⊕ F = E,

A⊕ F = B ⊕E = C ⊕D = D ⊕ F = E ⊕D = F ⊕E = 0π.

The last verification, 0π ⊕D = F , occurs at time 248 = t0 + (15 − 1) · 2n0 , and one can prove
by induction that no other interactions ever occur. Therefore, it is at time 248 that we can be
truly certain that this dynamics emulates Rule 90 .

Fig. 2. Two replication examples; in each case, the configurations at the onset time and at
three multiples of the replication time thereafter are highlighted in black. Left: Extended 1
Or 3 from A = 33033000333, a maternal replicator, in which K = {A}, t0 = 2n0 = 16, and
N = {0,±1}; the states 3, 2 and 1 are in progressively lighter shades of gray. Translations of
A occur at positions given by the locations of 1’s, multiplied by 16, in the additive 1 Or 3 CA.
Right: Embossed Triangles from 1110110111, with N = {±1}, ether π = 111100∞ with σ = 6,
τ = 2, K and successor described in the text, and t0 = 24, n0 = 4. The additive CA is thus
Rule 90 and the elements (from left to right) at time t0 are A and AR; then B and BR at time
t0 + 2n0 ; then C, D, DR, and CR at time t0 + 2 · 2n0 ; and then A and AR at time t0 + 3 · 2n0 .

Define the space-time occupied set

At = {(s, x) : 0 ≤ s ≤ t, ξs(x) > 0} ⊂ Z2.

Assume the rescaled subsequence

Ãn =
1
2n

A2n ⊂ R2

converges to a limit set Ã∞ in the Hausdorff metric. Then we call Ã∞ a Willson limit of the
CA; clearly, it may depend on the seed. We call a seed ξ0 a quasireplicator if Ã∞ exists, and has
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its Hausdorff dimension in the open interval (1, 2). The following theorem follows immediately
from [Wil2].

Theorem 1. Every replicator with zero ether is a quasireplicator.

In Sections 6 and 7 we give examples of seeds that are provably quasireplicators but not
replicators.

Denote A∞ = ∪tAt, and let µε be ε2 times the counting measure on ε ·A∞. That is, for any
Borel set B, µε(B) = ε2 · |B ∩ (εA∞)|. Fix an open set W ⊂ R2. We say that A∞ has density ρ
on W if for any continuous function f , which is compactly supported inside W ,

∫
f dµε → ρ ·

∫
f dx,

as ε → 0. Our default choice of W will be the wedge W = {(x, t) : t min(N ) < x < tmax(N )}.
It is easy to see that a quasireplicator has density 0, whereas a replicator with a nozero ether
has a strictly positive density (and hence the Willson limit of dimension 2). The same property,
albeit perhaps on a smaller wedge, also holds for apparently ubiquitous chaotic seeds [GG4],
although it has not been rigorously proved that any seed is chaotic for any CA.

In our replicator definition we have assumed a single ether. A more general definition would
allow mixed replicators which allow for any ether from a finite collection in intervals between
replicators. We could also allow stitches, bounded perturbations of the ether near, say the origin,
which do not effect interaction between the elements. Such cases are common but complicate
the discussion without adding anything new; nevertheless, we provide two examples of mixed
replicators in Fig. 3. A much more substantial generalization would allow for an arbitrary group
in place of Z2, and this would certainly be necessary for a complete study of CA replication.

Fig. 3. Embossed Triangles at time t = 262, from 1110111 (left) and 11101 (right), both mixed
examples with two ethers, π1 ≡ 0 and π2 = 111100∞. Note that the Willson limit does not exist
for the left example (whose ether is also stitched).

For a given property of evolution, i.e., a set of space-time configurations P ⊂ 2SZ×Z+ , we
define its entropy h = hP as follows. Call a seed of length n + 2 any configuration in [0, n + 1],
with ξ0(0) 6= 0, ξ0(n + 1) 6= 0 (and 0’s in [0, n + 1]c). Let NP,n be the number of seeds ξ0 of
length n + 2 that make (x, t) 7→ ξt(x) a member of P. Then

h = hP = lim inf
n→∞

1
n

logs NP,n.
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This quantity measures the amount of choice per position one has in the design of a long seed
whose evolution satisfies a given property, and has little to do with space-time entropies of
early CA research [Wol1, Wol2]. Note that we normalize so that without any constraints, i.e.,
P = 2SZ×Z+ , h = 1. We often restrict the n’s in the limit to odd or even subsequences, which
we indicate in the superscript, ho or he.

3 Onset times in 1 Or 2

Throughout the paper, we will call a block a maximal contiguous interval of a single state, with
its length equal to its number of sites.

The 1 Or 2 CA is perhaps the simplest quasiadditive one [GG3], thus it presents an op-
portunity to take a closer look at the onset times t0 and the resulting replicating elements.
As we will explain below, there are simple algorithmic definitions for both, which facilitate an
empirical analysis. Any rigorous confirmation of our conclusions would have to proceed through
understanding of the annihilating diffusion of odd blocks [HC, EN] and statistical properties
of configurations up to the additivity time defined below. This still presents a very substantial
challenge.

We now describe the key features of the 1 Or 2 evolution [Jen3, GG3]. Every block has
a unique successor, either the block of 0’s of length diminished by 2 immediately below, or,
for blocks of length 1 and 2, a larger block of 1’s immediately below. New blocks appear, but
they are always of even length, and the odd blocks pairwise annihilate when their successor is
the same block. There is a finite time, which we call the additivity time ta, the least time at
which at most one block of odd length is left. For t ≥ ta, the dynamics is conjugate to Rule 90 :
if we enlarge the odd block (if any) by insertion of a site of the same state, the configuration
evolves by Rule 90 thereafter, and the state ξt is obtained by deletion of the extra site from the
successor of the modified block. Maternal replication easily follows [GG4].

It is well known, and easy to show, that Rule 90 is injective but not surjective on finite
configurations. Thus every finite configuration A has a unique predecessor P (A) of shortest
length. We also denote by J(A) the Jen’s conjugacy map, which inserts a site of the same state
into every odd block of A.

Assume we start ξt from a seed of length n + 2. By parity, if n is even, there are no odd
blocks at time ta and the dynamics is Rule 90 thereafter. If n is odd there is a single odd block,
which is at replication times the middle block of 0’s [GG4].

Proposition 3.1. If n is even, the shortest representation of the only replicating element is
P (ξta). If n is odd there are two replicating elements: P (J(ξta)) and the same one with a
prefixed 0.

In either case, t0 is the first time t ≥ ta at which ξt consists of two identical configurations
placed at distance 2n0+1 (n even) or 2n0+1 − 1 (n odd) for some n0 ≥ 0. This determines the
replication time 2n0.

Proof. It is clear that the claimed elements replicate, and a shorter element would yield a shorter
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Rule 90 ancestor of J(ξta). If n is even, then 2n0−1 = t0 − ta is the first power of 2 greater or
equal to the length n0 + 2 + 2ta, as this is the first time the additive dynamics “separates” the
two copies of ξta . If n is odd, however, one needs to wait until the successor of the odd block
in ξta is the middle block of 0’s between the two elements, and this happens precisely at the
claimed time. See Fig. 4 for an illustration.

Fig. 4. 1 Or 2 from A = 1110011000011 (left) and J(A). Here P (J(A)) = 1100111. Observe
that ta = 0 for both, that t0 = 5 on the right, but t0 = 13 on the left as the odd block at t = 5
is not the middle block of 0’s.

Using Proposition 3.1, we computed the distributions of ta and t0 for small seed lengths, and
the resulting histograms for n = 25 are presented in Fig. 6. It is clear that the onset times are
even for low n highly clustered. The highest peaks in the histogram for ta are approximated by
powers of 2. These are the times when odd blocks annihilate each other on the upper borders of
large triangles of 0’s, which are bound to appear as the dynamics is conjugate to Rule 90 when
the number of odd blocks is constant [Jen3]. This is the prevailing annihilation mechanism
— within nearly chaotic regions of small vacant triangles the odd blocks undergo much slower
diffusive annihilation [HC]; see also Fig. 5 for an example. (The much smaller peaks at the tail of
the distribution have to do with fine details of annihilation process and predecessor distribution
and are harder to quantify.)

Fig. 5. Annihilation of odd blocks for 10001001011111000101, a configuration which has max-
imum ta = 166 for n ≤ 18. Only odd blocks of 0’s are emphasized and the final time shown is
ta. In this case t0 = 422, exactly the time obtained by the separation rule.

In most cases, a data point at t = p in the ta-histogram is translated at least approximately,
into a data point in the t0-histogram by the following separation rule. Let 2k be the smallest
power of 2 such that 2k > n + 2 + p. This is the smallest time at which the additive dynamics
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separates two copies of the “fixed” configuration at time p, which has length n + 2 + p. This
yields a data point p + 2k in t0-histogram. (How accurate is this rule depends on the location
of the odd interval in the configuration at time p and on its predecessors.) For example, the
ta-peak at 17 in Fig. 6 yields a t0-peak at 17+64 = 81. The times between peaks in ta-histogram
are also subject to the separation mechanism, which thus leads to a more clustered nature of
t0-histogram.
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Fig. 6. Histograms for seeds of length 27 (n = 25). Left: additivity time ta; right: onset time
t0. The insets show tails of the distributions on a smaller y-scales (the rightmost data points
are max ta = 179 and max t0 = 435).

As additive dynamics and annihilating diffusion of odd blocks interact, the location of ta-
peaks diverges significantly from powers of 2 for larger n. In addition, there is noticeable
difference between seeds of odd and even length, as the former are more capable of having
smaller additivity times. For a clearer picture, we restrict to even n, and provide the evolution
of empirical ta-histograms, based on 50n samples, for even n from 50 to 250; the results are
shown in Fig. 7. We observe that there are three or four prominent peaks; when n is around
a power of 2 the peak at the smallest time gradually lowers while the one at the highest time
starts rising.
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Fig. 7. Evolution of ta-histograms.
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4 Maternal replication in Quota

We begin by noting the useful complement property of Quota CA: if ηc = 1 − η, then ξηc

t = ξη
t

for t ≥ 1.

Theorem 2. Quota with θ = 1 is a quasireplicator.

Proof. Step 1 (self-organization). At time 1, and hence afterward, all blocks of 1’s are of length
at least 4.

To prove this, assume that ξ1(x) = ξ1(x+4) = 0 at time 1. This means that ξ0 is either all 0
or all 1 on [x− 2, x+2] and the same is true for [x+2, x+6], and consequently on [x− 2, x+6].
Thus ξ1(y) = 0 for x ≤ y ≤ x + 4.

Next four steps deal with the Jen regime, whereby irregular blocks (in this case those whose
lengths are not 0 modulo 4), diffuse and pairwise annihilate. The proofs are straightforward
checks [Jen4].

Step 2 (block succession). Assume that 1’s in ξ0 occur only in blocks of length at least 4. Then
every block has a unique successor , a block immediately below it. A block of 0’s, or that of 1’s,
of length ` ≥ 5 shrinks into a block of 0’s of length `− 4. A block of 0’s, or that of 1’s, of length
` ≤ 4 has as a successor a block of 1’s of length at least 5.

Step 3 (additive configurations). Assume that all blocks of ξ0 are of length divisible by 4.
Then this is true for all t. Moreover, assume also that ξ0(0) = 1 and ξ0(−1) = 0, and let
λt(x) = ξ2t(4x). Then λt evolves as Rule 90 .

Step 4 (Jen conjugacy). Keep the assumption from Step 2. For every configuration ξ, define
J(ξ) to be the configuration that elongates every block of length ` to the length 4 · d`/4e. If the
number of blocks of length not equal to 0 mod 4 is constant during time interval [0, t1], then
J(ξt) is the same as ξt evolved from J(ξ0).

The proof is now concluded by an argument exactly like that for Lemma 3.5 in [GG4].

We now turn to the more interesting θ = 2 case. We say that a seed ξ0 dies out if ξt ≡ 0 for
some t. This case is not as easy to handle as Theorem 2, in particular the self-organization time
is not uniformly bounded as isolated 1’s and 0’s may persist for arbitrarily long time: 0001∞

and 011∞ are periodic with temporal periods 2 and 1, respectively.

Theorem 3. Every seed for Quota with θ = 2 is either a maternal replicator or it dies out.
The seeds that die out are exactly those that have only isolated 1’s separated by at least 3 0’s.

This is one of the rare nontrivial cases for which the entropy for all qualitatively different
evolutions is computable. We state the result, the proof of which is a computational exercise,
below.

Corollary 4.1. Assume Quota CA with θ = 2. Large seeds are maternal replicators with
probability approaching 1, hence entropy 1. The entropy of seeds that die out equals log2 λ ≈
0.4650, where λ is the largest root of λ4 − λ3 − 1 = 0.
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Proof. For a configuration ξt, let ι(ξt) be the position of its leftmost site whose state is different
from that of both neighbors. We will prove in Step 1 below that ι(ξt) is a Lyapunov function for
Quota, which drives ξt into a regular configuration in which all blocks are of length at least 2;
the Jen regime then proceeds until all the blocks but possibly one have even length. Thereafter
the dynamics is conjugate to Rule 90 . After Step 1, the argument for the first claim in Theorem
3 is thus very similar to the ones in [Jen4], [GG4], or Theorem 2 above, so it is omitted.

Step 1 (self-organization). For all t:

max{ι(ξt+1), ι(ξt+2)} ≥ ι(ξt) + 1.

Therefore, all blocks have length at least 2 for large enough t.

This claim involves finitely many configurations and can be easily checked by computer, but
we find a written-out proof much more illuminating.

We assume, without loss of generality, that ι(ξ0) = 0, and that the configuration near the
origin (underlined) is 0010. First we investigate what might happen in a single time step. To
see whether ι moves at least one site to the right, we need to consider all possibilities for initial
configuration two sites to the right, and three sites to the left, of the 0010 segment. In Table 1
we label by ∗ the sites whose state does not matter and give below the initial configuration the
states at time 1, which are determined from the information given. In square brackets we give
a lower bound on ι(ξ1).

(a) ∗ 0 0 0 0 1 0 0 0
0 0 0 0 0 [+2]

(b) ∗ 0 0 0 0 1 0 0 1
0 0 0 0 1 1 [+3]

(c) ∗ 0 0 0 0 1 0 1 0
0 0 0 1 1 1 [+3]

(d) ∗ 0 0 0 0 1 0 1 1
0 0 0 1 1 [+2]

(e) 1 1 0 0 0 1 0 0 0
1 1 1 0 0 0 [+2]

(f) 1 1 0 0 0 1 0 0 1
1 1 1 0 0 1 1 [+3]

(g) 1 1 0 0 0 1 0 1 0
1 1 1 0 1 1 [−1]

(h) 1 1 0 0 0 1 0 1 1
1 1 1 0 1 1 [−1]

(i) ∗ 1 1 0 0 1 0 0 0
1 1 1 0 0 [+2]

(j) ∗ 1 1 0 0 1 0 0 1
1 1 1 0 1 1 [0]

(k) ∗ 1 1 0 0 1 0 1 0
1 1 1 1 1 1 [+3]

(l) ∗ 1 1 0 0 1 0 1 1
1 1 1 1 1 [+2]

Table 1. Possible configurations after one time step.

Now we observe that only cases (g), (h) and (j) need to be considered further. Each of these
(by the complement property) leads to one of the cases (a)–(f) at time 1, hence ι(ξ2) ≥ 2−1 = 1.

We now proceed to the proof of the second claim.

Step 2 . If ξ0 contains a 11 pattern, so does ξ1.

To prove this, consider the leftmost 11, and assume that its left site is located at 0. Each
of the three possibilities 00011, 01011, or 10011 yields at the next time a 11 to the left of the
origin, the first placed at −1, and the remaining two at −2.
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To finish the proof of the second claim in Theorem 3, observe first that if there is no 11 in
ξ0, but there are two 1’s at distance at most 3, then there is a 11 in ξ1. The condition given is
by Step 2 thus necessary for a seed to die out.

To prove sufficiency assume that every pair of 1’s in ξ0 is at distance 4 or more. Then the
same holds for ξ1 (as such pair can only generate a 1 at the midpoint between them when they
are at distance 4), and then, by Step 1, ξt ≡ 0 for some t.

5 Replicators in Perturbed Exactly 1

We begin by the count of replicators for seeds of length n + 2 up to 17. Our method checks
for the “mass extinction” signature of replication by a time cutoff: the evolution runs to time
t = 2000, and once t > 200 we check whether the density between the extreme 1’s changes from
above 0.9 to below 0.1. Maternal cases are then distinguished as those for which the occupied
sites after the density drop consist of two configurations that are equal up to translation. The
successful pass of this check produced a replicator in every case we investigated further, although
we do not have a proof that this method is completely reliable. The results are shown in Table 2
below. We remark that in most cases (i.e., in all chaotic ones) we have no argument that would
preclude a later onset of replication, so we can only produce lower bounds.

n all maternal fraternal
0 1 1 0
1 2 2 0
2 4 4 0
3 8 8 0
4 16 8 8
5 32 28 4
6 64 30 34
7 128 103 23
8 249 79 170
9 512 398 114
10 975 296 679
11 2046 1500 538
12 3907 720 3187
13 8156 5941 2215
14 15265 2952 12313
15 13957 10050 3907

Table 2. Replicator counts for small seeds.

It is remarkable that, modulo mirror images, only four out the 1024 smallest seeds, i.e., those
of length at most 11, are not replicators. The four “anomalies” have length 10: 1001100111 and
1100101111 both lead to the quasireplicating seed of Theorem 5, 1100110011 is presumably
another quasireplicator (see Section 6 for evidence), and 1001001101 appears to be a chaotic
seed in the sense of [GG4]. The resulting (maximal) chaotic wedge has density 0.375, and other
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properties similar to Exactly 1 chaos, except that there seem to be no quasiperiodic regions, due
to the fact that the wedge spreads slower than the speed of light.

Prevalence for replicators for smaller seeds has its counterpart in relatively large replicator
entropy constants, to which we now turn our attention.

Theorem 4. The entropy of odd maternal replicators, and that of fraternal replicators, are each
at least 0.8923. The entropy of even maternal replicators is at least 0.7741.

We begin by three propositions which will establish sufficient conditions for various types of
replication. We call an initial state ξ0 additive if each 1-block is of odd length and each 0-block
is of odd length at least 3.

Proposition 5.1. Assume that ξ0 is additive and placed so that the leftmost occupied site is at
the origin. Create the initial state λ0 for Rule 90 by changing all 1’s in ξ0 at odd locations to
0. Then ξt is obtained by changing every isolated 0 in λt to 1. In particular, ξt is additive for
all t, and a maternal replicator.

Proof. Clearly it is enough to verify the statement for t = 1. We proceed two steps.

Step 1 . For odd x, ξ1(x) = λ1(x).

Assume that the ξ0 states in the range 2 neighborhood of x are abcde. Under our conditions,
none of a, c, and e can be an endpoint of a block of 1’s. Thus by symmetry there are five cases
we have to check: 00000, 11000, 11110, 11111, 01110, and 01000. In the second and the last
case ξ1(x) = λ1(x) = 1, and in the other three cases they are both 0.

Step 2 . For even x, ξ1(x) = 1 if and only if λ1(x− 1) = λ1(x + 1) = 1. (Note that λ1(x) = 0.)

Now we need to check all possible ξ0 configurations in [x − 3, x + 3]. By symmetry, there
are nine of them: 0000000, 0100000, 0111000, 0111110, 1100000, 1111000, 1111110, 0100010,
1111111. In order, they result in the following configurations (ξ1, λ1) within [x − 1, x + 1]:
(000, 000), (100, 100), (001, 001), (000, 000), (100, 100), (001, 001), (000, 000), (111, 101), (000, 000),
verifying Step 2.

Proposition 5.2. Assume that all 1’s in ξ0 are isolated and the length of all blocks of 0’s has
length 3 mod 4, except that a single block of 0’s has even length. Then ξ0 is an even maternal
replicator.

Proof. We refer back to the previous proposition, and note that in the absence of the irregular
block the comparison dynamics λt starts from λ0 which has 1’s only on locations 3 mod 4. This
is then true for λt at every even time t, while at odd times t, λt(x) = 1 implies that at least one
of λt(x− 1), λt(x + 1) is also 1. This claim is easily proved by induction.

Consequently, ξt = λt for even t, while for odd t all blocks of 1’s in ξt are of length at least 3.
Chose a block of 0’s and track its successors through time: if its length is at least 7, it shrinks
by 2 at each of the next two time steps; if its length is 3, its successor is a block of 1’s of length
at least 7, and then a block of at least 7 0’s at the next time.



5 REPLICATORS IN PERTURBED EXACTLY 1 16

Remove a 0 from the chosen 0-block. If it is now of length 2, its successor is an even block
of 1’s of length at least 6, and then a 0-block of length at least 6. If the initially modified block
is of length at least 6, then it merely shrinks by 2, and then by 2 again.

Now add a 0 to the chosen 0-block. If it is now of length 4, its successor is a block of two
0’s flanked by two 1-blocks of length at least 3, resulting next time in an even 0-block of length
at least 8. Again, if the initially modified block is longer (now of length at least 8), it merely
shrinks by 2 in each of the next time steps.

Therefore, if one starts from one of the assumed initial conditions, and the irregular block
is of length 0 mod 4 or 2 mod 4, the resulting dynamics is conjugate to the one with the block
“fixed” by, respectively, adding or removing one site.

We remark that Proposition 5.2 does not hold for a larger number of even blocks, as their
interactions may easily destroy the conjugacy.

Next, we construct fraternal replicators by suitable edge modifications.

Proposition 5.3. A seed η is placed so that its leftmost 1 is at the origin. Assume that another
seed η′ equals η on nonnegative sites, and that η′ is of one of the two types below. Then ξη

t (x) =
ξη′
t (x) for x ≥ −t, t ≥ 0.

Thin configuration. Assume that η(0) = η(1) = η(2) = 1. In addition, to the left of the
origin, η′ only has isolated 1’s and blocks of 0’s of lengths 3 mod 4, except for the block of 0’s
immediately to the left of the origin, which has length 0 mod 4.

Thick configuration. Alternatively, assume that η(0) = 1, η(1) = η(2) = 0. Now require
that, to the left of the origin, η′ only has blocks of 1’s of length 3 mod 4 and blocks of 0’s of
lengths 1 mod 4, except for the block of 0’s immediately to the left of the origin, which has length
2 mod 4.

Proof. Start by observing that the leftmost three states of the configuration ξη
t are in a cycle

111–100 of length two.

Form η′′ by erasing all 1’s from η′ on nonnegative sites, and run the dynamics for a single
time step. As the proof of Proposition 5.1 demonstrates, a configuration of the thick type turns
into configuration of the thin type, and vice versa (except for the now meaningless requirement
on the block of 0’s to the left of the origin).

Thus, we need to verify that the configuration ξη′
1 at time 1 in [−2, 1] is 0100 in the thin

case and 0111 in the thick case, and that the block of 0’s that covers −1 has the correct length
mod 4. But the check of this is trivial for the thin type, and also for the thick type when the
block of 0’s to the left of the origin has length at least 6. When the η′ configuration in [−5, 2] is
11100100, then ξη′

1 in [−5, 1] is 0000111, and the length of the block of 0’s is larger by a single
site from what it would be if started from η′′, thus of length 2 mod 4.

We now proceed to prove Theorem 4 in three separate cases.
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Transitions from the 12 0-types:

0 0 0 0
0

↗
↘

0 0 0 0
0

0 0 0 1
1

0 0 0 1
1

↗
↘

0 0 1 0
1

0 0 1 1
q

0 1 0 0
1

↗
↘

1 0 0 0
q

1 0 0 1
q

0 1 0 1
0

−→ 1 0 1 1
0

0 1 0 1
1

−→ 1 0 1 0
q

1 0 0 0
0

−→ 0 0 0 0
0

1 0 0 0
1

−→ 0 0 0 1
1

1 0 0 1
0

−→ 0 0 1 1
q

1 0 0 1
1

−→ 0 0 1 0
1

1 1 0 0
0

−→ 1 0 0 1
q

1 1 0 0
1

−→ 1 0 0 0
q

1 1 0 1
0

↗
↘

1 0 1 0
q

1 0 1 1
0

Transitions from the 11 1-types:

0 0 1 0
1

↗
↘

0 1 0 0
1

0 1 0 1
q

0 0 1 1
0

−→ 0 1 1 1
0

0 1 1 0
1

−→ 0 1 1 0
q

0 1 1 0
0

−→ 1 1 0 1
0

0 1 1 0
1

−→ 1 1 0 0
q

0 1 1 1
0

↗
↘

1 1 1 0
0

1 1 1 1
0

1 0 1 0
0

−→ 0 1 0 1
q

1 0 1 0
1

−→ 0 1 0 1
1

0 1 1 1
0

↗
↘

0 1 1 0
q

0 1 1 1
0

1 1 1 0
0

↗
↘

1 1 0 0
q

1 1 0 1
0

1 1 1 1
0

↗
↘

1 1 1 0
0

1 1 1 1
0

Table 3. Transition rules for the quintuples.

Proof. (Odd maternal case.) We suitably modify the method from [GG4], by counting prede-
cessors of additive configurations, i.e., configurations that lead to an additive state after j-steps.
Essentially, we reinterpret de Bruijn diagram ideas [Jen1] in a format suitable for efficient sparse
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matrix computations. To do this, we use j-quintuples, which are defined recursively: a (j + 1)-

quintuple is a scheme
a b c d

e
, where a, b, c, d ∈ {0, 1} and e is a j-quintuple. We call c

the type of quintuple.

We restrict the type of e to be a possible result of the Perturbed Exactly 1 rule at a site
whose neighborhood states are abcd0 or abcd1. Therefore, the constraint on the type of e is as
follows: If both abcd0 or abcd1 produce the same state s, then the quintuple e must be of type
s. For j ≥ 0, consider two (j + 1)-quintuples with identical first rows and their two e’s of the
same type similar . We have 23 possible similarity classes, 12 0-types and 11 1-types, listed on
the left sides of the transitions in Table 3, where the underlined 0’s and 1’s represent arbitrary
j-quintuples of respective types.

The recursive construction starts with 0-quintuples. By definition, there are five of them,
ordered as given here: three 0-types, which we denote by 01, 0o, 0e, and two 1-types, which
we denote as 1o, and 1e. These are used to count additive configurations. Namely, we need to
enumerate the number of paths from 1o to 1o in a directed graph with connections 1o → 01,
1o → 1e, 1e → 1o, 01 → 0e, 0e → 0o, 0o → 0e, 0o → 1o. (Here, the e and o subscripts stand for
elements that are at even and odd locations within a particular block, and the 01 stands for the
first zero after a block of ones.)

The j-step predecessors will be represented as paths through j-quintuples, thus we recursively
list transitions for (j+1)-quintuples in Table 3. An arbitrary j-quintuple of type 0 is represented
by 0, and 1 has analogous meaning; these are possibly different on the left and right side of any
transition. Moreover, q represents an arbitrary j-quintuple, and transitions are thus determined
recursively by the possible j-quintuple transitions (satisfying the restrictions on type).

For example, a (j + 1)-quintuple similarity class Q5=
0 1 0 1

1
implies that a site x is

in state 1 at some time t, and its neighborhood state is 0101s at time t− 1, for some s ∈ {0, 1}.
But then the CA rule dictates that s is 0, and so the first four states of the neighborhood of
x+1 at time t− 1 are 1010. As neighborhood configurations 10100 and 10101 produce different
results, there is no restriction on the type of the j-quintuple on the bottom row; therefore,

in Table 3, Q5 transitions to
1 0 1 0

q
. The interpretation is that all possible transition

from a j-quintuple of type 1 to a j-quintuple of any type determine all transitions from any
representative of Q5.

The rules in Table 3 translate, via a block substitution rule, into a recursive construction
of the transition matrices M , with the base (j = 0) matrix given by the transitions for 0-
quintuples. For any j, matrices are of the dimensions n0 +n1, where n0 and n1 are the numbers
of j-quintuples of the corresponding type. We will not give further details, which proceed along
the same lines as in the proof of Theorem 2 in [GG4].

This algorithm results in the estimates in Table 4, computed by MATLAB’s sparse matrix
routines (see the script at [GGM], with λmax the maximum eigenvalue of M and the last column
rounded down. The final number is featured in the statement of the theorem.
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j n0 + n1 λmax log2 λmax

0 5
√

2 0.5
1 59 1.7578 0.8137
2 680 1.8201 0.8640
3 7862 1.8403 0.8799
4 90860 1.8562 0.8923

Table 4. Entropy estimates for odd maternal replicators based on j-quintuples.

The matrices M are periodic with period 2, so they have eigenvalues ±λmax. Thus it is
crucial to note that the path between extreme 1o’s takes an even number of steps.

Proof. (Even maternal case.) We now use Proposition 5.2. The crucial observation is that we
can merely count the predecessors of configurations in the statement of that proposition without
the even block. Indeed, to each such predecessor, a 1 could be added to, say, its right side,
separated from the extreme 1 by a sufficiently large even block of 0’s. See Fig. 8 for an example.

The method from now on is the same as the previous proof, except for the new definition of
0-quintuples. Again, there are five of them: four 0-types denoted by 00, 01, 02, 03, and a single
1-type, denoted simply by 1. The transitions are 00 → 01 → 02 → 03 → 00, and 1 → 01, 03 → 1.
The resulting estimates are given in Table 5.

j n0 + n1 λmax log2 λmax

0 5 21/4 0.25
1 62 1.6441 0.7172
2 710 1.7017 0.7669
3 8216 1.6806 0.7481
4 94940 1.7101 0.7741

Table 5. Entropy estimates for even maternal replicators based on j-quintuples.

Proof. (Fraternal case.) This is an easy consequence of Proposition 5.3. Namely, observe that
both thin and thick types add odd length to a seed. To produce an even fraternal replicator,
we can enlarge any seed used in the proof for the odd maternal replicator case by 111 placed on
the right after a sufficiently large even block of 0’s (of length 2 or 4 mod 2 so that it is in the
correct phase when it interacts with the original seed). To make the fraternal replicator odd,
we in addition append a thin type, say, 00001. Again, see Fig. 8 for an example.

Proposition 5.3 also yields a curious property of Perturbed Exactly 1 : entropy of any non-
trivial property that does not depend on the behavior on the edge of the light cone is uniformly
bounded from below. Note that replication and quasireplication satisfy the assumption, but
maternal replication does not. Due to the example presented in the next section, we thus get a
lower bound on the entropy of quasireplicators that are not replicators.
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Fig. 8. Constructions in the proof of Theorem 4. Top left is the evolution from seed A =
110000001 whose configuration becomes additive in four steps and is therefore an odd maternal
replicator. Top right seed, A[10 0’s ]1, is designed to lead to a configuration from Proposition
5.2 in 4 steps, thus is an even maternal replicator. Bottom two seeds are A[10 0’s ]111 and A[10
0’s ]11100001, an even and an odd fraternal replicator.

Proposition 5.4. If there exist a seed with property P, i.e., P 6= ∅, and that, for an arbitrary
k ∈ Z and any seed, P only depends on the configuration on {(x, t) : x ≥ k − t}. Then the
entropy of P is at least 0.8075.

Proof. It is easy to verify that, started from any seed, the left edge of any configuration is either
100 or 111 by time 2: if the left edge is 1010 or 1100 then this already happens at time 1, in the
remaining two cases, 1011 and 1101, the left edge is 1100 at time 1.

Thus, by Proposition 5.3, the entropy is at least the entropy of the seeds which start with
a single 1, then to the left a configuration of the second type, then to its left a configuration of
the first type, etc., and also at least the entropy of their predecessor set.

The base (j = 0) directed graph now has 13 vertices, labeled 1 and 0thin
i , 0thick

i , 1thick
i ,

i = 0, 1, 2, 3. Any symbol with subscript i transitions to the same symbol with subscript (i +
1) mod 4 and in addition we have transitions 1 → 0thin

1 , 1thick
3 → 0thick

1 , 0thin
3 → 1, 0thin

2 → 1thick
1 ,

0thick
1 → 1thick

1 , 0thick
0 → 1. The resulting matrix substitution scheme yields the estimates in

Table 6.
j n0 + n1 λmax log2 λmax

0 13 1.3339 0.4157
1 154 1.6828 0.7508
2 1774 1.7364 0.7961
3 20512 1.7431 0.8017
4 237052 1.7502 0.8075

Table 6. Entropy estimates for edge modifications based on j-quintuples.
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6 Quasireplicators in Perturbed Exactly 1

We begin with the main task of this section, which is to give a complete proof that a particular
initial state leads to a fractal Willson limit, but not to replication.

Theorem 5. Initial state 1000111[10 0’s]1000111 is a quasireplicator, but not a replicator, for
Perturbed Exactly 1 .

Proof. Let B = 000111 and consider the seven quasireplicating elements 0; three L-types: 1B,
0B, and 1; and three R-types: 01B, 00B, and 01. Recall that the placement of a configuration
is the position of its left endpoint.

Step 1 . Assume that at time 0 the elements are placed at sites of 16Z in such a way that
an L-type is never followed by an R-type if the corresponding entry in Table 7 is empty. The
resulting configuration at time 8 consists of elements placed at 16Z+ 8, each computed by the
rule in Table 7: the element at 16k + 8 at time 8 is obtained as the result of (noncommutative)
interaction between its left element at 16k and the right element at 16(k + 1) at time 0.

Note first that all elements consist of at most 8 sites. Next observe first that the speed of light
of Perturbed Exactly 1 (two spatial units per time unit) implies that the configuration in [8, 15]
at time 8 only depends on the initial configuration in [−8, 31]. The proof of Step 1 then reduces
to finite checking, best done by computer; merely running the dynamics from the assumed initial
state, which consists of suitably placed 1B and 01B, one can catalog all interactions by time
128 (and most by t = 64, see Fig. 9).

We will now consider the CA with the 7 elements as states, and on space-time sites (x, t)
with x + t even. For notational convenience, we will start this CA at time t = 1, with 1B
and 01B states at 1 and −1, respectively, and 0’s elsewhere. We call the resulting evolution ηt,
following rules from Table 7, the B-dynamics. We say that the evolution is well-defined up to
time T , if the missing pairs in Table 7 do not occur in ηt, t < T . We will establish later that
B-evolution is well-defined for all time. For a B-configuration η, we define configurations C(η),
D(η), and N(η) with states 0 and 1: C(η)(x) = 0 exactly when η(x) ∈ {0, 1, 01}, D(η)(x) = 0
exactly when η(x) ∈ {0, 1B, 01B}, while N(η)(x) = 0 exactly when η(x) ∈ {0, 0B, 00B}.

0 1B 0B 1 01B 00B 01
0 0 1B 0B 1 01B 00B 01

1B 1B 0 1 0B 00B 1
0B 0B 1 0 1B 0
1 1 0B 1B 0 0

01B 01B 0 01 00B

00B 00B 01 0 01B

01 01 00B 01B 0

Table 7. Interactions between quasireplicating elements. Left elements are listed by row, and
right elements by column.
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Fig. 9. Evolution of Perturbed Exactly 1 from the initial state in Theorem 5 up to time 64,
with darker configurations at times that are multiples of 8, and highlighted replicating elements
.
Step 2 . Assume that the B-dynamics is well-defined up to time T . Then all L-types are to the
left of all R-types. Moreover, for t ≤ T , N(ηt) is obtained from N(ηt−1) by Rule 90 .

The proof is an inspection of Table 7.

Call a B-configuration ηt symmetric if the state of x = 0 (for even t) is 0, nonzero states
occurs at symmetrically placed positions −x, x, x > 0, and the R-type at x is obtained from
the L-type at −x by prefixing a 0.

Step 3 . Assume that the dynamics is well-defined up to time t1. Assume also that the dynamics
is symmetric at time t1 and that for times t ∈ [t1, t2] there is no ordered pair 1B, 01B in ηt. Then
the configuration is symmetric for t ∈ [t1, t2 + 1], and well-defined up to time t2 + 2. Finally,
for t ∈ [t1 + 1, t2 + 1], C(ηt) and D(ηt) are obtained, respectively, from C(ηt−1) and D(ηt−1) by
Rule 90 .

The proof is another inspection of Table 7, and an easy induction argument for symmetry
(note that under symmetry all L-R interactions other than 1B-01B produce a 0).

The assumptions at Step 3 are satisfied for [t1, t2]=[3, 6], [9, 30], [33, 126], etc. At time t = 7,
the pair 1B, 01B appears, which at time 8 produces 00B at the origin, which violates symmetry
but is annihilated at the next time by interaction between 0B to the left and 00B to the right.
We will show this happens exactly at times 2n, n odd. Before we do that, we need to study
another auxiliary dynamics.

Consider the Rule 90 CA, started from 1 placed at the origin. By symmetry, the origin is
not occupied at any later time. Add an occupied site at the origin at time 2 and then restart
the Rule 90 dynamics. Then make the origin (which would otherwise be empty) occupied at
time 23 = 8, then again at time 25, and in general at any time 2n, n ≥ 1 odd. Call this rule the
C-dynamics. Once proved, the previous paragraph will imply that 1’s in C(η(t)) are exactly at
positions of 1’s in the C-dynamics.
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Fig. 10. Evolution of C-dynamics up to time 31, and time 512 (small triangle). The resulting
α5 is divided into α4 (top), β4 (bottom left), βR

4 (bottom right), and σ4 (middle) by the thicker
line. Then α4 is subdivided, and so are β4, and σ4; the bottom left subregion of α4 is β3, which
is further subdivided.

We will consider C-configuration αn, at time 2n − 1 in the space-time triangle Tn = {(x, t) :
0 ≤ t ≤ 2n − 1, |x| ≤ t}. We will recursively describe αn by configurations in Tn or in one of its
translates, or in a translate of T ′n = {(x, t) : 0 ≤ t ≤ 2n − 1, |x| ≤ 2n − 1− t}, the upside-down
reflection of Tn. We will use the coordinates in Tn and T ′n, i.e., translate the configurations back
to the original position of Tn or T ′n. Observe that αn is symmetric around the line x = 0.

Step 4 . The recursions are given in Fig. 11.

Note that the dynamics from time 2n to time 2n+1, apart from possible addition of the 1 at
the origin, is additive. Therefore the C-configurations, at time 2n+1, in [−2n+1 + 1,−1] and in
[1, 2n+1 − 1] are suitable translations of the one in [−2n + 1, 2n − 1] at time 2n. By induction,
the following statement follows, which we record in a separate Step, for later use.

Step 5 . The C-configuration at time 2n has 1, 1 at positions 2n, 2n− 2; moreover, it has 1, 1 at
positions ±2, while at 0 it has, by the C-rule, 1 or 0 depending on whether n is odd or even.

The recursion for βn then simply follows from the speed of light, and so does the recursion
for σn. The recursion for λn is an easy exercise (and well-known).

Inductively, σn has no 1 on the boundary of T ′n (|x| = t) and at the next closest sites
(|x| = t−1) only when t = 2k−1, k < n. These generate Rule 90 configurations unless they get
annihilated by the configuration from the previous “nucleus.” The final nuclei at t = 2n−1 − 1
generate a row of 1’s 2n−2 time units later (including the two nuclei next to the boundary) and
a row of 0’s at the next time. This establishes the recursion for νn.
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To establish the recursion for γn and δn, we argue by additivity that γn = βR
n + λn mod 2

for odd n, and thus δn = (βR
n + λn) mod 2 for even n. For example, the bottom right corner

configuration of δn is, modulo 2,

(γn−1 + λn−1)R = γR
n−1 + λn−1 = βn−1 + λn−1 + λn−1 = βn−1.

βn, n even: βn, n odd:

βT
n−1

βn−1

βn−1

σn−1

γn−1

βn−1

βn−1

σn−1

λn−1

λn−1

λn−1
0

λn:

δn−1

δn−1

δT
n−1

σn−1

γn, n even: δn, n odd:

γn−1

γn−1

βn−1

σn−1

σn:
νn−1

σn−1 σn−1

0

νn:

λn−1

νn−2

λn−1
0

0

αn:

βT
n−1

αn−1

βn−1

σn−1

Fig. 11. Recursive specification of αn. The superscript T indicates the mirror image of a
configuration. This implies that the set of space-time occupied sites is exactly solvable [GG1].
Here, λn is generated by Rule 90 from a singleton at the top site of Tn. See Fig. 10 for examples.

Call a pair of binary configuration α and α′ in Tn r-close if for each 1 in α there is a 1 in α′

at `∞ distance at most r, and vice versa.

Step 6 . When defined at the same n, each pair of configurations βn, βR
n γn, δn are 2-close.

This easily follows from the Step 4 recursion, by induction.



6 QUASIREPLICATORS IN PERTURBED EXACTLY 1 25

Step 7 . At x = t, t = 0, 1, . . . 2n − 1, βn has states 10[2 1’s][4 0’s] . . . , ending with an interval of
2n−1 0’s or 2n−1 1’s, depending on whether n is odd or even.

This again follows by induction: the leftmost 1 on the bottom line of λn−1 either annihilates
with the rightmost 1 in the bottom line of βn−1 (odd n), or generates a 1 which propagates
leftward due to the empty bottom triangle of σn.

Step 8 . The B-dynamics ηt is well-defined for all times. At any time t ≥ 1, C(ηt) is given by
the C-dynamics.

Assume inductively that this holds up to time 2n, for some odd n. By Step 2, up to that
time, all states corresponding to 1’s in the translations of configuration σn are 0B or 00B.
Moreover, all 1’s in position described in Step 7 must be occupied by 1B or 01B in the B-
dynamics: certainly the top 1 is, and the rest follows by the B-interactions. Thus, by recursion
for αn, B-dynamics produces a 00B at x = 0 at time 2n+1, which by Step 5 gets immediately
annihilated against its occupied neighbors, as the extra 1 does in the C-dynamics. By Step 3
the claim in Step 8 holds up to time 2n+2.

The configuration αn misses the states 1 and 01 in the B-dynamics, and the next step
explains how those are added. The union, ∪, of two configurations is simply the or operation
between them, i.e., it has a 1 exactly where at least one of them has a 1.

Step 9 . The nonzero states within Tn in the B-dynamics are located precisely at nonzero
positions of αn ∪ λn.

To prove this, we observe that D(ηt) evolves by the C-dynamics, except that the first occupied
site occurs at x = 0 at time 2 is at time 2. Therefore, the positions of nonzero B-states within
Tn are at ⋃

t≤n

(C(ηt) ∪D(ηt)) = αn ∪ (αn + λn) = αn ∪ λn,

where the sum is as usual reduced modulo 2.

Step 10 . Conclusion of the proof.

We will show that the C-dynamics is not a replicator and that its Willson limit, which is the
limit of configurations 2−nαn, is fractal. As we will see this limit has Hausdorff dimension the
same as that of the limit of 2−nλn, which is log 3/ log 2, and then Step 10 finishes the proof.

By Step 6, the odd and even n give the same limit. This limit is a Mauldin-Williams fractal
[MW, BM] and thus has its Hausdorff dimension equal to its box dimension, and determined by
the largest eigenvalue of an appropriate matrix given by the recursion in Step 4. The dimension
in fact does equal to log 3/ log 2, so it is the same as for the Sierpinski gasket. However, the
Hausdorff measure for this exponent is infinite, which is easily shown by the methods in [MW].
(The small triangle in Fig. 10 approximates this fractal.)

To demonstrate that the C-dynamics is not a replicator, observe first that the ether could
only be 0, and that by induction every line on the top half of the configuration σn, n ≥ 2,
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contains at least two occupied points. Thus, by iterating the recursion for σn, every one of first
2k, k ≥ 2 lines contains at least 2n−k points. It follows that the number of occupied points at
times 2n + 2k, n = 1, 2 . . ., is not bounded for any fixed k, which violates a necessary condition
for a replicator.

Fig. 12. Complex quasireplication in Perturbed Exactly 1 .

Perturbed Exactly 1 is apparently capable of another, much more elaborate kind of quasirepli-
cation. In Fig. 12, evolution from the seed 1100110011 is pictured at time a little past a million.
(To be more precise, the density in 1000 × 1000 boxes is shown in shades of gray.) The clear
message is that of a fractal with the Sierpinski gasket dimension, but also that of an uncertain
prospect for a recursive description and a significant challenge for rigorous analysis.

7 Replication and quasireplication in Extended 1 Or 3

For a configuration η ∈ {0, 1, 2, 3}Z, we denote by η mod 2 the configuration obtained by re-
ducing every state of η modulo 2. We call the seeds ξ0 such that ξ0 mod 2 6= 0 genuine; to
avoid trivial cases we will consider only these in this section. As we will see, replication is very
common among genuine seeds. The reasons for this are deserving of a thorough investigation,
which we will not attempt here. Instead, we provide a couple of modest initial results, the first
of which is a sufficient condition on maternal replicators.

We begin with two important observations. First, it is a straightforward to verify that
ξt mod 2 is the 1 Or 3 CA (as it must be because it represents the “first level” Box 13 EBD).
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Moreover, if the initial state consists only of 0’s and 2’s (i.e., there are no first level sites), then
ξt/2 is again 1 Or 3 .

Theorem 6. Assume that a seed has only 0’s and 3’s. Mark a site if it is either in state 3 with
both neighbors in state 3 or both neighbors in state 0, or in state 0 with a neighbor in state 3 and
the other in state 0. Assume the distances between successive marked sites are all even. Then
the seed is a maternal replicator. In particular, the entropy of odd genuine maternal replicators
is at least 0.25.

Proof.

Step 1 . Assume that ξ0 ∈ {0, 3}Z and that no marked sites are neighbors at time 0 (but can be
otherwise at an odd distance). Then ξ2 ∈ {0, 3}Z.

To verify this, we pick an x and consider all possible ξ0 configurations in [x− 2, x + 2]. Up
to symmetry, there are 20 of them. Of these, six (00030, 00303, 03003, 03033, 30033, 33333)
have marked neighboring sites in [x− 1, x + 1]. Further six (00000, 00333, 03030, 30003, 03303,
33033) result in ξ2(x) = 0, and the remaining eight in ξ2(x) = 3.

Step 2 . If the stated assumptions hold for ξ0, they do so for ξ2.

Observe that, at time 0, x is marked exactly when ξ1(x) mod 2 = 1. Therefore, by Step 1,
we need to show that if 1 or 3 , that is, λt = ξt mod 2, has only even sites occupied in λ0, the
same is true for λ2. By cancellative duality [Gri], for any y,

λ2(y) = |λ{y}2 ∩ λ0| mod 2 = |{y − 2, y, y + 2} ∩ λ0| mod 2,

and the intersection is clearly empty if y is odd.

To finish the proof, merely note that λt replicates and at times t = 2n, n ≥ 1, ξt = 3 · λt.
The entropy statement follows from the fact that building a configuration with stated properties
from the leftmost 3 rightward one has two choices at each odd step and a single choice (albeit
dependent on the preceding choices) at each even step.

Call a replicator for Extended 1 Or 3 regular if, perhaps after an enlargement of n0, there
exist a replicating element A such that either the interaction A⊕ 0π ⊕ 0π occurs and equals A,
or the same holds for the interaction 0π ⊕ 0π ⊕ A. In other words, spreading into the ether, A
creates an appropriately positioned copy of itself in some 2i time steps. To date, every replicator
we have checked turned out to be regular. The following proposition exploits the connections to
the “ordinary” 1 Or 3 rule.

Proposition 7.1. Every ether for an Extended 1 Or 3 replicator consists only of 0’s and 2’s.
After all 2’s are replaced by 1’s, an ether is a periodic solution for 1 Or 3 .

Assume ξ0 is a regular replicator. Then σ is a power of 2; moreover, if σ ≥ 2, τ = σ/2.

Proof. Again, denote λt = ξt mod 2. For any seed, 1 Or 3 replicates with 0 ether. To be more
precise, let Ak be the occupied set of λ

{0}
k . Then there are times t1 and 2n1 so that, for all

k = 1, 2, . . . , the configuration of λt at times tk = t1 + (k − 1)2n1 consists of identical finite
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configurations placed at positions of 2n1Ak, with 0’s elsewhere. Therefore, at times tk + 1, the
Extended 1 Or 3 dynamics creates only 2’s outside of a uniformly bounded neighborhood of
2n1Ak. If replaced by 1’s, these 2’s obey the 1 Or 3 rule. This proves assertions in the first
paragraph.

For a regular replicator, there must exist an i so that the ether π agrees with its translation
by 2i, hence σ must divide 2i. For the last claim, we need to show that any periodic solution
for 1 Or 3 , whose spatial period σ ≥ 2 is a power of 2, has temporal period τ = σ/2. Starting
from a single 1 at the origin, 1 Or 3 generates, at time σ/2, 1’s at 0 and at ±σ/2. Therefore,
by additivity, if one starts with 1’s at jσ, j ∈ Z, this state is reproduced at time σ/2. Another
application of additivity demonstrates that τ divides σ/2 for any state with spatial period σ.
To finish the proof, we need to show that τ does not divide σ/4.

As the spatial period is σ but not σ/2, we can assume, via a translation, that for all j ∈ Z,
2jσ/2 contain 1’s and (2j − 1)σ/2 contain 0’s. If the 1 at the origin is to be reproduced at time
σ/4, either ±σ/4 both contain 0’s, or both contain 1’s. But in either case the two states are not
reproduced at time σ/4.

We now proceed with an empirical study of occurrence of different ethers. We will not
distinguish an ether from its spatial translation, from any of its iterates under the Extended 1
Or 3 rule, or their mirror images. The evolution of a periodic solution for 1 Or 3 with given σ
and τ is given by a configuration on a discrete torus with rows indexed by 0, . . . , τ−1 and columns
by 0, . . . , σ− 1. Rotations give σ · τ possible first rows, and the reflection multiplies this number
by 2. (They are not necessarily all different.) Interpret the first row as a binary representation
of a number and chose the one with the smallest such number among all possibilities. This
gives (via the above proposition) the signature of an Extended 1 Or 3 ether. For example, the
signature of the only ether we found with σ = 4 is 0001 and thus it can be given by 0002∞.

no. τ σ ρ freq. signature ξ0

1 1 1 0 0.654 0 1
2 1 2 1/2 0.064 01 303
3 2 4 1/2 0.029 0001 1001001
4 4 8 3/8 0.092 [7]1 10111
5 4 8 3/8 0.009 [5]101 100110011
6 8 16 5/16 0.006 [15]1 1000001001
7 8 16 5/16 0.003 [11]10001 300000003
8 8 16 3/8 0.013 [9]1000101 10010101
9 8 16 7/16 0.009 [7]101010101 1000011001
10 32 64 97/256 0.003 [11]1[9]100010101[9]1[7]1[5]10101000101 1101000111

Table 8. Ethers emerging from seeds of length at most 10. The first column is the serial
number, the fourth column the frequency among genuine seeds of length at most 10, and the
last column the simplest generating seed. In the signatures, [k] stands for an interval of k 0’s.
Other information is self-explanatory. The total proportion of all replicators is 0.883.
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We look for replicators via the following algorithm. Start by picking two positive integers d
and σmax. Build two sequences of length 2d−1 at time t = 2d + 2d−3: (a0, . . . , a2d−1−1) = (ξt(x) :
−2d + 2d−2 < x ≤ −2d−2) and (b0, . . . , b2d−1−1) = (ξt(x) : 2d−2 ≤ x < 2d − 2d−2). Then check
whether ai = ai+σ = bi+p for some 0 ≤ p < σ ≤ σmax and all i < 2d−1 − σ. As in Section 5, a
successful pass of this check does not constitute a proof that a seed is a replicator, but again it
appears to be a reliable sufficient condition for the choices we use, d = 12 and σmax = 128. First
we ran this algorithm on every seed of length at most 10 and found 10 different ethers, which
are given in the Table 8.

It is not feasible to analyze all seeds of larger lengths, so we resorted to random samples,
and found that the proportion of replicators rapidly approaches 1. In fact, in a sample of 105

randomly chosen seeds of length at most 100, every single instance was a replicator with σ ≤ 64.
There were 152 different ethers, and the most common were nos. 1, 4, 2, 3, 5, and 9, with
respective frequencies 0.64, 0.1, 0.05, 0.05, 0.03, and 0.02.

How confident can we be that not all seeds are replicators? Certainly there are mixed
examples, but we are more interested in genuinely different behaviors. For example, the seeds
110111 and 1000011 appear to exhibit (different) chaotic dynamics during the first few thousand
time steps, but then nearly (but not quite) replicate in the next million steps. It is at least clear
that each of these two has a very long self-organizing epoch, and consequently our computations
fail to suggest a coherent hypothesis.

Fig. 13. Extended 1 Or 3 from ξ0 = 3 at time 220. Densities in 29 × 29 boxes are represented
in progressively darker colors.

By far, the most intriguing case is presented by the simple seed 3 (and many others, such
as 111 or 30303, that behave similarly). The space-time configuration at time 220 is depicted in
Fig. 13; while later replication appears very unlikely, we do not hazard a more precise conjecture
about asymptotic properties due to the extraordinary complexity of the pattern.
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Finally, we do have an example which is provably non-replicating and a sketch of its analysis
is a fitting conclusion to the paper.

Theorem 7. Initial state 30003 is a quasireplicator, but not a replicator, for Extended 1 Or 3 .

Proof. We present the main steps omitting most of the tedious checking. The key to the analysis
clearly are the more involved dynamics of 2’s within some of the inverted triangles left empty
by ξt mod 2 (see Fig. 14); we call these the relevant triangles. All the facts that need to be
established are about the 1 Or 3 dynamics λt, which will be the default CA for the rest of the
proof.

The dynamics of 2’s within a relevant triangle is determined by the distribution of single 2’s
along its top. These nuclei are spaced at intervals that increase as powers of 2, and then result in
a single nucleus in the triangle below on the same size, which in turn generate the next nucleus
on the relevant triangle of twice the size. Our first step implies that this pattern persists on all
scales.

Step 1 . Fix an n ≥ 3 and assume that λ0 = A, where A is restricted to [−2n, 2n] with 1’s at
2n − 12 · 2k, k = 0, 1, . . . , n− 3. Then, at time t = 2n − 3, λt(0) = 1.

By cancellative duality [Gri], we need to show that at the specified t, λ
{0}
t ∩ A has odd

cardinality. Now, as is easy to prove by induction, λ
{0}
t consists of intervals of three 1’s centered

at 12i, i = 0,±1,±2, . . . , 12i + 4, i = 0, 1, 2, . . . , and 12i − 4, i = 0,−1,−2, . . . . Further,
2n mod 12 is either −4 or 4, when n ≥ 3 is odd or even, respectively. Therefore, for odd n ≥ 3,
λ
{0}
t ∩A consists of a single 1 at 2n−12 ·2n−3 = −2n−1. For even n ≥ 3, the intersection consists

of the positive locations of 1’s in A, and there is n− 3 of them, an odd number.

Next step establishes that the 2’s do extend their influence only through the apex of a
relevant inverted triangle.

Fig. 14. Extended 1 Or 3 from ξ0 = 30003 at time 512; 3’s are black, 2’s are dark gray and
(the rare and almost invisible) 1’s are light gray.



7 REPLICATION AND QUASIREPLICATION IN EXTENDED 1 OR 3 31

Step 2 . Starting from the same initial state as in Step 1, λj(x) = 0 at all even times j ≤ 2n − 4
and x = ±(2n − j − 3).

This follows from cancellative duality and the fact that, for even j, λ
{0}
j occupies only even

positions — in fact, by additivity, its 1’s are located at twice the locations of 1’s in λ
{0}
j/2.

These two steps already show that the Willson limit, if it exists, must be fractal with the
same dimension as that of 1 Or 3 , log(1+

√
5)/ log 2. Indeed, the union of all the sets generated

from all the nuclei within the relevant triangles, together with the set generated by ξt mod 2, is
such a fractal and is an upper bond for our Willson limit. Also, a similar argument as in the
proof of Theorem 5 demonstrates non-replication.

To demonstrate the existence of Willson limit and thus complete the argument, we need to
specify a recursive description of the state within the relevant triangles. After a proper space
and time rescaling, this reduces to the scheme for αn described in the next step.

region top/bottom left right middle
α00 α11 ν α00 γ1000

α11 α11 ν α10 γ1110

α10 α01 ν α00 γ1100

α01 α01 ν α10 γ1010

γ1000 σ001 σ111 γ1111 ν

γ1111 σ011 σ100 γ0111 0
γ0111 σ011 σ010 γ0111 0
γ1110 σ011 σ100 γ0101 0
γ0101 σ011 σ010 γ0001 0
γ0001 σ001 σ001 γ1101 ν

γ1101 σ011 σ100 γ0001 0
γ1100 σ011 σ100 γ0011 0
γ0011 σ001 σ001 γ1011 ν

γ1011 σ001 σ111 γ1011 ν

γ1010 σ001 σ111 γ1001 ν

γ1001 σ001 σ111 γ1101 ν

ν ν 0 0 σ010

σ001 0 0 σ011 0
σ011 σ010 σ011 σ101 ν

σ111 σ010 σ101 σ101 ν

σ010 σ010 σ011 σ110 ν

σ101 0 σ110 σ011 0

Table 9. Recursive specification for the defined configurations; σ100 and σ110 are given by
symmetry and the four missing γ’s never appear.

Step 3 . Assume that n ≥ 2; we will suppress the subscript n, which we will call level , from α
and all other configurations and regions.
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Let α = α00 be the final space time configuration within T ′ = {(x, t) : |x| ≤ 2n − t − 1},
started from A = A00 with 1’s at 2n − 3 · 2k, k = 0, 1, . . . , n − 2. For c, d ∈ {0, 1}, let Acd be
the configuration obtained by changing the states of A00 at 2n − 3 · 2n−3 − 2n−3 to c and at
2n−3 ·2n−3+2n−3 to d. Then let αcd be the configuration within T ′ started from Acd. Moreover,
let ν be the configuration generated within T ′ by a single 1 at the origin.

Let a, b, c, d ∈ {0, 1}, and build an initial configuration as follows. First take Acd at level
n−1 and translate it by 2n−1 (that is, add 2n−1 to the positions of all 1’s). Further, make a the
state at −2n and b the state at the origin, with 0’s elsewhere. Then let γabcd be the resulting
space-time configuration within T = {(x, t) : 0 ≤ t ≤ 2n− 1, |x| ≤ t}. Finally, define σabc within
T , for a, b, c ∈ {0, 1}, as the eight configurations generated by a at −2n, b at 0, c at 2n, and 0’s
elsewhere. (We write 0 in place of σ000.)

We divide T and T ′ into four triangles as in Fig. 11 (specifically, as in the αn and σn

division, respectively, in that figure). Then the recursions are specified in Table 9, with the four
subtriangles referred to as left, right, middle, and top (for T ) or bottom (for T ′); all are easy to
check using additivity.

8 Open problems

(1) Does Exactly 1 have a replicator with a nonzero ether? Does it have a replicator which
emulates an additive rule different from Rule 90? Does it have a quasireplicator which is not a
replicator?

(2) Does Perturbed Exactly 1 have a periodic attractor? The methods developed in [GG4] do
not apply.

(3) For 1 Or 2 , choose a random seed of a large length n+2. Does ta/n converge in distribution
along every subsequence nk = α2k, α ∈ (0, 1]? What is the asymptotic behavior of max ta? The
same questions can be asked about t0.

(4) Is there a nontrivial upper bound for replicator entropy for Perturbed Exactly 1? An easier
task may be to prove that replicator probability does not approach 1 for long seeds. For Exactly
1 , the latter claim follows from the existence of robust periodic solutions [GG4], but again the
method does not extend to Perturbed Exactly 1 .

(5) For Embossed Triangles, are all seeds replicators, possibly mixed with two ethers?

(6) What can be said about replication in Quota with arbitrary range and θ [CD]?

(7) Does Perturbed Exactly 1 have a quasireplicator with the Willson limit different from the
two discussed in Section 6? Can one develop a method robust enough to deal with the dynamics
of Fig. 12?

(8) What is the set of possible ethers for Extended 1 or 3? Starting this CA from a random
seed of length at most n + 2, does replication probability approach 1 as n →∞?
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[Woj] M. Wójtowicz, Mirek’s Cellebration: a 1D and 2D Cellular Automata explorer .
http://www.mirwoj.opus.chelm.pl/ca/

[Wol1] S. Wolfram, Statistical Mechanics of Cellular Automata, Rev. Mod. Phys. 55 (1983)
601–644.

[Wol2] S. Wolfram, Computational Theory of Cellular Automata, Communications in Mathe-
matical Physics 96 (1984), 15–57.

[Wol3] S. Wolfram, “A New Kind of Science.” Wolfram Media, 2002.


