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We present a new algorithm that automatically computes a measure of the geometric
difference between the surface of a protein and a round sphere. The algorithm takes
as input two triangulated genus zero surfaces representing the protein and the round
sphere, respectively, and constructs a discrete conformal map f between these surfaces.
The conformal map is chosen to minimize a symmetric elastic energy ES (f ) that measures
the distance of f from an isometry. We illustrate our approach on a set of basic sample
problems and then on a dataset of diverse protein structures. We show first that ES (f )
is able to quantify the roundness of the Platonic solids and that for these surfaces
it replicates well traditional measures of roundness such as the sphericity. We then
demonstrate that the symmetric elastic energy ES (f ) captures both global and local
differences between two surfaces, showing that our method identifies the presence of
protruding regions in protein structures and quantifies how these regions make the shape
of a protein deviate from globularity. Based on these results, we show that ES (f ) serves
as a probe of the limits of the application of conformal mapping to parametrize protein
shapes. We identify limitations of the method and discuss its extension to achieving
automatic registration of protein structures based on their surface geometry.
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1. INTRODUCTION
Proteins, the end products of the information encoded in the
genome of any organism, play a central role in defining the life of
this organism. They catalyze most biochemical reactions within
cells and are responsible, among other functions, for the trans-
port of nutrients and for signal transmission within and between
cells. As a consequence, a major focus of bioinformatics is to study
how the information contained in a gene is decoded to yield a
functional protein (Pevsner, 2009). The overall principles behind
this decoding are well understood. The sequence of nucleotides
that forms a gene is first translated into an amino acid sequence,
following the rules encoded in the genetic code. The correspond-
ing linear chain of amino acids becomes functional only when it
adopts a three-dimensional shape, the so-called tertiary, or native
structure of the protein. This is by no means different from the
macroscopic world: most proteins serve as tools in the cell and as
such either have a defined or adaptive shape to function, much
as the shapes of the tools we use are defined according to the
functions they need to perform.

Protein structures come in a large range of sizes and shapes.
They can be divided into four major groups, corresponding to
fibrous proteins, membrane proteins, globular proteins, and disor-
dered proteins. Fibrous proteins are elongated molecules in which
the secondary structure forms the dominant structure (Fraser,
2012). They are insoluble, play a structural or supportive role
in the cell, and are also involved in movement (such as in mus-
cle and ciliary proteins). Membrane proteins are restricted to

the phospho-lipid bilayer membrane that surrounds the cell and
many of its organelles (White and Wimley, 1999). These proteins
cover a large range of shapes, from globular proteins anchored
in the membrane by means of a tail, to proteins that are fully
embedded in the membrane. Globular proteins, also referred to as
spheroproteins, due to their compactness, have a unique structure
derived from a non-repetitive sequence. They range in size from
one to several hundred residues, and adopt a compact structure
(Lim, 1974; Levitt and Chothia, 1976; Branden and Tooze, 1991).
While proteins belonging to these three groups illustrate the
shape-defines-function rule mentioned above, intrinsically disor-
dered proteins form a significant group of exceptions, as they lack
stable structures (Dyson and Wright, 1999, 2005; Dunker et al.,
2008). Shape remains important for those proteins, although it is
its flexibility and plasticity that is of essence, as shown for example
in the case of P53 (Oldfield et al., 2009).

The overall importance of shapes for proteins underlines the
importance of being able to study, measure and compare those
shapes. The most relevant mathematical fields for this topic are
Topology and Geometry. One of the first questions that arise in
these fields is what distinguishes a space from the simplest and
most symmetric shape, the sphere (Bryant and Sangwin, 2011).
The 3-dimensional Poincare conjecture for example, recently
proved by Perelman (for review see Morgan, 2005), states that if
a closed 3-manifold is simply connected then it is homeomor-
phic to the 3-sphere. In differential geometry, a main focus is how
the local geometry of a space, as measured through its curvature,
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differs from the local geometry of a sphere, and how that differ-
ence affects global properties of the space. The Sphere Theorem
of differential geometry states that a simply-connected smooth
manifold whose curvatures are sufficiently close to those of a
sphere is itself a sphere (Brendle and Schoen, 2009).

The fundamental question that arises is how to describe the
geometry of a shape such as a protein. The configuration of
atoms that constitute a protein can be explicitly obtained by
high-resolution experimental methods such as X-ray crystal-
lography, nuclear magnetic resonance (NMR) spectroscopy, or
cryo-electron microscopy. As of September 2014, the geometries
of over 100,000 proteins are available in the Protein Data Bank
(PDB) (Bernstein et al., 1977; Berman et al., 2000). The PDB
file corresponding to a protein contains the coordinates of all its
atoms. This representation has its limitations. Indeed, it corre-
sponds to a rigid representation of a protein, while proteins have
dynamic structures, a key feature that explains their functions,
over a large range of time scales, from the nanosecond to the
minute time scales (Henzler-Widman and Kern, 2007; Henzler-
Widman et al., 2007; Vendruscolo and Dobson, 2011). This means
that modeling them with a single rigid representative in 3-space
R

3 can be problematic.
One approach to overcoming the challenges raised by flexibil-

ity is to work with the geometry of a 2-dimensional surface that
encloses the protein, rather than with the 3-dimensional atomic
coordinates. Following the space-filling models such as those of
Corey-Pauling-Koltun (CPK; Corey and Pauling, 1953; Koltun,
1965), a protein is represented as the union of balls, whose cen-
ters match with the atomic centers and radii defined by van der
Waals parameters. The structure of a protein is then fully defined
by the coordinates of these centers, and the radii values. One
option for generating a 2-dimensional surface that encloses a pro-
tein is to consider the geometric surface or boundary of its union
of balls, the vdW surface of the protein. Note that other defini-
tions are possible, such as the accessible surface (Lee and Richards,
1971), the molecular surface (Richards, 1977), and the skin sur-
face (Edelsbrunner, 1999). While the dynamics of a protein can
cause some distortion of its surface, the geometry of this surface
is generally well preserved under motions, much more so than the
occupied solid region in 3-space. Focusing attention on the sur-
face of the boundary of a protein is also biologically reasonable,
since the main biological functions of a protein take place at its
surface.

Within this framework, the basic question about protein shape
resemblance asks for a measure of the similarity of two protein
surfaces. With this paper, we begin an investigation of this question.
Our eventual aim is to get a meaningful measurement of the relative
similarity of any pair of proteins. It seems useful however to first
compareproteingeometriestoasinglewellunderstoodbenchmark.
We could take some fixed protein as a benchmark, but the results
we obtain would then be dependent on a rather arbitrary choice
of a reference protein. To develop our method in a geometrically
meaningful framework, we use the round sphere as a base shape to
compare to a range of proteins. The sphere is the most symmetrical
surface in 3-space, and the resemblance of a protein to a sphere
reflects the symmetry, convexity, and globularity of the protein.
With this in mind, we focus on the following question: How round

is a protein? A suitable answer would assign a nonnegative number
to each protein that indicates how far away it is from being round.
This number should be stable under small perturbations, and not
change significantly for different poses of a single flexible protein.
We also choose it to be independent of scale.

Ideally, shape comparison techniques aim at defining directly
a map between any two shapes that is as close to an isometry
as possible. This is however a difficult problem, as the space of
possible near-isometric maps is extremely large and not straight-
forward to characterize mathematically. Despite these difficulties,
there have been many methods developed to find such map-
pings, including one for mapping bio-molecular surfaces onto the
sphere (Rahi and Sharp, 2007). These methods rest on the defini-
tion of a distance measure that evaluates how close the map is to
an isometry, on choices of sets of points on the two shapes, and on
an algorithm for finding the mapping between these sets of points
that minimizes this distance measure. The harmonic or Dirichlet
energy (Eck et al., 1995; Alliez et al., 2002), the Procrustes distance
and its continuous variant (Lipman et al., 2013a), the Gromov-
Hausdorff distance and variants (Bronstein et al., 2006; Mémoli,
2007), and the conformal Wassterstein distance (Boyer et al.,
2011; Lipman and Daubechies, 2011; Lipman et al., 2013b) are
popular distance measures used in this context. The closest to-
isometric mapping is then found by exhaustive evaluation of the
chosen distance measure over all permutations of the landmark
points on the two surfaces (Mémoli and Sapiro, 2005), by direct
optimization, such as the generalized multi-dimensional scaling
algorithm proposed by Bronstein and colleagues in (Bronstein
et al., 2006), or through conformal parametrization of the
surfaces (Gu and Yau, 2003; Gu et al., 2004).

In this paper we introduce a new method for measuring the
similarity between a protein and the sphere that is based entirely
on intrinsic geometry. It compares the two shapes by measuring
the distortion of an optimal conformal mapping of the surface
of one to the surface of the other. A preliminary report of this
method was published in Koehl and Hass (2014). We assume
that the surface of the protein is a surface of genus zero in R

3.
This allows us to look for optimal diffeomorphisms (differen-
tiable maps with differentiable inverses) between the surface and
the sphere. The restriction to genus zero is appropriate for a wide
variety of natural surface comparison problems, including facial
recognition (Wang et al., 2005), alignment and comparison of
brain cortical surfaces (see for example Gu et al., 2004; Hurdal
and Stephenson, 2009), and geometric identification and com-
parison of bones (for example Boyer et al., 2011), in addition to
protein surfaces (Rahi and Sharp, 2007). Compared to the other
techniques for comparing genus zero surfaces mentioned above,
the method we describe here has the advantage of being both
computationally efficient and dependent only on the intrinsic
surface geometry of the protein. Computational efficiency allows
for comparisons with large collections of shapes, such as those
found in the Protein Data Bank. Dependence on the intrinsic
surface geometry makes our method well suited for modeling
geometric similarities of flexible shapes, shapes that can bend
over time to realize varying configurations in space. A substantial
number of proteins demonstrate substantial flexibility, and thus
our method seems well suited to their study.
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As mentioned above, this paper is an extension of a previ-
ous study (Koehl and Hass, 2014). It differs mainly in that we
have modified the elastic energy used to measure the difference
between the optimal conformal mapping designed to map a sur-
face onto another and an isometry, and we justify why. We also
introduce a new quantitative measure of the similarity between
a protein surface and the round sphere, and describe how this
measure allows us to set the limits of the applications of confor-
mal mapping to analyzing protein shapes. The paper is organized
as follows. Section 2 provides the mathematical background for
our algorithm: conformal geometry and measures of similarity
between surfaces of genus zero. In Section 3, we provide the
details of its implementation on discrete surfaces, as well as a
description of the test cases used in the Results section. Section
4 presents and discusses the results obtained by our algorithm
first on simple test cases to show the validity and power of the
approach, then on a large dataset of proteins that are compared to
the round sphere. We conclude the paper with a brief discussion
on future developments.

2. MATHEMATICAL BACKGROUND
2.1. BASIC IDEA: FINDING AN OPTIMAL CONFORMAL MAPPING

BETWEEN TWO SURFACES OF GENUS ZERO
Let F1 and F2 be two surfaces of genus zero. Our goal is to define
a map f : F1 → F2 that is as close as possible to an isometry,
i.e., that minimizes the distortion of pairwise geodesic distances
between points. When F2 = S2, i.e., the unit 2-sphere in R

3 and
F1 and F2 are scaled to have the same area, then f gives a measure
of the roundness of F1. We always in this paper scale two surfaces
to have the same area, which we can take to be 4π , the area of the
unit sphere. We then say that F1 is round if f is an isometry. For a
surface that is not round, some metric distortion is found in any
map to or from the sphere.

We now fix F2 = S2 to be isometric to the unit sphere. A
deep result, the Uniformization Theorem, states that given any
smooth genus zero surface F, there is always a conformal diffeo-
morphism from F1 to S2 (see Bers, 1972). Such conformal maps
are not unique. Each conformal diffeomorphism f : F1 → S2 is
part of a family of conformal diffeomorphisms. The space of
conformal diffeomorphisms from S2 to itself forms the group
PSL(2, C), called the Möbius or Linear-Fractional transforma-
tions. Any conformal map C : F1 → S2 can be composed with
a conformal Möbius transformation φ : S2 → S2 to give a new
conformal map φ ◦ C : F1 → S2, and this construction gives all
orientation-preserving conformal maps from F1 to S2.

Given two surfaces F1 and F2 and a conformal mapping f
between them, f can be understood as the composition of three
conformal mapping functions, C1, m and C−1

2 (see Figure 1).
In this composition, m is a Möbius transformation that may
arise through composition with transformations φ1 and φ2 as
described above. We can choose m among the six-dimensional
space of Möbius transformations to yield minimal distortion.

2.2. DISTORTION FROM AN ISOMETRY
At a point p ∈ F1, a conformal map f : F1 → F2 stretches the met-
ric of F1 uniformly in all directions by a positive factor λ(p). A
conformal diffeomorphism then defines a real valued function

λ : F1 → R
+ that measures this point-wise stretching. The func-

tion λ > 0 is called the dilation and is defined by the formula

f ∗(g2) = λ2g1 (1)

where g1, g2 are the metrics on F1, F2 respectively. Since λ > 0,
it can be represented in the form λ = eu, where u : F1 → R is a
real-valued function.

We use the following energy function to measure the distortion
of a conformal map f : F1 → F2 from an isometry. Recall that we
have scaled all surfaces to have area equal to one.

Definition. The symmetric elastic energy of a conformal
diffeomorphism f : F1 → F2 with dilation function λ = eu is
given by

ES(f ) = En(f ) + En(f −1) =
∫

F1

u(x)2 dA +
∫

F2

u(y)2 dA. (2)

In (Koehl and Hass, 2014), we considered a different distortion
energy function:

E(f ) =
∫

F1

(λ(x) − 1)2 dA. (3)

Equations 2 and 3 differ at two levels. First, the distortion over
a whole surface is computed using either the logarithm u of the
dilation function λ, or λ directly. The latter varies between 0
and +∞, with values smaller than 1 corresponding to compres-
sion and values larger than 1 corresponding to expansion. As
such, large compressions can contribute less to the total distortion
than large dilations. In contrast, the function u = ln (λ) varies
between −∞ and 0 for compression, and between 0 and +∞ for
expansion, leading to a more balanced contribution for the two
types of distortion. Second, ES(f ) is symmetric and treats equally
the distortions induced by f and those induced by f −1. In con-
trast, E(f ) only accounts for the distortions induced by f . For
these two reasons, we believe that ES(f ) may be a better measure
of distortion from an isometry.

The symmetric elastic energy defined in Equation 2 has the
following properties (Hass and Koehl, in preparation):

1. For any pair of genus zero surfaces there is a smooth con-
formal homeomorphism between them that minimizes the
symmetric elastic energy.

2. The symmetric elastic energy of a map is zero if and only if
the map is an isometry. (Recall that we are assuming that all
surface areas are equal to 4π .)

3. MATERIALS AND METHODS
3.1. A GENERAL ALGORITHM FOR MAPPING TWO SURFACES OF

GENUS ZERO
The algorithm described below is derived from our initial study
of conformal mapping of genus zero surfaces described in Koehl
and Hass (2014), which gives a comprehensive description. We
focus here on the general concepts and on the differences with
the original algorithm.

Let F1 and F2 be two surfaces of genus zero, represented by
the meshes M1 and M2, respectively. Both meshes are taken to
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FIGURE 1 | Globally optimal conformal mapping. The direct comparison of
two surfaces S1 and S2 relies on the existence of a mapping f between
these surfaces. In general a closed form for f is not known. When the two
surfaces are of genus zero, it is however possible to construct f as a
composition of three mappings C1, m, and C2, where C1 and C2 are

conformal mappings from the surfaces S1 and S2 to the sphere and m is a
bijective conformal mapping of the sphere to itself. The key to our approach is
that the group of conformal self-mappings of the sphere is known: it is the
group of Möbius transforms. As such, m is defined by six parameters that are
optimized to yield minimal distortion (see text for details).

be triangular, with Mi = (Vi, Ei, Ti), i = 1, 2, where {Vi, Ei, Ti}
denote the vertices, edges and triangles, respectively. We note that
these two meshes are completely independent of each other, and
are likely to have different combinatorics.

As illustrated in Figure 1, we rely on the idea that a conformal
mapping f between two surfaces F1 and F2 of genus zero can be
written as the composition of two discrete conformal mappings
C1 and C2 that parametrize S1 and S2 onto the sphere, and a
Möbius transformation m. In optimizing the map produced from
this composition, C1 and C2 are fixed, while m is variable and
depends on six degrees of freedom, summarized in a parameter
vector �h. The key to our approach is to choose the transformation
m to minimize the sum of the distortions between the mesh M1

representing F1 and its image Wm(M1) warped by f onto F2, and
between the mesh M2 representing F2 and its image W−1

m (M2)
warped by f −1 onto F1. The total distortion is a discrete version of
the symmetric elastic energy given by Equation 2 and is computed
as a sum over all edges of the two surface meshes:

ES(f ) =
∑

eij ∈ E1

(
ln

l′ij
lij

)2 Aijk + Aijm

3

+
∑

ekn ∈ E2

(
ln

l′kn

lkn

)2 Aknp + Aknq

3
(4)

Here E1, E2 denote the set of edges in the meshes on F1 and
F2 respectively, lij denotes the length of the edge eij ∈ E1 that
connects vertices vi, vj and l′ij the distance from f (vi) to f (vj).
Similarly lkn denotes the length of the edge ekn ∈ E2 that connects
vertices vk, vn and l′ij the distance from f −1(vk) to f −1((vn). The
areas of the two triangles adjacent to the edge eij are given by Aijk

and Aijm. When f maps a pair of vertices vi, vj of F1 to arbitrary
points in F2, the distance between these points is computed by
extending the metric on the edges of F2 to a flat Euclidean metric
on each 2-simplex of the triangulation.
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We have developed all the tools we need to search for a con-
formal map between two surfaces of genus zero that has minimal
distortion, as defined by Equation 4.

(i) An algorithm for computing the discrete conformal map-
pings C1 and C2:
While Riemann’s Uniformization Theorem guarantees that
any smooth genus zero surface F can be mapped confor-
mally to the unit sphere, the theoretical underpinnings of
the theory of discrete conformal maps are still being devel-
oped. Many methods have been developed to compute them
in practice. We follow the approach proposed by Springborn
and colleagues, which introduces a notion of discrete con-
formal equivalence (Springborn et al., 2008). In this method,
the mesh M representing a genus zero surface F is first made
topologically equivalent to a disk by removing a vertex v0 and
its star. The transformed mesh is projected conformally on a
plane through an optimization procedure (Springborn et al.,
2008). The planar mesh is then warped onto the sphere by
stereographic projection. Vertex v0 is reinstated on the North
pole of the sphere and connected back to the mesh. Finally,
we apply a Möbius normalization to ensure that the center of
mass of all vertices is at the origin of the sphere. Full details on
the implementation of this algorithm are provided in Koehl
and Hass (2014).

(ii) An algorithm for generating the warping of a discrete mesh
onto a surface for a given Möbius transformation m : S2 →
S2:
This algorithm works as follows. A vertex vi in M1 has image
v′

i = C1(vi) in the spherical mesh C1(M1). We locate the
image v′′

i = m(v′
i) on the spherical mesh C2(M2), namely

we identify the triangle t of C2(M2) that contains v′′
i and

compute barycentric coordinates (α, β, γ ) of v′′
i in t. Finally,

we compute the position of v′′′
i = f (vi) on the surface F2 by

propagating the barycentric coordinates (α, β, γ ) onto the
triangle t′ in M2 that corresponds to t. Full details on the
implementation of this method are provided in Koehl and
Hass (2014).

To simplify the notation, we write ES(f ) = ES(m(�h)) = ES(�h) as
the map f is determined by m which in turn is determined by
the six parameters of �h. Simple calculations provide the analyt-
ical expressions for the symmetric elastic energy function ES(�h)
and its gradient with respect to �h. This allows us to apply a steep-
est descent algorithm to search for an optimum for the Möbius
transformation m. Our general algorithm for comparing the two
surfaces F1 and F2 represented with the discrete meshes M1 and
M2 respectively, is then:

The scaling of the surface meshes in step (1) makes our com-
parison method insensitive to global changes of scale. While not
necessary, this step is appropriate to measure scale invariant prop-
erties such as roundness. It is also appropriate when the global
scale used to describe the vertex positions of the input surfaces is
unknown. The damping parameter αn in step (6) is obtained by
solving the equation ES(�hn + αn∇ES(�hn)) ≤ ES(�hn) using a line
search method. The value of TOL is set to a small constant related
to machine error.

Algorithm 1 | Conformal mapping with minimal distortion between

discrete surfaces of genus zero.

Initialization. (1) Scale M1, M2 to have total area one.

(2) Find C1 and C2 that conformally map M1 and M2 onto the sphere,
using the method described above.

(3) Initialise Möbius transformation m0 = m(�h0).

for n = 0, . . . until convergence

(4) Generate f (M1) and f−1(M2) using the warping method described

above, where m = m(�hn) .

(5) Compute ES (�hn) and its gradient ∇ES (�hn) with respect to �hn.

(6) Update �hn+1 = �hn − αn∇ES (�hn).

(7) Check for convergence: if ES (�hn + 1) <TOL, stop.

end for

We have implemented the whole procedure outlined in
Algorithm 1 into a Fortran program, RoundProtein. The results
of a run of this program include a warping of the mesh M1

onto the surface F2, W2(M1) and its corresponding inverse, a
warping of the mesh M2 onto the surface F1, W1(M2), that
minimizes distortion from an isometry among nearby conformal
maps, as measured by the symmetric elastic energy. In addition, it
gives a numeric measure of the geometric difference between M1

and M2 based on Equation 4. When the surfaces F1 and F2 are
isometric, any energy minimizer is an isometry.

When F2 is set to be the round sphere, d(F1, S2) is a measure
of the roundness of the surface F1.

3.2. TRIANGULAR MESHES FOR REGULAR SHAPES
To compare surfaces of genus zero to the round 2-sphere S2, we
need a triangular mesh M(S2). We generate M(S2) by position-
ing N points uniformly on the sphere and forming a triangulation
from these N points.

Distributing points uniformly on the 2-sphere is one of eigh-
teen unsolved mathematics problems proposed by the mathe-
matician (Smale, 1998). We adopt the Thompson formulation of
this problem and define it as the problem of determining the min-
imum electrostatic potential energy configuration of N electrons
on the surface of a unit sphere, that repel each other with a force
given by Coulomb’s law, (Thomson, 1904). The total electrostatic
potential energy of a N-electron configuration is expressed as the
sum of all its pair-wise interactions,

U(N) = 1

4πε0

∑
i < j

1

‖ri − rj‖ (5)

where ε0 is the vacuum permittivity and ri is the coordinate vector
of electron i. A minimum value of U(N) over the configurations
of N distinct points is found by numerical minimization. We used
for this the Matlab package “Uniform sampling of the sphere"
available from Semeshko (2012). Once a minimum configuration
is obtained, a triangular mesh is generated using QHull (Barber
et al., 1996). We note that the optimization of U(N) is computa-
tionally intensive. To generate a mesh that is dense enough on the
sphere, we have used the method described here for N = 1000
and subdivided the corresponding mesh recursively using trian-
gular quadrisection (in this process, a triangle is subdivided into
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4 triangles by adding the three edges that join the midpoint of its
three sides).

In parallel, we have generated dense triangular meshes of the
surfaces of the Platonic solids using a similar procedure. Starting
from the vertices of a platonic solid, we generate a triangular
mesh using QHull. This mesh is then subdivided recursively using
triangular quadrisection.

Table 1 summarizes the characteristics of the triangular
meshes generated for the sphere and the five Platonic solids.

3.3. DATA SET OF PROTEIN STRUCTURES
The set of structures considered in this study is extracted from the
database of 2930 sequence-diverse CATH (Orengo et al., 1997)
v2.4 domains used in a previous study (Kolodny et al., 2005). As
we focus on three-dimensional structures, we consider the first
three levels of CATH, Class, Architecture and Topology, to give a
CAT classification. We refer to a set of structures with the same
CAT classification as a fold. We selected five of the most popu-
lated folds in the database of 2930 structures as the test set for all
computational experiments run in the studies presented in this
paper, including at least one fold from each CATH class: CATH
fold 1.10.10, a fully α fold (arc repressor, 55 representatives),
CATH fold 2.60.40, a fully β fold (immunoglobulin-like, 156 rep-
resentatives), and three mixed α − β folds: 3.20.20, (TIM-like, 52
representatives), 3.30.70, (two layer sandwich, 85 representatives)
and 3.40.50 (Rossmann fold, 185 representatives). These five folds
include a total of 533 proteins.

We represent the surface of each protein by its skin surface
(Edelsbrunner, 1999), given as a triangulated mesh that surround
the atoms of the protein. We use the standard model in chem-
istry of representing a protein structure as a union of balls, with
each ball corresponding to an atom. The skin surface of a protein
is then computed from the boundary of the union of these balls,
where the center of a ball is given by the coordinates of the cor-
responding atom, and its radius is set to 21/6σ + RH2O, where σ

is the vdW parameter for the atom in the AMBER94 force field
(Cornell et al., 1995) and RH2O is the radius of the solvent probe,
set to 1.4 Å.

We generated high quality meshes for the skin surfaces of
all 533 proteins using the program smesh, described in detail
in Cheng and Shi (2004, 2009). Briefly, the algorithm imple-
mented in smesh uses a Delaunay-based method to generate
quality mesh for the skin surface incrementally. In particular,
points are sampled one by one on the skin surface using a front
advancing method. The Delaunay triangulation of the sample

Table 1 | Characteristics of the discrete meshes of regular shapes.

Shape Vertices Faces Vertices in Faces in

fine mesh fine mesh

Tetrahedron 4 4 8194 16,384

Cube 8 6 6146 12,288

Octahedron 6 8 16,386 32,768

Dodecahedron 20 12 18,434 36,864

Icosahedron 12 20 10,242 20,480

Sphere 15,970 31,936

points is maintained using an incremental flipping algorithm
developed by Lawson (1972). A subset of the Delaunay triangu-
lation is extracted that defines candidate surface triangles. These
candidate surface triangles form a partial mesh and guides the
subsequent point samplings. The procedure is applied iteratively
until an ε-sampling of the whole surface is obtained. The cor-
responding surface triangles define the skin surface mesh. The
corresponding triangular meshes have similar sizes for all pro-
teins, with approximately 25,000 vertices and 50,000 triangles on
average We checked that all the meshes have genus zero.

4. RESULTS AND DISCUSSION
4.1. HOW ROUND ARE THE PLATONIC SOLIDS?
We first consider the surfaces formed by the boundaries of the five
Platonic solids: the tetrahedron (4 faces), the hexahedron, or cube
(6 faces), the octahedron (8 faces), the dodecahedron (12 faces),
and the icosahedron (20 faces). These highly symmetric surfaces
serve as a collection of coarse to fine discrete representations of
the sphere, with known measures of the quality of the approxima-
tion. As such, they provide natural test cases for the effectiveness
of our approach to measure surface roundness.

Figure 2 illustrates the quality of the optimal mapping
obtained with RoundProtein between the sphere and the icosahe-
dron, both represented with fine discrete triangular meshes whose
characteristics are given in Table 1. The resulting warping of the
icosahedron mesh onto the surface of the sphere shows 12 dense
spots, corresponding to the 12 vertices of the icosahedron (left
panel). In contrast, the warping of the discrete mesh represent-
ing the sphere onto the surface of the icosahedron shows smaller
distortion. It represents the icosahedron surface well, with rela-
tively large dilation at the vertices (red spots on the right panel
of Figure 2). These dilations are expected as the mesh of the
sphere needs to adapt to the angle defect at these vertices. Similar
results were observed for the four other Platonic solids (results
not shown).

Two common measures of the roundness of a surface
F ⊂ R

3 can also be computed analytically for the Platonic
solids:

(i) The sphericity of a surface measures how efficiently the surface
encloses volume. It is given as the ratio of the surface area of
a sphere (with the same volume enclosed by the surface F) to
the surface area of F:

Sph = π1/3(6V)2/3/A,

where V is the volume enclosed and A is the surface area. The
sphericity is at most one, and equals one only for the round
sphere.

(ii) The ratio RIC of the radii of inscribed and circumscribed
spheres. This is often used as a measure of roundness for
convex surfaces, but is less useful for general shapes.

We will compare these roundness measures with ES. Note how-
ever that these measures are extrinsic, depending on the particular
embedding of a surface into R

3. They will not be preserved under
flexing and bending, unlike ES.
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FIGURE 2 | An ES minimizing map between the sphere and the

icosahedron. We computed the minimal distortion conformal map between
the discrete mesh M1 representing the icosahedron and the discrete mesh
M2 representing the sphere, where distortion is defined by the symmetric

elastic energy given by Equation 4. The left panel shows the warping of the
mesh M1 onto the surface of the sphere, while the right panel shows the
warping of the mesh M2 onto the surface of the icosahedron. Red on the
target indicates large dilation in the source.

In addition, we can measure local deformations between a
Platonic solid and the sphere by computing the solid angle 
 at
each vertex. The solid angle 
 is given by


 = qθ − (q − 2)π, (6)

where

sin
θ

2
= cos (π/q)

sin (π/p)
. (7)

θ is the interior angle between any two face planes of the solid, p
is the number of edges of each face, and q is the number of faces
meeting at each vertex.

In Table 2 we report the values of these measures of round-
ness for all five Platonic solids as well as the minimal symmetric
elastic energies obtained when computing the conformal map-
ping between the solids and the sphere using RoundProtein. As
expected, the sphericity, RIC , and the solid angles 
 increase as the
number of faces of the solid increases, i.e., as the solid becomes
a better approximation of the sphere. In parallel, ES decreases,
i.e., the differences between the conformal mapping constructed
between the solid and the sphere and the isometry become smaller
as the number of faces increases. The decrease in ES is highly cor-
related with the increases in sphericity, RIC , and solid angles, with
Pearson’s correlation coefficients of −0.92, −0.92, and −0.84,
respectively.

We note that the order of the different measures of roundness
does not precisely coincide. Sph and RIC increase monotonically
as the number of faces increases. These two measures capture the
global shape of the solid. In contrast, the solid angle 
 shows a
non-monotonic behavior, illustrated in Figure 3. 
 is a measure
of local differences with the sphere, as it measures how the local
shape around a vertex of the solid differs from a round sphere.
While the octahedron has more faces than the cube, its vertices
have a smaller solid angle, i.e., they have less local resemblance to
the sphere. The same difference in ordering is observed between
the dodecahedron and the icosahedron. Interestingly, the sym-
metric elastic energy ES captures these local differences between

Table 2 | Roundness of the Platonic solids.

Surface # of faces Sphericity, RIC Solid ES

Sph angle, �

Tetrahedron 4 0.671 1
3 ≈ 0.333 0.551 0.96

Cube 6 0.806 1√
3

≈ 0.577 1.571 0.12

Octahedron 8 0.846 1√
3

≈ 0.577 1.360 0.24

Dodecahedron 12 0.910 0.795 2.962 0.02

Icosahedron 20 0.939 0.795 2.635 0.04

Sphere Not defined 1.000 1.000 Not defined 0.00

the shapes, while still decreasing as a shape gets closer globally to
the sphere. As such, ES is able to capture both local and non-local
differences between a surface and a sphere.

4.2. HOW ROUND IS A PROTEIN?
Proteins come in a wide variety of sizes and shapes. Fibrous
proteins, such as collagens that are important for structuring
cellular tissues, have elongated shapes while globular spheropro-
teins that are responsible for catalyzing chemical reactions within
cells adopt a compact structure. Understanding the relationship
between a protein sequence, its shape, and its function is one
of the fundamental problem in biology. Here we address a very
specialized question within this problem, namely the character-
ization of the globularity of a protein, or a quantification of its
roundness. A protein structure can be depicted in many differ-
ent ways, each emphasizing different features of the protein. We
focus on the geometry of a 2-dimensional surface that encloses
the protein, as defined by the skin surface (Edelsbrunner, 1999).

We use CATH533 as our data set of proteins to assess our
approach to measuring the roundness of a surface. CATH533 is
a database of 533 protein structures that covers the three main
classes of CATH: one fully α fold, one fully β fold, and three
α − β folds (the TIM fold, an α/β plait, and the Rossmann fold)
(see Materials and Methods section above for details). We gen-
erated a mesh for each protein in CATH533 using the program
smesh (Cheng and Shi, 2004, 2009) and computed the optimal
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FIGURE 3 | Global and local measures of roundness for the Platonic

solids. We computed the sphericity, Sph, ratio of the radii of the inscribed
and circumscribed sphere, RIC , solid angle 
 at the vertices, and
symmetric elastic energy ES of minimal distortion conformal map between
the Platonic solids and the sphere. (A) Both Sph and RIC vary

monotonically with the number of faces of the solid, slowly converging to
the expected value of 1 for a sphere. (B) F both 
 and ES (shown as −ES

for clarity), we observe two inversions (i.e., non monotonic behavior) when
compared to the number of faces: the cube and the octahedron, and the
dodecahedron and icosahedron.

FIGURE 4 | The distribution of the optimized symmetric elastic

energies ES for the 533 proteins in CATH533. Proteins 1gci00, 1hcrA0
and 1wwcA0 are highlighted as they correspond to the proteins with the
lowest (0.24), second to highest (10.2) and highest (23.0) symmetric elastic
energies, respectively.

conformal mapping between this corresponding mesh and the
discrete mesh representing the 2-sphere using RoundProtein. In
Figure 4, we show the distribution of corresponding optimized
symmetric elastic energies ES.

All proteins included in CATH533 are enzymes and therefore
they are expected to be globular. Indeed, we observe that comput-
ing the optimal mappings f between these proteins and the sphere
leads to mappings that are close to isometries, as measured by
ES(f ), the symmetric elastic energy of the optimal mapping given
in Equation 4. Of the 533 proteins, 352 have an optimized ES(f )
below 1, and 106 of those have an optimized ES(f ) below 0.5. The
“best" mapping, i.e. the one closest to an isometry, is observed
for the protein with CATH code 1gci00. The latter corresponds
to PDB code 1gci which contains the ultra-high resolution (0.78
Å) of B. Lenti subtilisin, a serine protease that is known to form

a very compact beta barrel at its core (Kuhn et al., 1998). The
corresponding optimized symmetric elastic energy of 0.24 would
make this serine protease similar to an octahedron when com-
pared to the sphere (see Table 2). The “worst” mapping, i.e., the
least similar to an isometry, with an optimized symmetric elas-
tic energy of 23.0, is observed for the protein with CATH code
1wwcA0. This is chain A from the PDB file 1wwc that contains
the crystal structures of the neurotrophin-binding domains TrkA,
TrkB, and TrkC, with chain A corresponding to TrkA. The TrkA
domain is known to fold into an immunoglobulin-like struc-
ture, with a core of β-sheet and two long loops at the N and
C termini (Ultsch et al., 1999). It is the presence of these two
long loops that makes the structure deviate significantly from the
sphere (see insert in Figure 4). Interestingly, the next to worst
comparison of a protein surface with the 2-sphere is observed
for the protein with CATH code 1hcrA0. This is chain A from
the PDB file 1hcr, corresponding to the complex of a prokary-
otic Hin recombinase bound to DNA. The recombinase adopts
a 3 helix-bundle conformation, with two long flanking extended
polypeptide regions that contact bases in the minor groove of
the DNA (Feng et al., 1994). As we only consider the structure
of the recombinase, these two regions stand aside from the core
helix bundle, leading to a less compact structure (see insert in
Figure 4).

In Figure 5, we compare the optimized symmetric energy
ES(f ) of the mapping f between a protein surface and the
sphere with the sphericity of the protein surface, computed using
Equation 6, for all proteins in CATH533. Just as for the Platonic
solids, ES(f ) and the sphericity Sph are correlated: as the spheric-
ity increases, the mapping between the protein surface and the
sphere improves, and ES(f ) decreases. Interestingly, the correla-
tion coefficient between ES(f ) and Sph for protein surfaces, –0.64,
is significantly lower than the corresponding correlation coeffi-
cient for the Platonic solids, -0.92. We assign this difference to the
fact that the latter are convex while the geometry of even globular
proteins is more diverse, with more significant local differences to
a round surface that are not captured by sphericity.
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FIGURE 5 | The optimized symmetric energy of the conformal mapping

between the surface of a protein and the round sphere, ES , vs. the

sphericity of the protein surface, for all 533 proteins in CATH533.

Figure 4 illustrates that the optimal conformal mapping
between a protein surface that has long protruding regions
and the sphere deviates significantly from an isometry. To help
understand why this is the case, we compare in Figure 6 the sur-
faces of the three representative proteins identified in Figure 4
with the surfaces generated from the corresponding warping
f −1(M(S2)) of the mesh represented the sphere onto the sur-
faces of the three proteins, where the warping is generated with
RoundProtein.

If the conformal mapping between a protein surface and the
sphere is close to an isometry, it is expected that f −1(M(S2))
closely follows the surface of the protein. This is indeed observed
for the very compact protein 1gci00. The main distortions
observed in the warped mesh occur at bumps in the surface
(which correspond to the spherical representations of the atoms
at the surface of the protein). In the case of the less compact pro-
teins 1hcrA0 and 1wwcA0 however, the warped surfaces generated
from f −1(M(S2)) deviate significantly from the actual surfaces
of the proteins. Most of the distortions occur at the protrud-
ing regions that are not present in the images of the spheres
on the protein surfaces. The discrete conformal mappings of
these protruding regions to the sphere introduce very large neg-
ative conformal factors on their vertices, which in turn lead to
infinitesimally small edge lengths in the projected meshes and
consequently large numerical errors. We have observed similar
behaviors when computing conformal mappings between generic
genus zero surfaces (Koehl and Hass, 2014). This problem is not
specific to our method, as it appears in many conformal map-
ping procedures. In some cases approximating by a conformal
map appears to be too restrictive. One solution is to introduce
cone singularities in the regions with the worst distortions (see
for example Springborn et al., 2008).

Figure 6 illustrates that the distortions introduced by the
restrictive condition that the mapping between the protein sur-
face and the sphere be conformal lead to an image f −1(M(S2))
of the mesh of the sphere onto the surface of the protein that does
not capture well the geometry of this surface. One approach to
measuring these distortions is to compute the ratio of the surface

area AW of f −1(M(S2)) to the surface area AP of the source mesh
representing this protein. We plot this ratio against the symmetric
elastic energy of the refined mapping f , ES(f ), in Figure 7 for all
533 proteins in CATH533. If the mapping f is close to an isome-
try, there should be minimal distortion and f −1(M(S2)) should
be a good representation of the surface of the protein (as illus-
trated in Figure 6 for 1gci00). The ratio AW/AP should then be
close to 1. This is indeed observed for the majority of the proteins
in CATH533. We find that AW/AP is greater than 0.99 for 226
proteins, greater than 0.98 for 471 proteins, and greater than 0.95
for 512 proteins. This ratio decreases significantly as f deviates
more and more from an isometry, with a minimal value of 0.79
for protein 1wwcA0. Interestingly, AW/AP and ES(f ) are strongly
correlated with a Pearson’s coefficient of correlation of 0.95. This
indicates that ES(f ) has value as a tool to test whether a conformal
map is accurately representing a given surface.

5. SUMMARY AND CONCLUSIONS
We have developed a new method for quantifying the compact-
ness of a protein structure. In this new approach we compute the
conformal map f between the surface of the protein (required
to be of genus zero) and the 2-sphere that has minimal distor-
tion, where distortion is defined as a symmetric elastic energy
ES(f ) that measures the distance between f and an isometry. It
leads to flexible registration of the two surfaces and accurate
measurements of their geometric dissimilarities. Its implemen-
tation within the program RoundProteins is based on fast and
robust numerical methods, making surface comparisons feasible
for large data sets of proteins. We have illustrated its use for quan-
tifying the roundness of the Platonic solids and of 533 diverse
protein structures. We have demonstrated that the elastic energy
ES(f ) captures both global and local differences between two sur-
faces. We have shown that our method identifies and measures
the presence of protruding regions in protein structures that make
them deviate from a compact shape.

This paper is a first step toward achieving automatic registra-
tion of protein structures based on their surfaces. The method
described here is an extension of the approach described in Koehl
and Hass (2014) and suffers from similar limitations. We note
that it only applies to surfaces of genus zero and that it works
best for surfaces that have uniform geometry, without long pro-
trusions (Koehl and Hass, 2014). In this paper, we have shown
that this limitation can be used to generate valuable information.
The difficulty that RoundProtein encounters in finding a confor-
mal mapping f between a highly non-spherical protein surface
and the 2-sphere translates into a high value for the symmetric
elastic energy ES of f . Such a high value measures the extent of
the deviation of the protein from being approximately round. It
also indicates the limits of the application of conformal mapping
to parametrize protein shapes, as high values for ES correspond
to significant deviations between the representations of a sur-
face given by its source mesh and the representation given by the
parametrization formed by the target mesh (see Figure 6). For
the limitation to genus zero surfaces, we note that the concept
of discrete conformal structures can be extended to surfaces with
arbitrary topology, either through the introduction of cone sin-
gularities (Springborn et al., 2008), or through the definition of a
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FIGURE 6 | Distortions in the conformal maps between protein surfaces

and the sphere. For the three proteins 1gci00, 1hcrA0, and 1wwa0 (see text
for details), we compare their discrete skin surfaces (left panels), with the

optimized surfaces generated from the conformal warping of the mesh
representing the sphere onto the skin surfaces (right panels). Red on the
warped surface indicates large distortions of the source mesh.

discrete conformal equivalence between a Euclidean triangulation
on the surface and a flat or hyperbolic triangulation (Bobenko
et al., 2010; Tsui et al., 2013). Finding closest-to-isometric map-
pings for surfaces with genus greater than zero remains a topic for
future studies.

Finally, we note that while the symmetric elastic energy of a
conformal mapping between two surfaces F1 and F2 defined in
Equation 2 is useful for measuring the differences between these
two surfaces, it is not clear that it establishes a distance on the
space of genus zero shapes. A number of important applications
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FIGURE 7 | The estimated distortion of the image f −1(M(S2) of the

mesh of the sphere onto the surface of a protein, measured as the

ratio of the surface area of this image and the surface area of the mesh

representing the protein is plotted against the optimized symmetric

energy of the conformal mapping f , ES (f ).

would benefit from an actual metric on the space of genus zero
surfaces.
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