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This paper is dedicated to Hyam Rubinstein on the occasion of his 60th birthday.

Abstract. A major breakthrough in the theory of topological algorithms oc-

curred in 1992 when Hyam Rubinstein introduced the idea of an almost nor-
mal surface. We explain how almost normal surfaces emerged naturally from

the study of geodesics and minimal surfaces. Patterns of stable and unstable

geodesics can be used to characterize the 2-sphere among surfaces, and similar
patterns of normal and almost normal surfaces led Rubinstein to an algorithm

for recognizing the 3-sphere.

1. Normal Surfaces and Algorithms

There is a long history of interaction between low-dimensional topology and the
theory of algorithms. In 1910 Dehn posed the problem of finding an algorithm to
recognize the unknot [3]. Dehn’s approach was to check whether the fundamental
group of the complement of the knot, for which a finite presentation can easily
be computed, is infinite cyclic. This led Dehn to pose some of the first decision
problems in group theory, including asking for an algorithm to decide if a finitely
presented group is infinite cyclic. It was shown about fifty years later that general
group theory decision problems of this type are not decidable [23].

Normal surfaces were introduced by Kneser as a tool to describe and enumer-
ate surfaces in a triangulated 3-manifold [13]. While a general surface inside a
3-dimensional manifold M can be floppy, and have fingers and filligrees that wan-
der around the manifold, the structure of a normal surface is locally restricted.
When viewed from within a single tetrahedron, normal surfaces look much like flat
planes. As with flat planes, they cross tetrahedra in collections of triangles and
quadrilaterals. Each tetrahedron has seven types of elementary disks of this type;
four types of triangles and three types of quadrilaterals. The whole manifold has
7t elementary disk types, where t is the number of 3-simplices in a triangulation.

Kneser realized that the local rigidity of normal surfaces leads to finiteness re-
sults, and through them to the Prime Decomposition Theorem for a 3-manifold.
This theorem states that a 3-manifold can be cut open along finitely many 2-spheres
into pieces that are irreducible, after which the manifold cannot be cut further in
a non-trivial way. The idea behind this theorem is intuitively quite simple: if a
very large number of disjoint surfaces are all uniformly flat, then some pair of the
surfaces must be parallel.
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Figure 1. A normal surface intersects a 3-simplex in triangles and quadrilaterals.

A further advance came in the work of Haken, who gave the first algorithm for the
unknotting problem [6]. Haken realized that a normal surface could be described by
a vector with 7t integer entries, with each entry describing the number of elementary
disks of a given type. Furthermore the matching of these disks across faces of
a triangulation leads to a collection of integer linear equations, and this allows
application of the techniques of integer linear programming. In many important
cases, the search for a surface that gives a solution to a topological problem can be
reduced to a search among a finite collection of candidate surfaces, corresponding
to a Hilbert Basis for the space of solutions to the equations [8]. Problems that can
be solved algorithmically by this approach include:

Problem: UNKNOTTING
INSTANCE: A triangulated compact 3-dimensional manifold M and a collection of edges K
in the 1-skeleton of M
QUESTION: Does K bound an embedded disk?

Problem: GENUS
INSTANCE: A triangulated compact 3-dimensional manifold M and a collection of edges K
in the 1-skeleton of M and an integer g
QUESTION: Does K bound an embedded orientable surface of genus g?

Problem: SPLITTING
INSTANCE: A triangulated compact 3-dimensional manifold M and a collection of edges K
in the 1-skeleton of M
QUESTION: Does K have distinct components separated by an embedded sphere?

But one major problem remained elusive.

Problem: 3-SPHERE RECOGNITION
INSTANCE: A triangulated 3-dimensional manifold M
QUESTION: Is M homeomorphic to the 3-sphere?

Given Perelman’s solution of the 3-dimensional Poincare Conjecture [16], we
know that 3-Sphere Recognition is equivalent to the following.

Problem: SIMPLY CONNECTED 3-MANIFOLD
INSTANCE: A triangulated compact 3-dimensional manifold M
QUESTION: Is M simply connected?
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The 3-Sphere recognition problem has important consequences. Note for example
that the problem of deciding whether a given 4-dimensional simplicial complex has
underlying space which is a manifold reduces to verifying that the link of each
vertex is a 3-sphere, and thus to 3-Sphere Recognition.

In dimension two, the corresponding recognition problem is very easy. Determin-
ing if a surface is homeomorphic to a 2-sphere can be solved by computing its Euler
characteristic. In contrast, for dimensions five and higher there is no algorithm to
determine if a manifold is homeomorphic to a sphere [25], and the status of the
4-sphere recognition problem remains open [15]. The related problem of fundamen-
tal group triviality is not decidable in manifolds of dimension four or higher. Until
Rubinstein’s work, there was no successful approach to the triviality problem that
took advantage of the special nature of 3-manifold groups.

For 3-sphere recognition one needs some computable way to characterize the 3-
sphere. Unfortunately all 3-manifolds have zero Euler characteristic, and no known
easily computed invariant that can distinguish the 3-sphere among manifolds of
dimension three. Approaches developed to characterize spheres in higher dimen-
sions were based on simplifying some description, typically a Morse function. The
simplification process of a Morse function in dimension three, as given by a Hee-
gaard splitting, gets bogged down in complications. Many attempts at 3-sphere
recognition, if successful, imply combinatorial proofs of the Poincare Conjecture.
Such combinatorial proofs have still not been found. A breakthrough occurred in
the Spring of 1992, at a workshop at the Technion in Haifa, Israel. Hyam Rubin-
stein presented a characterization of the 3-sphere that was suitable to algorithmic
analysis. In a series of talks at this workshop he introduced a new algorithm that
takes a triangulated 3-manifold and determines whether it is a 3-sphere. The key
new concept was an almost normal surface.

2. What is an almost normal surface?

Almost normal surfaces, as with their normal relatives, intersect each 3-simplex
in M in a collection of triangles or quadrilaterals, with one exception. In a single
3-simplex the intersection with the almost normal surface contains, in addition to
the usual triangles or quadrilaterals, either an octagon or a pair of normal disks
connected by a tube, as shown in Figure 2. For Rubinstein’s 3-sphere recognition
algorithm, it suffices to consider almost normal surfaces that contain an octagon
disk. Later extensions also required the second type of local structure, two normal
disks joined by an unknotted tube, one that is parallel to an edge of the tetrahedron.

Rubinstein argued that an almost normal 2-sphere had to occur in any trian-
gulation of a 3-sphere, and in fact that the search for the presence or absence of
this almost normal 2-sphere could be used to build an algorithm to recognize the
3-sphere. Shortly afterwards, Abigail Thompson combined Rubinstein’s ideas with
techniques from the theory of thin position of knots, and gave an alternate approach
to proving that Rubinstein’s algorithm was valid [24]. The question we address here
is the geometrical background that motivated Rubinstein’s breakthrough.

To describe the ideas from which almost normal surfaces emerged, we take a
diversion into differential geometry and some results in the theory of geodesics and
minimal surfaces. A classical problem asks which surfaces contain closed, embedded
(or simple) geodesics. The problem is hardest for a 2-sphere, since for other surfaces
a shortest closed curve that is not homotopic to a point gives an embedded geodesic.
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Figure 2. Almost normal surfaces intersect one 3-simplex in an
octagon, or two normal disks tubed together.

A series of results going back to Poincare establishes that every 2-sphere contains a
simple closed geodesic [2, 4, 7, 18, 12]. In fact any 2-sphere always contains no less
than three simple, closed and unstable geodesics. Unstable means that while each
sufficiently short arc of the geodesic minimizes length among curves connecting its
endpoints, the entire curve can be pushed to either side in a manner that decreases
length. The classic example is an equator of a round sphere, for which a sub-arc of
length shorter than π is length minimizing, whereas longer arcs can be shortened
by a deformation, as can the whole curve. In Figure 3 we show several differently
shaped 2-spheres and indicate unstable geodesics on each of them.

Figure 3. Some unstable geodesics on 2-spheres of various shapes

A conceptually simple argument shows that unstable geodesics exist for any
Riemannian metric on a 2-sphere, using a minimax argument that goes back at
least to Birkhoff [1]. Starting with a very short curve, drag it over the 2-sphere
until it shrinks to a point on the other side. Among all such families of curves,
look at the family whose longest curve is as short as possible. This minimax curve
provides an unstable geodesic. It is not hard to show such a curve exists.

Surfaces other then the 2-sphere do not necessarily contain an unstable geodesic.
The torus has a flat metric and higher genus surfaces have hyperbolic metrics, and
in these metrics there are no unstable geodesics. Even the projective plane, the
closest geometric relative of the 2-sphere, has no unstable geodesics in its elliptic
metric. Therefore the property of always having an unstable geodesic, for any
metric, characterizes the 2-sphere.
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We will need to refine this to develop an algorithm. Any surface has some met-
rics in which there are both stable and unstable geodesics. So given any fixed Rie-
mannian metric on a surface, we focus on a maximal collection of disjoint separat-
ing geodesics, both stable and unstable. See Figure 4, where unstable geodesics are
drawn as solid curves and stable geodesics as dashed curves. We assume a “generic”
metric on a surface, in which there are only finitely many disjoint geodesics. Almost
all metrics have this property, which can be achieved by a small perturbation of
any metric [26].

Figure 4. Maximal collections of disjoint separating geodesics on
a 2-sphere and a torus. Stable geodesics are shown with broken
curves.

In these examples we see certain patterns among a maximal collection of disjoint
geodesics on a 2-sphere. These are summarized in the following result.
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Theorem 2.1. Let F be an orientable surface with a generic metric and G a
maximal collection of disjoint, simple, closed and separating geodesics on F . Then
G has the following properties.

• If F is a 2-sphere then G contains an unstable geodesic.
• A region in F − G whose boundary is a single unstable geodesic is a disk.
• A region in F −G whose boundary is a single stable geodesic is a punctured

torus.
• A region in F −G with two boundary geodesics is an annulus whose bound-

ary consists of one stable and one unstable geodesic.
• A region in F −G with three boundary geodesics is a “pair of pants” whose

boundary consists of three stable geodesics.
• No region of F − G has four or more boundary geodesics.

Proof. The proof applies minimax arguments using the curvature flow techniques
developed by Gage, Hamilton, and Grayson [5]. The curvature flow deforms a curve
on a smooth Riemannian surface in the direction of its curvature vector. Applying
this flow to a family of curves gives a continuous deformation of the entire family,
and decreases the length of each of curve, limiting to a point or a geodesic [4].

If a region has an unstable geodesic on its boundary, then this boundary curve
can be pushed in slightly and then shrunk by the curvature flow until it converges
to a stable geodesic or to a point. Thus each region with an unstable geodesic on
its boundary is either a disk or an annulus bounded by one stable and one unstable
geodesic. The boundary curve of a complementary disk region must be unstable,
since shrinking a stable boundary geodesic to a point gives a family of curves in the
disk whose minimax curve is an unstable geodesic in the interior of the disk. But
complementary regions contain no interior geodesics.

A region bounded by a single stable geodesic cannot contain a separating essential
curve that is not boundary parallel, since such a curve could be homotoped to a
separating geodesic in the interior of the region. Thus all essential, non-boundary
parallel simple closed curves in the region are non-separating. Such a curve must
exist since the region is not a disk, and so the region must be a punctured torus.

A minimax argument shows that an annular region bounded by two stable
geodesics has an unstable geodesic separating its two boundary geodesics. The
maximality of G rules out this configuration.

If a region has two non-homotopic stable geodesics on its boundary, then we can
find a new closed separating curve by tubing the two boundary geodesics along a
shortest arc connecting them within the region. This new curve can be shortened
within the region till it converges to a third stable geodesic, which must be a third
boundary component. Thus the region is a pair of pants and has exactly three
stable geodesics on its boundary. It follows that no region has more than three
boundary geodesics. �

These patterns can be used to distinguish the 2-sphere from other surfaces. Fix
any generic metric on a surface F and let G be a maximal family of separating,
simple, disjoint geodesics.

Theorem 2.2 (Geometric 2-Sphere Characterization). F is a 2-sphere if G satisfies
the following conditions:

• There is at least one unstable geodesic in G.
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• No complementary region of F−G has boundary consisting of a single stable
geodesic.

Proof. Suppose that F satisfies these two conditions. Pushing the unstable geodesic
to either side decreases its length. Continuing to decrease length with the curvature
flow, we arrive either at a stable geodesic or a point. If we arrive at a point then
the unstable geodesic bounds a disk on that side. If we arrive at a stable geodesic
then we consider the region on its other side. If this region has only one boundary
component then the surface is not a sphere since it contains a punctured torus.
If the region has one other unstable boundary curve then it is an annulus. If the
region has more than two stable boundary curves, then it’s a pair of pants with
three stable boundary geodesics. Continuing across the new boundary geodesics, we
construct a surface from pieces whose dual graph forms a tree. Unless we encounter
a complementary region of F −G whose boundary has exactly one stable geodesic,
the surface F is a union of annuli, pairs of pants and disks, and these form a
2-sphere. �

A very similar characterization carries over to dimension three and forms the
basis of Rubinstein’s 3-sphere recognition algorithm. We first address the restric-
tion of the curves we considered above to separating curves. One can distinguish
separating and non-separating curves on a surface with homology, and homology
can be efficiently computed from the simplicial structure of a triangulated manifold.
Thus in searching for the 3-sphere we can immediately rule out any manifold that
does not have the same homology as the 3-sphere. In a homology 3-sphere, every
surface separates. In dimension two, homology itself is enough to characterize the
2-sphere, though we did not take advantage of this in our construction. In dimen-
sion three, homology computations alone do not characterize the 3-sphere, but do
reduce the candidates to the class of homology 3-spheres. So we can assume that we
are working in this class and that all surfaces are separating. In particular we can
rule out the possibility that M contains a non-separating sphere or an embedded
projective plane.

For a characterization of the 3-sphere we look at stable and unstable minimal
surfaces instead of geodesics. By 1991 Rubinstein had made two important contri-
butions to the study of such minimal surfaces in dimension three. Each of these two
contributions played a key role in the creation of the 3-sphere recognition algorithm.

Rubinstein had worked on the highly non-trivial problem of showing the existence
of minimal representatives for various classes of surfaces in 3-manifolds. Simon
and Smith had shown that the 3-sphere, with any Riemannian metric, contains an
embedded minimal 2-sphere [22]. This result was extended by Jost and by Pitts and
Rubinstein [11, 17]. In a series of papers Pitts and Rubinstein developed a program
which showed that a very large class of surfaces in 3-manifolds can be isotoped to
be minimal. In particular, their methods indicated that a strongly irreducible
Heegaard splitting in a 3-manifold always has an unstable minimal representative.
To show that a 3-sphere, with any Riemannian metric, contains an unstable minimal
2-sphere, start with a tiny 2-sphere and drag it over the 3-sphere until it shrinks
down to a point on the other side. Among all such families look for the biggest
area 2-sphere in the family and choose a family that makes this area as small as
possible. This minimax construction gives an unstable minimal 2-sphere. The
existence proof is more subtle than for a geodesic, but the concepts are similar, and
the method extends to give the following insight. Suppose we take a stable minimal
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2-sphere in a 3-sphere and shrink it to a point, after necessarily first enlarging its
area. Then among all such families of 2-spheres there is one whose largest area
sphere has smallest area. This minimax 2-sphere is an unstable minimal 2-sphere.

The methods of Pitts-Rubinstein can be used to characterize the 3-ball, similarly
to the first two conditions of Theorem 2.1. The theory is considerably harder since
there is no simple surface flow available to decrease area, unlike the curvature flow
for curves in dimension two. Moreover spheres can split into several components
as their area decreases, unlike curves. However these difficulties can be overcome
[17, 11, 22].

Suppose B is a 3-manifold:

Geometric 3-Ball Characterization:
B is a 3-ball if it satisfies the following conditions

• The boundary of B is a stable minimal 2-sphere.
• The interior of B contains no stable minimal 2-sphere.
• The interior of B contains an unstable minimal 2-sphere.

The idea of such a 3-Ball Characterization follows the lines of the two-dimensional
case. Suppose that B satisfies the three assumptions. Then B contains an unstable
minimal 2-sphere in its interior. Shrinking this 2-sphere to one side must move it to
∂B, as otherwise it would get stuck on some stable minimal 2-sphere in the interior
of B. Similarly, shrinking this 2-sphere to the other side must collapse it to a point,
or again it would get stuck on a stable minimal 2-sphere in the interior of B. Thus
B is swept out by embedded spheres and homeomorphic to a ball.

A similar result characterizes the 3-sphere. Let S be a maximal family of sepa-
rating disjoint embedded minimal spheres in M , both stable and unstable. We are
assuming that M is a homology sphere, so all surfaces separate.

For a generic metric on a 3-manifold M , the collection of disjoint minimal spheres
S is finite. If M contains infinitely many disjoint minimal spheres, then they can be
used to partition M into infinitely many components. In each component one can
find an embedded stable minimal sphere by applying the method of Meeks-Simon-
Yau [14]. But stable minimal spheres in M satisfy uniform bounds on their second
fundamental form [21, Theorem 3], implying a lower bound to the volume between
two such spheres unless they are parallel (meaning that each projects homeomor-
phically to the other under the nearest point projection). An infinite sequence
of parallel minimal 2-spheres has a subsequence converging to a minimal 2-sphere
with a Jacobi Field. But a theorem of White gives the absence of Jacobi fields for
a minimal surface in a generic metric [26].

Geometric 3-Sphere Characterization:
M is a 3-sphere if and only if no complementary region of M − S has boundary
consisting entirely of stable minimal 2-spheres.

Proof. First note that M is homeomorphic to a 3-sphere if and only if every com-
plementary component X of M − S is a punctured ball.

Suppose that X is a complementary component of M −S and consider the case
where X has an unstable minimal 2-sphere Σ among its boundary components.
Then we can push Σ in slightly and apply the theorem of Meeks-Simon and Yau
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to minimize in its isotopy class [14]. This gives a collection of stable minimal 2-
spheres, that, when joined by tubes, recover the isotopy class of Σ. We conclude
that X is a punctured ball with exactly one unstable boundary component.

Now suppose that X has all its boundary components stable. We will show by
contradiction that X is not a punctured ball. If it were, then it could be swept out
by a family of 2-spheres. This family begins with a 2-sphere that tubes together all
the boundary 2-spheres of X and ends at a point. By the methods of Simon and
Smith [22], see also [11, 17], we obtain an unstable minimal 2-sphere in the interior
of X. But this contradicts maximality of S, so X cannot be a punctured ball.

Together, these cases give the desired characterization. �

To translate the geometric characterization into an algorithm, we need a corre-
sponding combinatorial theory that characterizes the 3-sphere among triangulated
3-manifolds. We need to replace the ideas of Riemannian geometry with PL ver-
sions that capture the relevant ideas. Fortunately, natural PL-approximations to
length and area exist in dimensions two and three. Length is approximated by the
weight, which measures how many times a curve crosses the edges of a triangula-
tion, and area by how many times a surface intersects edges. Combinatorial length
and area can be related to Riemannian area by taking a series of metrics whose
limit has support on the 1-skeleton.

For curves on a surface, the analog of a geodesic then becomes a special type of
normal curve. A normal curve intersects each two-simplex in arcs joining distinct
edges of the two-simplex, so that no arc doubles back and has both endpoints on
the same edge. A stable PL-geodesic is defined to be a normal curve for which any
deformation increases weight. For deformations we allow isotopies of the curve in
the surface which are non-transverse to edges or vertices at finitely many times. An
unstable PL-geodesic is a normal curve that admits a weight decreasing deformation
to each of its two sides. Note that not all normal curves are PL-geodesics. In the
triangulation of the 2-sphere given by a tetrahedron, there are three unstable PL-
geodesics given by quadrilaterals, and additional unstable PL-geodesics of weight
eight and above. A curve of weight three surrounding a vertex is a normal curve,
but not a PL-geodesic. See Figure 5.

Figure 5. A length four normal curve forms an unstable PL-geodesic.

The analogous combinatorial area for surfaces in triangulated 3-manifolds the-
ory was investigated in a series of papers by Jaco and Rubinstein. In their work
on PL-minimal surfaces, Jaco and Rubinstein showed that many of the properties
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that made minimal surfaces so useful in studying 3-manifolds still held when us-
ing combinatorial area [9]. For surfaces in 3-manifolds and deformations of these
surfaces that avoid vertices, normal surfaces play the role of stable minimal sur-
faces. The question of which surfaces take the role of unstable minimal surfaces in
the combinatorial theory was unclear until Rubinstein’s insight that almost normal
surfaces fill this role. Just as unstable geodesics can be pushed to either side so
as to decrease length, and unstable minimal surfaces can be pushed to either side
to decrease area, so almost normal surfaces can be pushed to either side so as to
decrease weight, or combinatorial area.

These two ingredients, the existence of unstable minimal surfaces and the con-
struction of combinatorial versions of stable and unstable minimal surfaces, combine
to give an algorithm to recognize the 3-sphere. The characterization of a 3-sphere
via its minimal surfaces can be turned into a characterization via properties of
piecewise linear surfaces, properties that can be determined by constructing and
examining a finite collection of normal and almost normal surfaces.

3. Recognizing the 3-sphere

Rubinstein’s algorithm is essentially the PL version of the geometric 3-sphere
characterization given above. We take a candidate manifold M which comes with
a fixed triangulation and first verify that it is a homology 3-sphere. Determining
whether M is homeomorphic to the 3-sphere begins by computing a maximal family
of disjoint, non-parallel normal 2-spheres. There is an upper bound to the num-
ber of simultaneously embedded non-parallel normal surfaces in M , and a maximal
family of normal 2-spheres can be found with the methods of integer linear pro-
gramming. We then find a maximal family of non-parallel almost normal 2-spheres
in the complement of the family of normal 2-spheres. Let S be the resulting family
of normal and almost normal 2-spheres.

3-Sphere Characterization:
M is a 3-sphere if and only if S satisfies the following conditions:

• There is at least one almost normal sphere in S.
• No complementary region of M − S has boundary consisting of a single

normal sphere, other than a neighborhood of a vertex.

These conditions can be checked by a finite procedure, and so give an algorithm.
The algorithm for recognizing the 3-sphere proceeds as follows. One begins with

a collection of 3-simplices and instructions for identifying their faces in pairs.

• Check that M is a 3-manifold by verifying that the link of each vertex is a
2-sphere.
• Verify that M has the homology of a 3-sphere. In particular, this implies

that each 2-sphere in M is separating.
• Compute a maximal collection of disjoint non-parallel normal 2-spheres in
M . This can be done by solving the normal surface equations and finding
normal 2-spheres among the fundamental solutions. Then repeat to find a
maximal collection of disjoint, non-parallel, almost-normal 2-spheres in the
complement of the normal 2-spheres. Following Haken,and Jaco-Tollefson,
we can reduce the search for such a family S to a search within a Hilbert
basis of solutions to the integer linear equations arising from normal surfaces
[6, 10].
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• Cut open the manifold along the maximal collection of disjoint normal 2-
spheres in S and examine each component in turn. An easy topological
argument tells us that M is homeomorphic to a 3-sphere if and only if
every component is homeomorphic to a punctured 3-ball.
• Components with two or more normal boundary 2-spheres are homeomor-

phic to punctured 3-balls. This can be seen by joining together two normal
boundary 2-spheres along a tube that runs around an edge joining them.
Normalizing the resulting 2-sphere results in either a point or a collection
of other boundary 2-spheres. In either case the swept out component is a
punctured ball.
• Components with a single normal 2-sphere on their boundary are homeo-

morphic to a 3-ball if and only if they contain an almost normal 2-sphere
or are neighborhoods (stars) of a vertex. Thompson showed that the tech-
niques of thin position can be used to establish the existence of almost
normal spheres containing one octagonal disk if the component is a ball
[24]. Conversely, if an almost normal 2-sphere exists then it can be pushed
to either side while reducing its weight, collapsing to a point on one side
and a normal 2-sphere on the other, and establishing that the component
is a ball.
• M is a 3-sphere if and only if every component with a single normal 2-

sphere on its boundary contain an almost normal 2-sphere or is a vertex
neighborhood.

The structure of the algorithm is very similar to the 2-sphere characterization
described above. The characterization of the various complementary regions is also
similar to that in dimension two. The evolution of a curve by curvature is replaced
by a normalization procedure in which a surface deforms to become normal or al-
most normal.

Remark. There are differences between the characterizations used in the smooth
and PL settings. In the smooth setting, an unstable minimal 2-sphere always ex-
ists in the interior of a punctured ball whose boundary consists of stable minimal
2-spheres. In contrast, a region in a triangulated 3-manifold bounded by two or
more normal 2-spheres and containing no normal 2-spheres in its interior is always
a punctured ball.

4. Conclusion

Rubenstein’s work on the existence of minimal surfaces in 3-manifolds and on
PL-minimal surface theory naturally led him to the concept of an almost normal
surface. Almost normal surfaces are now widely recognized as powerful tools to
apply in multiple areas of 3-manifold theory.

Table 1 summarizes some correspondences between the worlds of Riemannian
manifolds with their minimal submanifolds and of triangulated manifolds with their
normal and almost normal submanifolds.
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Table 1. Minimal Surface - Normal Surface Correspondences

Smooth Riemannian Manifolds Combinatorial Triangulated Manifolds

Geodesic Normal curve
Length or Area Weight
Stable minimal surface Normal surface
Unstable minimal surface Almost normal surface
Flow by mean curvature Normalization
A smooth S3 contains an unstable minimal S2 A PL S3 contains an almost normal S2

∂X a stable S2 and int(X) contains ∂X a normal S2 and int(X) contains
an unstable S2, no stable S2 an almost normal S2, no normal S2

=⇒ X = B3 =⇒ X = B3
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