## Homework 5 Solutions

2.3.2 (a) increases or stays the same. (b) decreases or stays the same.

- Consider the two rectangles $R_{1}:=\left\{0 \leq x \leq l, 0 \leq t \leq T_{1}\right\}$ and $R_{2}:=\left\{0 \leq x \leq l, 0 \leq t \leq T_{2}\right\}$ with $T_{1}<T_{2}$. We have $R_{1} \subset R_{2}$. Thus, $M\left(T_{1}\right) \leq M\left(T_{2}\right)$ and $m\left(T_{1}\right) \geq m\left(T_{2}\right)$.


### 2.3.5

- Given $u=-2 x t-x^{2}$, we have $u_{t}=-2 x=x u_{x x}$, so it is a solution.
-     - On $x=-2: u=4 t-4$. The max occurs at $t=1$ with $u(-2,1)=0$.
- On $x=2: u=-4 t-4$. The max occurs at $t=0$ with $u(2,0)=-4$.
- On $t=0: u=-x^{2}$. The max occurs at $x=0$ with $u(0,0)=0$.
- On $t=1: u=-2 x-x^{2}=1-(x+1)^{2}$. The max occurs at $x=-1$ with $u(-1,1)=1$.
- The maximum is assumed on the top instead of on the bottom or the lateral sides, which contradicts the Maximum Principle.


### 2.3.6

- Consider $\omega=u-v$, then $\omega \leq 0$ for $t=0, x=0$ and $x=l$.
- By the Maximum Principle, the maximum of $\omega(x, t)$ is assumed either initially $(t=0)$ or on the lateral sides $(x=0$ or $x=l)$. Denote the maximum by $\omega_{\max }$. We then have $\omega_{\max } \leq 0$.
- It follows that $\omega(x, t) \leq \omega_{\max } \leq 0$, i.e., $u \leq v$, for $0 \leq t<\infty, 0 \leq x \leq l$.


### 2.3.8

- Multiplying the diffusion equation by $u$, we obtain

$$
u u_{t}=k u_{x x} u \Longleftrightarrow\left(\frac{1}{2} u^{2}\right)_{t}=\left(k u u_{x}\right)_{x}-k u_{x}^{2}
$$

- Upon integrating over the interval $0<x<l$, we get

$$
\frac{1}{2}\left(\frac{d}{d t} \int_{0}^{l} u^{2} d x\right)=\int_{0}^{l}\left(\frac{1}{2} u^{2}\right)_{t} d x=\left.\left(k u u_{x}\right)_{x}\right|_{x=0} ^{x=l}-k \int_{0}^{l} u_{x}^{2} d x .
$$

- Plugging in the Robin boundary conditions, we have

$$
\frac{1}{2}\left(\frac{d}{d t} \int_{0}^{l} u^{2} d x\right)=-a_{l} u^{2}(l, t)-a_{0} u^{2}(0, t)-k \int_{0}^{l} u_{x}^{2} d x .
$$

- Since $a_{0}>0$ and $a_{l}>0$, the endpoints contribute to the decrease of $\int_{0}^{l} u^{2}(x, t) d x$.
- It's easy to verify that the right hand side is indeed negative.


### 2.5.1

- Consider the "hammer blow" example, problem 4 and 5 from section 2.4, as a counter example.

