
Final: Solutions
Math 118A, Fall 2013

1. [20 pts] For each of the following PDEs for u(x, y), give their order and say
if they are nonlinear or linear. If they are linear, say if they are homogeneous
or nonhomogeneous and if they have constant or variable coefficients.

(a) ux = (sinx)uy

(b) uux + uy = uxx + sinx

(c) uxxyy = sinx

Solution.

• (a) 1st order, linear, homogeneous, variable coefficient.

• (b) 2nd order, nonlinear.

• (c) 4th order, linear, nonhomogeneous, constant coefficient.
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2. [30 pts] Solve the following initial value problem for u(x, t):

ut + 3ux = sin t, u(x, 0) = sin x.

Solution.

• The PDE has particular solutions u = up(t) depending only on t, where

dup
dt

= sin t.

For example, we can take up(t) = − cos t.

• Writing u(x, t) = up(t) + v(x, t), and using the linearity of the PDE,
we find that v satisfies

vt + 3vx = 0, v(x, 0) = sin x+ 1.

• The solution of this IVP for an advection equation with speed 3 is

v(x, t) = sin(x− 3t) + 1.

• The solution of the original IVP is

u(x, t) = 1− cos t+ sin(x− 3t).
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3. [30 pts] (a) Solve the following initial-boundary value problem for the
heat equation for u(x, t):

ut = uxx 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = 0, t > 0,

u(x, 0) = f(x) 0 ≤ x ≤ 1.

(b) What type of boundary conditions are these? How does your solution
behave as t→ +∞? Give a physical explanation of this behavior.

Solution.

• (a) Separation of variables for the heat equation with Neumann BCs
gives the separated solutions (derivation is omitted)

u(x, t) = cos(nπx)e−n
2π2t, n = 0, 1, 2, . . . .

• Taking a linear superposition of these solutions, we find that the general
solution of the PDE and the BCs is

u(x, t) =
1

2
a0 +

∞∑
n=1

an cos(nπx)e−n
2π2t,

where the an are arbitrary constants.

• The initial condition is satisfied if

1

2
a0 +

∞∑
n=1

an cos(nπx) = f(x),

meaning that the an are the Fourier cosine coefficients of f(x), which
are given by

an = 2

∫ 1

0

f(x) cos(nπx) dx, n = 0, 1, 2, . . . .

• (b) The BCs are Neumann BCs. We have

u(x, t)→ 1

2
a0 =

∫ 1

0

f(x) dx as t→∞.

The problem describes heat flow in a fully insulated rod. The time-
asymptotic state is a uniform temperature distribution with the same
thermal energy as the non-uniform initial data.
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4. [30 pts] Use separation of variables to solve the following Dirichlet problem
for Lapace’s equation in polar coordinates for u(r, θ) in the unit disc r < 1:

1

r
(rur)r +

1

r2
uθθ = 0,

u(1, θ) = 1 if 0 < θ < π,

u(1, θ) = −1 if π < θ < 2π.

Solution.

• The separated solutions of Lapace’s equation in polar coordinates that
are continuous at r = 0 and 2π-periodic in θ are (derivation is omitted)

u(r, θ) = 1, u(r, θ) =

{
rn cos(nθ)

rn sin(nθ)
n = 1, 2, 3, . . . .

• Taking a linear superposition of these solutions, we find that the general
solution of the PDE is given by

u(r, θ) =
1

2
a0 +

∞∑
n=1

{anrn cosnθ + bnr
n sinnθ}

where the an, bn are arbitrary constants.

• Imposing the BC at r = 1, we get that

1

2
a0 +

∞∑
n=1

{an cosnθ + bn sinnθ} = f(θ),

meaning that an, bn are the full Fourier coefficients of f , which are
given by

an =
1

π

∫ 2π

0

f(θ) cosnθ dθ, bn =
1

π

∫ 2π

0

f(θ) sinnθ dθ.

4



• The given boundary data has an odd 2π-periodic extension, so an = 0
for all n, and

bn =
2

π

∫ π

0

sinnθ dθ

=
2

nπ
[− cosnθ]π0

=
2

nπ
[1− cosnπ]

=
2

nπ
[1− (−1)n]

=

{
4/nπ if n is odd,

0 if n is even.

• The solution is

u(x, t) =
∑
n odd

4

nπ
rn sinnθ.
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5. [25 pts] (a) For all (smooth) functions X(x), Y (x), prove that∫ b

a

(XY ′′ − Y X ′′) dx = [XY ′ − Y X ′]ba .

(b) Suppose that X1(x), X2(x) are solutions of the eigenvalue problem

−X ′′1 = λ1X1, X1(a) = 3X1(b), 3X ′1(a) = X ′1(b),

−X ′′2 = λ2X2, X2(a) = 3X2(b), 3X ′2(a) = X ′2(b),

where λ1 6= λ2 are distinct, real eigenvalues. Show that X1 and X2 are
orthogonal, meaning that

∫ b
a
X1X2 dx = 0.

Solution.

• (a) By the product rule,

[XY ′ − Y X ′]′ = XY ′′ +X ′Y ′ − (Y X ′′ + Y ′X ′)

= XY ′′ − Y X ′′,

so the result follows from the fundamental theorem of calculus.

• (b) Using the ODEs for X1, X2, we have∫ b

a

(X1X
′′
2 −X2X

′′
1 ) dx = (λ1 − λ2)

∫ b

a

X1X2 dx.

It then follows from the identity in (a) that

(λ1 − λ2)

∫ b

a

X1X2 dx = [X1X
′
2 −X2X

′
1]
b
a .

• The boundary conditions satisfied by X1, X2 imply that

X1(b)X ′2(b)−X2(b)X ′1(b) =
1

3
X1(a) · 3X ′2(a)− 1

3
X2(a) · 3X ′2(a)

= X1(a)X ′2(a)−X2(a)X ′1(a)

• It follows that the boundary terms cancel, so

(λ1 − λ2)

∫ b

a

X1X2 dx = 0,

which implies that X1 and X2 are orthogonal if λ1 6= λ2.
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6. [25 pts] Let Ω be a bounded open set in R2 with boundary ∂Ω.

(a) Suppose that u(x, y) is a solution of the PDE

uxx + uyy − u = 0.

Show that u cannot attain a maximum value at any point of Ω where u > 0,
or a minimum value at any point of Ω where u < 0.

(b) Let f : Ω→ R and g : ∂Ω→ R be given functions. Show that a solution
of the following Dirichlet boundary value problem is unique:

uxx + uyy − u = f in Ω,

u = g on ∂Ω,

Solution.

• (a) Suppose that u attain a (local) maximum at some point in Ω. Since
Ω is open, the maximum is attained at an interior point, and the second
derivative test implies that uxx ≤ 0 and uyy ≤ 0 at this point. It follows
from the PDE that u = uxx + uyy ≤ 0, so u cannot attain a maximum
at any point where u > 0. Similarly, at a minimum we have uxx ≥ 0
and uyy ≥ 0, so u = uxx + uyy ≥ 0, and u cannot attain a minimum at
any point in Ω where u < 0.

• (b) Suppose that u1, u2 are solutions of the BVP. Let v = u1 − u2.
Then, by linearity,

vxx + vyy − v = 0 in Ω, v = 0 on ∂Ω.

Since Ω̄ = Ω ∪ ∂Ω is closed and bounded, and a solution v is assumed
to be continuous on Ω̄, v attains its maximum value M = maxΩ̄ v at
some point in Ω̄. If M > 0, then (since v = 0 on ∂Ω) the maximum
would have to be attained at an interior point in Ω where v = M > 0,
contradicting (a). Similarly, if m = minΩ̄ v < 0, then the mimimum
would have to be attained at an interior point in Ω where v = m < 0,
also contradicting (a). It follows that the maximum and minimum are
attained on the boundary ∂Ω, so m = M = 0, which implies that v = 0,
and u1 = u2.

Remark. This argument doesn’t work for the PDE uxx + uyy + u = 0,
with the opposite sign on u. In that case, the Dirichlet problem might have
non-zero solutions. This corresponds to the fact that the eigenvalues of the
Dirichlet problem −∆u = λu for the Laplacian are always positive (λ > 0).
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7. [40 pts] Let c, V be positive constants, and consider the PDE

utt + 2V uxt +
(
V 2 − c2

)
uxx = 0.

(a) Show that the change of variables

u(x, t) = w(ξ, τ), ξ = x− V t, τ = t

transforms the PDE into the wave equation wττ − c2wξξ = 0.

(b) Solve the initial value problem

utt + 2V uxt +
(
V 2 − c2

)
uxx = 0, −∞ < x <∞, t > 0,

u(x, 0) = φ(x), −∞ < x <∞,
ut(x, 0) = ψ(x), −∞ < x <∞.

(c) Describe the domains of dependence and influence for this PDE and sketch
them in the (x, t)-plane. Consider the cases: (i) 0 < V < c; (ii) 0 < c < V .

Solution.

• (a) By the chain rule for partial derivatives,

∂

∂t
=

∂

∂τ
− V ∂

∂ξ
,

∂

∂x
=

∂

∂ξ

It follows that uxx = wξξ and

ut = wτ − V wξ, ,

uxt = wξτ − V wξξ,
utt = wττ − V wτξ − V (wξτ − V wξξ)

= wττ − 2V wξτ + V 2wξξ.

• Using these expressions in the left-hand side of the PDE and simplifying
the result, we get

utt + 2V uxt +
(
V 2 − c2

)
uxx

= wττ − 2V wξτ + V 2wξξ + 2V (wξτ − V wξξ) +
(
V 2 − c2

)
wξξ

= wττ − c2wξξ.

It follows that wττ − c2wξξ = 0.
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• (b) Transforming the IVP from u to w, we find that w(ξ, τ) satisfies

wττ − c2wξξ = 0, −∞ < ξ <∞, τ > 0,

w(ξ, 0) = φ(ξ), −∞ < ξ <∞,
wτ (ξ, 0) = ψ̃(ξ), −∞ < ξ <∞,

where
ψ̃(ξ) = ψ(ξ) + V φ′(ξ).

To derive the initial conditions, note that x = ξ at t = τ = 0, so
w(ξ, 0) = u(ξ, 0) = φ(ξ), and from the change of variables

wτ (ξ, 0) = ut(ξ, 0) + V wξ(ξ, 0) = ψ(ξ) + V φ′(ξ),

where the prime denotes a ξ-derivative.

• From d’Alembert’s solution, the solution of this IVP for w(ξ, τ) is

w(ξ, τ) =
1

2
[φ(ξ − cτ) + φ(ξ + cτ)] +

1

2c

∫ ξ+cτ

ξ−cτ
ψ̃(s) ds.

• The corresponding solution for u(x, t) = w(x− V t, t) is

u(x, t) =
1

2
[φ(x− (c+ V )t) + φ(x+ (c− V )t)] +

1

2c

∫ x+(c−V )t

x−(c+V )t

ψ̃(s) ds.

• Using the expression for ψ̃ in this equation and integrating the term
proportional to φ′ in the result, we can write this solution as

u(x, t) =
1

2

[(
1− V

c

)
φ(x− (c+ V )t) +

(
1 +

V

c

)
φ(x+ (c− V )t)

]
+

1

2c

∫ x+(c−V )t

x−(c+V )t

ψ(s) ds.

• (c) Domains of dependence and influence are shown on the next page.
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Remark. This wave equation describes, for example, sound waves in a fluid
with sound speed c that is moving with speed V . The sound waves propagate
against and in the same direction as the flow with speeds V − c and V + c,
respectively. If 0 < V < c (subsonic flow with Mach number M = V/c < 1),
then the sound waves can propagate both upstream and downstream, but
if 0 < c < V (supersonic flow with Mach number M > 1), then the sound
waves can only propagate downstream. This explains, for example, why you
can’t hear a supersonic aircraft coming, because it’s moving faster than the
sound waves it produces.
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