
Midterm 1: Solutions to Sample questions

Math 118B, Winter 2014

1. State Green’s first and second identities. If Ω is a bounded set with
smooth boundary and α > 0, use Green’s first identity to show that solutions
of Poisson’s equation with Robin boundary conditions,

−∆u = f in Ω,

∂u

∂n
+ αu = g on ∂Ω,

are unique.

Solution.

• Green’s first and second identities omitted, but you should know them!

• By taking the difference of two solutions, we just need to show that the
only solution when f = 0, g = 0 is u = 0. In that case, by Green’s first
identity,

∫

Ω

|∇u|2 dV = −

∫

Ω

u∆u dV +

∫

∂Ω

u
∂u

∂n
dS

= −α

∫

∂Ω

u2 dS.

• Since α > 0, it follows that both terms must be zero, so ∇u = 0 in Ω
and u = 0 on ∂Ω, which implies that u = 0.



2. Find the Green’s function for the BVP

− u′′ = f(x) 0 < x < 1,

u(0) = A, u′(1) = B.

Write down the Green’s function representation of the solution.

Solution.

• The Green’s function G(x; ξ): (i) satisfies the homogeneous ODE

d2G

dx2
= 0 for x 6= ξ;

(ii) is continuous at x = ξ with a jump in its x-derivative of−1; and (iii)
satisfies the homogeneous boundary conditions G(0, ξ) = Gx(1; ξ) = 0.
It follows that

G(x; ξ) =

{

x if 0 ≤ x < ξ,

ξ if ξ ≤ x ≤ 1.

• Using the equations for u and G in the one-dimensional form of Green’s
second identity,

∫ 1

0

G(x; ξ)
d2u

dx2
− u(x)

d2G

dx2
(x; ξ) dx

=

[

G(x; ξ)
du

dx
(x)− u(x)

dG

dx
(x; ξ)

]1

x=0

,

and evaluating the resulting δ-function integral and boundary terms,
we get

−

∫ 1

0

G(x; ξ)f(x) dx+ u(ξ) = BG(1; ξ) + AGx(0; ξ),

so

u(ξ) =

∫ 1

0

G(x; ξ)f(x) dx+Bξ + A

=

∫ ξ

0

xf(x) dx+ ξ

∫ 1

ξ

f(x) dx+Bξ + A.

(For example, if f = 0, we get the linear solution u(x) = Bx+ A.)



3. Suppose that u(~x) is the steady temperature distribution of a body, whose
heat energy density is proportional to temperature, and ~q(~x) the heat flux
vector. If there are no internal heat sources and ~q = −A∇u where A is a
symmetric matrix, write down the integral form of conservation of energy
and derive a PDE for u.

Remark. This constitutive relative for the flux describes anisotropic mate-
rials, in which case the heat flux needn’t be in the same direction as the
temperature gradient.

Solution.

• Conservation of energy implies that, in a steady state, the net energy
flux out of a volume Ω is zero, so

∫

∂Ω

~q · ~n dS = 0.

• The divergence theorem implies that

∫

Ω

div ~q dV = 0

so since Ω is arbitrary, and assuming that div ~q is continuous, we must
have

div ~q = 0.

• It follows that u satisfies the PDE

div (A∇u) = 0.

(If A is the identity matrix, this is just Laplace’s equation.)



4. Let G(~x) be the free-space Green’s function for the Helmholtz equation

−∆G +G = δ(~x), G(~x) → 0 as |~x| → ∞

in three space dimensions. Write down the conditions that determine G, and
solve for G. Write down the Green’s function representation of the solution
of

−∆u+ u = f(~x), u(~x) → 0 as |~x| → ∞

where f(~x) is a smooth function that is zero when |~x| is sufficiently large.

Hint. The three-dimensional Laplacian of functions u(r) of r = |~x| is given
by

∆u =
1

r2
∂

∂r

(

r2
∂u

∂r

)

.

Write G = H/r and solve for H .

Solution.

• We require that: (i) −∆G +G = 0 if ~x 6= 0; (ii) G is integrable with

lim
ǫ→0+

∫

∂Bǫ(0)

∂G

∂n
dS = lim

ǫ→0+

∫

Bǫ(0)

∆Gd~x

= lim
ǫ→0+

∫

Bǫ(0)

{∆G−G} d~x

= − lim
ǫ→0+

∫

Bǫ(0)

δ(~x) d~x

= −1,

where Bǫ(0) is the ball of radius ǫ centered at 0, and ∂Bǫ(0) is the
sphere. (Here, we use a formal δ-function calculation, and ∂/∂n = ∂/∂r
is the outward normal derivative to Bǫ(0).)

• Assuming that G = G(r) is a spherically symmetric function, the ODE
for G in r > 0 is

−
1

r2
d

dr

(

r2
dG

dr

)

+G = 0.



• Writing G(r) = H(r)/r and simplifying the result, we find that H(r)
satisfies

d2H

dr2
−H(r) = 0.

Since G(r) → 0 as r → ∞, we have H(r) = Ce−r for some constant C,
and G(r) = Ce−r/r.

• We then find that

lim
ǫ→0+

∫

∂Bǫ(0)

∂G

∂n
dS = lim

ǫ→0+
4πǫ2 ·

dG

dr

∣

∣

∣

∣

r=ǫ

= lim
ǫ→0+

4πǫ2 · C

(

−
e−ǫ

ǫ2
−

e−ǫ

ǫ

)

= −4πC

so 4πC = 1 and

G(~x) =
e−|~x|

4π|~x|

• The Green’s function representation of the solution for u is

u(~x) =
1

4π

∫

e−|~x−~ξ|

|~x− ~ξ|
f(~ξ) d~ξ.


