Midterm 1: Solutions to Sample questions Math 118B, Winter 2014

1. State Green's first and second identities. If Ω is a bounded set with smooth boundary and $\alpha>0$, use Green's first identity to show that solutions of Poisson's equation with Robin boundary conditions,

$$
\begin{array}{lc}
-\Delta u=f \quad \text { in } \Omega \\
\frac{\partial u}{\partial n}+\alpha u=g & \text { on } \partial \Omega
\end{array}
$$

are unique.

Solution.

- Green's first and second identities omitted, but you should know them!
- By taking the difference of two solutions, we just need to show that the only solution when $f=0, g=0$ is $u=0$. In that case, by Green's first identity,

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{2} d V & =-\int_{\Omega} u \Delta u d V+\int_{\partial \Omega} u \frac{\partial u}{\partial n} d S \\
& =-\alpha \int_{\partial \Omega} u^{2} d S .
\end{aligned}
$$

- Since $\alpha>0$, it follows that both terms must be zero, so $\nabla u=0$ in Ω and $u=0$ on $\partial \Omega$, which implies that $u=0$.

2. Find the Green's function for the BVP

$$
\begin{array}{cc}
-u^{\prime \prime}=f(x) & 0<x<1 \\
u(0)=A, & u^{\prime}(1)=B
\end{array}
$$

Write down the Green's function representation of the solution.

Solution.

- The Green's function $G(x ; \xi)$: (i) satisfies the homogeneous ODE

$$
\frac{d^{2} G}{d x^{2}}=0 \quad \text { for } x \neq \xi
$$

(ii) is continuous at $x=\xi$ with a jump in its x-derivative of -1 ; and (iii) satisfies the homogeneous boundary conditions $G(0, \xi)=G_{x}(1 ; \xi)=0$. It follows that

$$
G(x ; \xi)= \begin{cases}x & \text { if } 0 \leq x<\xi \\ \xi & \text { if } \xi \leq x \leq 1\end{cases}
$$

- Using the equations for u and G in the one-dimensional form of Green's second identity,

$$
\begin{aligned}
\int_{0}^{1} G(x ; \xi) \frac{d^{2} u}{d x^{2}} & -u(x) \frac{d^{2} G}{d x^{2}}(x ; \xi) d x \\
& =\left[G(x ; \xi) \frac{d u}{d x}(x)-u(x) \frac{d G}{d x}(x ; \xi)\right]_{x=0}^{1}
\end{aligned}
$$

and evaluating the resulting δ-function integral and boundary terms, we get

$$
-\int_{0}^{1} G(x ; \xi) f(x) d x+u(\xi)=B G(1 ; \xi)+A G_{x}(0 ; \xi)
$$

so

$$
\begin{aligned}
u(\xi) & =\int_{0}^{1} G(x ; \xi) f(x) d x+B \xi+A \\
& =\int_{0}^{\xi} x f(x) d x+\xi \int_{\xi}^{1} f(x) d x+B \xi+A
\end{aligned}
$$

(For example, if $f=0$, we get the linear solution $u(x)=B x+A$.)
3. Suppose that $u(\vec{x})$ is the steady temperature distribution of a body, whose heat energy density is proportional to temperature, and $\vec{q}(\vec{x})$ the heat flux vector. If there are no internal heat sources and $\vec{q}=-A \nabla u$ where A is a symmetric matrix, write down the integral form of conservation of energy and derive a PDE for u.
Remark. This constitutive relative for the flux describes anisotropic materials, in which case the heat flux needn't be in the same direction as the temperature gradient.

Solution.

- Conservation of energy implies that, in a steady state, the net energy flux out of a volume Ω is zero, so

$$
\int_{\partial \Omega} \vec{q} \cdot \vec{n} d S=0 .
$$

- The divergence theorem implies that

$$
\int_{\Omega} \operatorname{div} \vec{q} d V=0
$$

so since Ω is arbitrary, and assuming that $\operatorname{div} \vec{q}$ is continuous, we must have

$$
\operatorname{div} \vec{q}=0
$$

- It follows that u satisfies the PDE

$$
\operatorname{div}(A \nabla u)=0
$$

(If A is the identity matrix, this is just Laplace's equation.)
4. Let $G(\vec{x})$ be the free-space Green's function for the Helmholtz equation

$$
-\Delta G+G=\delta(\vec{x}), \quad G(\vec{x}) \rightarrow 0 \quad \text { as }|\vec{x}| \rightarrow \infty
$$

in three space dimensions. Write down the conditions that determine G, and solve for G. Write down the Green's function representation of the solution of

$$
-\Delta u+u=f(\vec{x}), \quad u(\vec{x}) \rightarrow 0 \quad \text { as }|\vec{x}| \rightarrow \infty
$$

where $f(\vec{x})$ is a smooth function that is zero when $|\vec{x}|$ is sufficiently large.
Hint. The three-dimensional Laplacian of functions $u(r)$ of $r=|\vec{x}|$ is given by

$$
\Delta u=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right)
$$

Write $G=H / r$ and solve for H.

Solution.

- We require that: (i) $-\Delta G+G=0$ if $\vec{x} \neq 0$; (ii) G is integrable with

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0^{+}} \int_{\partial B_{\epsilon}(0)} \frac{\partial G}{\partial n} d S & =\lim _{\epsilon \rightarrow 0^{+}} \int_{B_{\epsilon}(0)} \Delta G d \vec{x} \\
& =\lim _{\epsilon \rightarrow 0^{+}} \int_{B_{\epsilon}(0)}\{\Delta G-G\} d \vec{x} \\
& =-\lim _{\epsilon \rightarrow 0^{+}} \int_{B_{\epsilon}(0)} \delta(\vec{x}) d \vec{x} \\
& =-1
\end{aligned}
$$

where $B_{\epsilon}(0)$ is the ball of radius ϵ centered at 0 , and $\partial B_{\epsilon}(0)$ is the sphere. (Here, we use a formal δ-function calculation, and $\partial / \partial n=\partial / \partial r$ is the outward normal derivative to $B_{\epsilon}(0)$.)

- Assuming that $G=G(r)$ is a spherically symmetric function, the ODE for G in $r>0$ is

$$
-\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d G}{d r}\right)+G=0
$$

- Writing $G(r)=H(r) / r$ and simplifying the result, we find that $H(r)$ satisfies

$$
\frac{d^{2} H}{d r^{2}}-H(r)=0
$$

Since $G(r) \rightarrow 0$ as $r \rightarrow \infty$, we have $H(r)=C e^{-r}$ for some constant C, and $G(r)=C e^{-r} / r$.

- We then find that

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0^{+}} \int_{\partial B_{\epsilon}(0)} \frac{\partial G}{\partial n} d S & =\left.\lim _{\epsilon \rightarrow 0^{+}} 4 \pi \epsilon^{2} \cdot \frac{d G}{d r}\right|_{r=\epsilon} \\
& =\lim _{\epsilon \rightarrow 0^{+}} 4 \pi \epsilon^{2} \cdot C\left(-\frac{e^{-\epsilon}}{\epsilon^{2}}-\frac{e^{-\epsilon}}{\epsilon}\right) \\
& =-4 \pi C
\end{aligned}
$$

so $4 \pi C=1$ and

$$
G(\vec{x})=\frac{e^{-|\vec{x}|}}{4 \pi|\vec{x}|}
$$

- The Green's function representation of the solution for u is

$$
u(\vec{x})=\frac{1}{4 \pi} \int \frac{e^{-|\vec{x}-\vec{\xi}|}}{|\vec{x}-\vec{\xi}|} f(\vec{\xi}) d \vec{\xi}
$$

