Midterm 1: Solutions to Sample questions
Math 118B, Winter 2014

1. State Green’s first and second identities. If {2 is a bounded set with
smooth boundary and a > 0, use Green’s first identity to show that solutions
of Poisson’s equation with Robin boundary conditions,

—Au=f in €2,

@—i-au:g on 052,
on

are unique.

Solution.
e Green’s first and second identities omitted, but you should know them!

e By taking the difference of two solutions, we just need to show that the
only solution when f =0, g = 0is u = 0. In that case, by Green’s first
identity,

)
/\vu|2dvz—/uAudv+/ W as
Q Q a0 On

= —a/ u?ds.
a0

e Since a > 0, it follows that both terms must be zero, so Vu = 0 in (2
and v = 0 on 02, which implies that u = 0.



2. Find the Green’s function for the BVP
—u" = f(x) 0<z<l,
u(0) = A, u'(1) = B.
Write down the Green’s function representation of the solution.

Solution.
e The Green’s function G(z;§): (i) satisfies the homogeneous ODE
d*G
dx?
(i) is continuous at x = £ with a jump in its z-derivative of —1; and (iii)
satisfies the homogeneous boundary conditions G(0,&) = G,(1;£) = 0.

It follows that
x if0<x <,
G(x;€) = {

=0 for x # &;

¢ ife<z<l.

e Using the equations for v and GG in the one-dimensional form of Green’s
second identity,

! d? d*G
| o5 — v w6 da

— {G(x;g)j—z(:p) —u(x)%(z;ﬁ) )

=0

and evaluating the resulting J-function integral and boundary terms,
we get

_/O G(2;€) f(2) da + u(€) = BG(1;€) + AG,(0;€),

SO

ulé) = / G(a:€)f(x) dz + BE + A

¢ 1
:/ xf(x)dx+§/ f(z)dx + B¢ + A.
0 ¢

(For example, if f = 0, we get the linear solution u(z) = Bx + A.)



3. Suppose that u(Z) is the steady temperature distribution of a body, whose
heat energy density is proportional to temperature, and ¢(Z) the heat flux
vector. If there are no internal heat sources and ¢ = —AVu where A is a
symmetric matrix, write down the integral form of conservation of energy
and derive a PDE for u.

Remark. This constitutive relative for the flux describes anisotropic mate-
rials, in which case the heat flux needn’t be in the same direction as the
temperature gradient.

Solution.

e Conservation of energy implies that, in a steady state, the net energy
flux out of a volume 2 is zero, so

/ g-7dS =0.
o0

e The divergence theorem implies that

/diquv =0
Q

so since (1 is arbitrary, and assuming that div ¢'is continuous, we must
have
divg=0.

e It follows that u satisfies the PDE
div (AVu) = 0.

(If A is the identity matrix, this is just Laplace’s equation.)



4. Let G(Z) be the free-space Green’s function for the Helmholtz equation
— AG+ G =(2), G(Z) - 0 as|Z| — o0

in three space dimensions. Write down the conditions that determine G, and

solve for G. Write down the Green’s function representation of the solution
of

— Au+u = f(Z), w(Z) -0 as|Z| - o0

where f(Z) is a smooth function that is zero when |Z| is sufficiently large.

Hint. The three-dimensional Laplacian of functions u(r) of r = |Z| is given

by
10 ou
Au=——(r*=—].
YT 2o (r 8r>
Write G = H/r and solve for H.

Solution.

e We require that: (i) —~AG+ G =0if ¥ # 0; (ii) G is integrable with

lim 3_@ dS = lim AGdx
e—0t 9B.(0) on e—0t B.(0)
— lim (AG — G} dif
e—0t Be(0)
— _lim [ §(7)d7
e—0t Be(0)
= —1,

where B.(0) is the ball of radius € centered at 0, and 0B.(0) is the
sphere. (Here, we use a formal §-function calculation, and 9/0n = 9/0r
is the outward normal derivative to B.(0).)

e Assuming that G = G(r) is a spherically symmetric function, the ODE
for G inr > 0is

r2dr

1d d
(T2—G) +G=0.
dr



e Writing G(r) = H(r)/r and simplifying the result, we find that H(r)
satisfies 2H
Since G(r) — 0 as r — oo, we have H(r) = Ce™" for some constant C,
and G(r) = Ce " /r.

e We then find that

oG dG
lim ——dS = lim 4me? - —
e—0t 9B.(0) on e—0t ‘s r—c
= lim 47T62~C'<—62 _¢ )
0+ € €
= —AxnC
so 47C' =1 and .
e
¢@) =47

e The Green’s function representation of the solution for u is




