Problem Set 1: Solutions Math 201A: Fall 2016

Problem 1. Let (X, d) be a metric space.

(a) Prove the reverse triangle inequality: for every $x,y,z\in X$

$$d(x, y) \ge |d(x, z) - d(z, y)|.$$

(b) Prove that if $x_n \to x$ and $y_n \to y$ as $n \to \infty$, then $d(x_n, y_n) \to d(x, y)$.

Solution

• (a) The triangle inequality

$$d(x,y) + d(y,z) \ge d(x,z)$$

implies that

$$d(x, y) \ge d(x, z) - d(y, z).$$

Exchanging x and y, and using the symmetry of d, we also have

$$d(x,y) \ge d(y,z) - d(x,z).$$

Hence

$$d(x,y) \ge |d(x,z) - d(y,z)|.$$

• (b) Using the reverse triangle inequality, we get that

$$\begin{aligned} |d(x_n, y_n) - d(x, y)| &\leq |d(x_n, y_n) - d(x, y_n)| + |d(x, y_n) - d(x, y)| \\ &\leq d(x_n, x) + d(y_n, y) \\ &\rightarrow 0 \qquad \text{as } n \rightarrow \infty. \end{aligned}$$

Problem 2. Let *E* be a finite set and let $P = \mathcal{P}(E)$ be the power set of *E* (the set of all subsets of *E*). Define $d: P \times P \to \mathbb{R}$ by

$$d(A, B) = \operatorname{card}(A\Delta B)$$

where card(A) is the number of elements of A and

$$A\Delta B = (A \setminus B) \cup (B \setminus A)$$

is the symmetric difference of $A, B \subset E$. Show that (P, d) is a metric space.

Solution

- We have $d(A, B) \ge 0$. If d(A, B) = 0, then $A \setminus B = A \cap B^c = \emptyset$, so $B \supset A$. Similarly, $A \supset B$, so A = B.
- The symmetry of *d* is immediate.
- Let $A, B, C \subset X$. Then
 - $$\begin{split} A\Delta B &= (A \cap B^c) \cup (A^c \cap B) \\ &= (A \cap B^c \cap C) \cup (A \cap B^c \cap C^c) \cup (A^c \cap B \cap C) \cup (A^c \cap B \cap C^c) \\ &= F \cup G, \end{split}$$

where (draw a Venn diagram!)

$$F = (A^c \cap B \cap C) \cup (A \cap B^c \cap C^c),$$

$$G = (A \cap B^c \cap C) \cup (A^c \cap B \cap C^c).$$

• If $x \in F$, then either $x \in A^c \cap B$ and $x \in C$, which implies that $x \notin G$, or $x \in A \cap B^c$ and $x \in C^c$, which also implies that $x \notin G$. It follows that $F \cap G = \emptyset$ and

$$\operatorname{card}(A\Delta B) = \operatorname{card}(F) + \operatorname{card}(G).$$

• We have

$$F \subset (A^c \cap C) \cup (A \cap C^c) = A\Delta C,$$

so card(F) \leq card(A ΔC). Similarly, card(G) \leq card(B ΔC), which shows that

 $\operatorname{card}(A\Delta B) \leq \operatorname{card}(A\Delta C) + \operatorname{card}(B\Delta C).$

Thus, d satisfies the triangle inequality.

Remark. In coding theory, d is called the Hamming metric, which measures the number of mismatches between two finite strings of 0s and 1s.

Problem 3. If (X, d) is a metric space, define $\rho: X \times X \to \mathbb{R}$ by

$$\rho(x,y) = \frac{d(x,y)}{1+d(x,y)}.$$

(a) Show that (X, ρ) is a metric space.

(b) Show that (X, d) and (X, ρ) have the same convergent sequences and the same metric topologies. Do they necessarily have the same Cauchy sequences?

Solution

• (a) Let $s, t \ge 0$. Then

$$\frac{s+t}{1+s+t} = \frac{s}{1+s+t} + \frac{t}{1+s+t} \le \frac{s}{1+s} + \frac{t}{1+t}.$$

Moreover,

$$\frac{s}{1+s} - \frac{t}{1+t} = \frac{s-t}{(1+s)(1+t)},$$

so $0 \le t \le s$ implies that

$$\frac{t}{1+t} \le \frac{s}{1+s}$$

- The positivity and symmetry of ρ are immediate.
- Let $x, y, z \in X$. Using the triangle inequality for d and the previous inequalities, we get that

$$\begin{split} \rho(x,y) &= \frac{d(x,y)}{1+d(x,y)} \\ &\leq \frac{d(x,z)+d(y,z)}{1+d(x,z)+d(y,z)} \\ &\leq \frac{d(x,z)}{1+d(x,z)} + \frac{d(y,z)}{1+d(y,z)} \\ &\leq \rho(x,z) + \rho(y,z), \end{split}$$

so ρ satisfies the triangle inequality, and (X, ρ) is a metric space.

- (b) Clearly, $d(x_n, x) \to 0$ if and only if $\rho(x_n, x) \to 0$, so d and ρ have the same convergent sequences.
- Let $B_r(x)$ denote the open ball with respect to d and $C_r(x)$ the open ball with respect to ρ . If d(x, y) < r, then $\rho(x, y) < r$, so $B_r(x) \subset C_r(x)$. It follows that if G is open with respect to ρ and $C_{\epsilon}(x) \subset G$ for each $x \in G$ and some $\epsilon > 0$, then $B_{\epsilon}(x) \subset G$, so G is open with respect to d.
- Similarly, if $\rho(x, y) < r$ where r < 1/2, then d(x, y) < 2r, so $C_r(x) \subset B_{2r}(x)$. If G is open with respect to d and $B_{\epsilon}(x) \subset G$, then we can choose $\epsilon < 1/2$ without loss of generality, and $C_{\epsilon/2}(x) \subset G$, so G is open with respect to ρ .
- The two metrics have the same Cauchy sequences. Suppose that (x_n) is Cauchy in (X, ρ) and let $\epsilon > 0$. Choose $N \in \mathbb{N}$ such that

$$\rho(x_m, x_n) < \min\left\{\frac{\epsilon}{2}, \frac{1}{2}\right\} \quad \text{for all } m, n > N.$$

Then $d(x_m, x_n) < \epsilon$ for all m, n > N, so (x_n) is Cauchy in (X, d). The converse is similar.

Problem 4. Define $d : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ by

$$d(x,y) = \sqrt{|x_1 - y_1|} + \sqrt{|x_2 - y_2|} \qquad x = (x_1, x_2), \quad y = (y_1, y_2).$$

(a) Show that (\mathbb{R}^2, d) is a metric space. Is this metric derived from a norm $\|\cdot\|$ on \mathbb{R}^2 , meaning that $d(x, y) = \|x - y\|$?

(b) Sketch the unit ball $B_1(0)$ in (\mathbb{R}^2, d) . Is it a convex set?

Solution

- (a) The symmetry and positivity of *d* are immediate, so we just need to verify the triangle inequality.
- For any $a, b \ge 0$, we have

$$\left(\sqrt{a} + \sqrt{b}\right)^2 = a + 2\sqrt{ab} + b \ge a + b,$$

which shows that

$$\sqrt{a} + \sqrt{b} \ge \sqrt{a+b}$$

with equality if and only if a = 0 or b = 0.

• Let $x = (x_1, x_2)$, $y = (y_1, y_2)$ and $z = (z_1, z_2)$. Then, since $x \mapsto \sqrt{x}$ is an increasing function, the previous inequality implies that

$$\begin{aligned} d(x,y) &= \sqrt{|x_1 - y_1|} + \sqrt{|x_2 - y_2|} \\ &\leq \sqrt{|x_1 - z_1|} + |z_1 - y_1|} + \sqrt{|x_2 - z_2|} + |z_2 - y_2| \\ &\leq \sqrt{|x_1 - z_1|} + \sqrt{|y_1 - z_1|} + \sqrt{|x_2 - z_2|} + \sqrt{|y_2 - z_2|} \\ &\leq d(x,z) + d(z,y). \end{aligned}$$

• The metric is not derived from a norm on \mathbb{R}^2 since

$$d(\lambda x, \lambda y) = \sqrt{|\lambda|} d(x, y)$$

for $\lambda \in \mathbb{R}$, so it is not homogeneous of degree one.

• (b) The unit ball is shown in the figure. It is not convex. For example, if $1/2 \le |a| < 1$ and

$$x = (a, 0),$$
 $y = (0, a),$ $z = \frac{1}{2}(x + y),$

Remark. The unit ball of a (real) normed space is always convex, since ||x||, ||y|| < 1 and $0 \le \lambda \le 1$ implies that

$$\|\lambda x + (1 - \lambda)y\| \le \lambda \|x\| + (1 - \lambda)\|y\| < 1.$$

Problem 5. Define the closure \overline{A} of a subset $A \subset X$ of a metric space X by

$$\bar{A} = \bigcap \{F \subset X : F \supset A \text{ and } F \text{ is closed}\}.$$

Show that

$$\overline{A} = \{x \in X : \text{there exists a sequence } (x_n) \text{ with } x_n \in A \text{ and } x_n \to x\}.$$

Solution

- First, we show that $x \in \overline{A}$ if and only if every neighborhood of x contains some point in A. To do this, we prove the equivalent statement that $x \notin \overline{A}$ if and only if some neighborhood of x is disjoint from A.
- If $x \notin \overline{A}$, then since $\overline{A} \supset A$ is closed and $\overline{A}^c \subset A^c$ is open, there is a neighborhood $U_x \subset \overline{A}^c$ of x that is disjoint from A.
- Conversely, if U_x is an open neighborhood of $x \in X$ that is disjoint from A, then $F = U_x^c$ is a closed set with $F \supset A$ and $x \notin F$ so $x \notin \overline{A}$.
- Let \hat{A} denote the sequential closure of A:

 $\tilde{A} = \{x \in X : \text{there exists a sequence } (x_n) \text{ with } x_n \in A \text{ and } x_n \to x\}.$

- If $x \notin \overline{A}$, then x has a neighborhood that is disjoint from $\overline{A} \supset A$, so no sequence in A can converge to x and $x \notin \widetilde{A}$. It follows that $\overline{A} \supset \widetilde{A}$.
- If $x \in \overline{A}$, then for every $n \in \mathbb{N}$, there exists $x_n \in B_{1/n}(x) \cap A$, so (x_n) is a sequence in A that converges to x, and $x \in \widetilde{A}$. It follows that $\widetilde{A} \supset \overline{A}$, so $\widetilde{A} = \overline{A}$.

Problem 6. Is the closure of the open ball

$$B_r(x) = \{ y \in X : d(x, y) < r \}$$

in a metric space (X, d) always equal to the closed ball

$$\bar{B}_r(x) = \{ y \in X : d(x, y) \le r \}?$$

Solution

- This is not true in general.
- For example, if X is a set with at least two elements and $d: X \times X \to \mathbb{R}$ is the discrete metric,

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y, \\ 0 & \text{if } x = y, \end{cases}$$

then every subset of X is closed and $B_1(x) = \{x\}, \overline{B_1(x)} = \{x\}$, but $\overline{B_1(x)} = X$, so $\overline{B_1(x)} \neq \overline{B_1(x)}$.

Problem 7. Let X be the space of all real sequences of the form

 $x = (x_1, x_2, x_3, \dots, x_N, 0, 0, \dots)$ for some $N \in \mathbb{N}$, where $x_n \in \mathbb{R}$,

whose terms are zero from some point on. Define

$$||x|| = \max_{n \in \mathbb{N}} |x_n|.$$

(a) Show that $(X, \|\cdot\|)$ is a normed linear space (with vector addition and scalar multiplication defined componentwise).

(b) Show that X is not complete.

(c) Let c_0 denote the space of all real sequences (x_n) such that $x_n \to 0$ as $n \to \infty$. Show that $(c_0, \|\cdot\|)$ is complete and X is dense in c_0 .

Solution.

- (a) It is immediate to verify that X is a linear space under componentwise addition and scalar multiplication. (Note that a finite linear combination of sequences in X also belongs to X.)
- The properties of a norm are straightforward to check. For example, if $x = (x_n)$ and $y = (y_n)$, then

$$|x + y|| = \max_{n \in \mathbb{N}} |x_n + y_n|$$

$$\leq \max_{n \in \mathbb{N}} \{|x_n| + |y_n|\}$$

$$\leq \max_{n \in \mathbb{N}} |x_n| + \max_{n \in \mathbb{N}} |y_n|$$

$$\leq ||x|| + ||y||.$$

• (b) Consider the sequence $(x^{(k)})$ in X defined for $k \in \mathbb{N}$ by

$$x^{(k)} = (1, 1/2, 1/3, \dots, 1/k, 0, 0, \dots).$$

Then, for all j > k, we have

$$||x^{(j)} - x^{(k)}|| = \frac{1}{k+1}$$

so the sequence is Cauchy. However, if $x = (x_1, x_2, \ldots, x_N, 0, 0, \ldots)$ is any point in X, then

$$||x^{(k)} - x|| \ge \frac{1}{N+1}$$
 for all $k \ge N+1$,

so the sequence $(x^{(k)})$ does not have a limit in X, and X is not complete.

• (c) First, we show that X is dense in c_0 . If $x = (x_n) \in c_0$, then given any $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $|x_n| < \epsilon$ for all n > N. It follows that if

$$x^{(N)} = (x_1, \dots, x_N, 0, 0, \dots) \in X,$$

then $||x - x^{(N)}|| < \epsilon$, so X is a dense subspace of c_0 .

• Next, we prove that c_0 is complete. Suppose that $(x^{(k)})$ is a Cauchy sequence in c_0 , where

$$x^{(k)} = \left(x_n^{(k)}\right)_{n=1}^{\infty}$$

Since

$$|x_n^{(k)} - x_n^{(\ell)}| \le ||x^{(k)} - x^{(\ell)}||,$$

the sequence $(x_n^{(k)})_{k=1}^{\infty}$ is Cauchy in \mathbb{R} for each $n \in \mathbb{N}$, so by the completeness of \mathbb{R} , there is $x_n \in \mathbb{R}$ such that

$$x_n^{(k)} \to x_n \qquad \text{as } k \to \infty.$$

• Let $x = (x_n)$ and let $\epsilon > 0$ be given. Since $(x^{(k)})$ is Cauchy in c_0 , there exists $K_{\epsilon} \in \mathbb{N}$ such that

$$\left|x_{n}^{(k)}-x_{n}^{(\ell)}\right|<\epsilon$$
 for every $n\in\mathbb{N}$ and all $k,\ell\geq K_{\epsilon}$.

Taking the limit of this inequality as $\ell \to \infty$, we get that

$$|x_n^{(k)} - x_n| \le \epsilon$$
 for every $n \in \mathbb{N}$ and all $k \ge K_\epsilon$.

It follows that that

$$||x^{(k)} - x|| = \sup_{n \in \mathbb{N}} |x_n^{(k)} - x_n| \le \epsilon \quad \text{for } k \ge K_{\epsilon},$$

which shows that $||x^{(k)} - x|| \to 0$ as $k \to \infty$.

• Finally, we show that $x \in c_0$. Let $\epsilon > 0$ be given. Then there exists $k_{\epsilon} \in \mathbb{N}$ such that

$$\|x - x^{(k_{\epsilon})}\| < \frac{\epsilon}{2},$$

and since $x^{(k_{\epsilon})} \in c_0$, there exists $N_{\epsilon} \in \mathbb{N}$ such that

$$\left|x_{n}^{(k_{\epsilon})}\right| < \frac{\epsilon}{2} \qquad \text{for } n > N_{\epsilon}.$$

It follows that

$$|x_n| \le |x_n - x_n^{(k_\epsilon)}| + |x_n^{(k_\epsilon)}| < \epsilon \quad \text{for } n > N_\epsilon,$$

which shows that $x \in c_0$ and c_0 is complete.