
Problem Set 1: Solutions
Math 201A: Fall 2016

Problem 1. Let (X, d) be a metric space.

(a) Prove the reverse triangle inequality: for every x, y, z ∈ X

d(x, y) ≥ |d(x, z)− d(z, y)| .

(b) Prove that if xn → x and yn → y as n→∞, then d(xn, yn)→ d(x, y).

Solution

• (a) The triangle inequality

d(x, y) + d(y, z) ≥ d(x, z)

implies that
d(x, y) ≥ d(x, z)− d(y, z).

Exchanging x and y, and using the symmetry of d, we also have

d(x, y) ≥ d(y, z)− d(x, z).

Hence
d(x, y) ≥ |d(x, z)− d(y, z)| .

• (b) Using the reverse triangle inequality, we get that

|d(xn, yn)− d(x, y)| ≤ |d(xn, yn)− d(x, yn)|+ |d(x, yn)− d(x, y)|
≤ d(xn, x) + d(yn, y)

→ 0 as n→∞.
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Problem 2. Let E be a finite set and let P = P(E) be the power set of E
(the set of all subsets of E). Define d : P × P → R by

d(A,B) = card(A∆B)

where card(A) is the number of elements of A and

A∆B = (A \B) ∪ (B \ A)

is the symmetric difference of A,B ⊂ E. Show that (P, d) is a metric space.

Solution

• We have d(A,B) ≥ 0. If d(A,B) = 0, then A \ B = A ∩ Bc = ∅, so
B ⊃ A. Similarly, A ⊃ B, so A = B.

• The symmetry of d is immediate.

• Let A,B,C ⊂ X. Then

A∆B = (A ∩Bc) ∪ (Ac ∩B)

= (A ∩Bc ∩ C) ∪ (A ∩Bc ∩ Cc) ∪ (Ac ∩B ∩ C) ∪ (Ac ∩B ∩ Cc)

= F ∪G,
where (draw a Venn diagram!)

F = (Ac ∩B ∩ C) ∪ (A ∩Bc ∩ Cc),

G = (A ∩Bc ∩ C) ∪ (Ac ∩B ∩ Cc).

• If x ∈ F , then either x ∈ Ac ∩B and x ∈ C, which implies that x /∈ G,
or x ∈ A ∩ Bc and x ∈ Cc, which also implies that x /∈ G. It follows
that F ∩G = ∅ and

card(A∆B) = card(F ) + card(G).

• We have
F ⊂ (Ac ∩ C) ∪ (A ∩ Cc) = A∆C,

so card(F ) ≤ card(A∆C). Similarly, card(G) ≤ card(B∆C), which
shows that

card(A∆B) ≤ card(A∆C) + card(B∆C).

Thus, d satisfies the triangle inequality.

Remark. In coding theory, d is called the Hamming metric, which measures
the number of mismatches between two finite strings of 0s and 1s.
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Problem 3. If (X, d) is a metric space, define ρ : X ×X → R by

ρ(x, y) =
d(x, y)

1 + d(x, y)
.

(a) Show that (X, ρ) is a metric space.

(b) Show that (X, d) and (X, ρ) have the same convergent sequences and
the same metric topologies. Do they necessarily have the same Cauchy se-
quences?

Solution

• (a) Let s, t ≥ 0. Then

s+ t

1 + s+ t
=

s

1 + s+ t
+

t

1 + s+ t
≤ s

1 + s
+

t

1 + t
.

Moreover,
s

1 + s
− t

1 + t
=

s− t
(1 + s)(1 + t)

,

so 0 ≤ t ≤ s implies that

t

1 + t
≤ s

1 + s

• The positivity and symmetry of ρ are immediate.

• Let x, y, z ∈ X. Using the triangle inequality for d and the previous
inequalities, we get that

ρ(x, y) =
d(x, y)

1 + d(x, y)

≤ d(x, z) + d(y, z)

1 + d(x, z) + d(y, z)

≤ d(x, z)

1 + d(x, z)
+

d(y, z)

1 + d(y, z)

≤ ρ(x, z) + ρ(y, z),

so ρ satisfies the triangle inequality, and (X, ρ) is a metric space.
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• (b) Clearly, d(xn, x) → 0 if and only if ρ(xn, x) → 0, so d and ρ have
the same convergent sequences.

• LetBr(x) denote the open ball with respect to d and Cr(x) the open ball
with respect to ρ. If d(x, y) < r, then ρ(x, y) < r, so Br(x) ⊂ Cr(x).
It follows that if G is open with respect to ρ and Cε(x) ⊂ G for each
x ∈ G and some ε > 0, then Bε(x) ⊂ G, so G is open with respect to
d.

• Similarly, if ρ(x, y) < r where r < 1/2, then d(x, y) < 2r, so Cr(x) ⊂
B2r(x). If G is open with respect to d and Bε(x) ⊂ G, then we can
choose ε < 1/2 without loss of generality, and Cε/2(x) ⊂ G, so G is
open with respect to ρ.

• The two metrics have the same Cauchy sequences. Suppose that (xn)
is Cauchy in (X, ρ) and let ε > 0. Choose N ∈ N such that

ρ(xm, xn) < min

{
ε

2
,
1

2

}
for all m,n > N.

Then d(xm, xn) < ε for all m,n > N , so (xn) is Cauchy in (X, d). The
converse is similar.
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Problem 4. Define d : R2 × R2 → R by

d(x, y) =
√
|x1 − y1|+

√
|x2 − y2| x = (x1, x2), y = (y1, y2).

(a) Show that (R2, d) is a metric space. Is this metric derived from a norm
‖ · ‖ on R2, meaning that d(x, y) = ‖x− y‖?
(b) Sketch the unit ball B1(0) in (R2, d). Is it a convex set?

Solution

• (a) The symmetry and positivity of d are immediate, so we just need
to verify the triangle inequality.

• For any a, b ≥ 0, we have(√
a+
√
b
)2

= a+ 2
√
ab+ b ≥ a+ b,

which shows that √
a+
√
b ≥
√
a+ b,

with equality if and only if a = 0 or b = 0.

• Let x = (x1, x2), y = (y1, y2) and z = (z1, z2). Then, since x 7→
√
x is

an increasing function, the previous inequality implies that

d(x, y) =
√
|x1 − y1|+

√
|x2 − y2|

≤
√
|x1 − z1|+ |z1 − y1|+

√
|x2 − z2|+ |z2 − y2|

≤
√
|x1 − z1|+

√
|y1 − z1|+

√
|x2 − z2|+

√
|y2 − z2|

≤ d(x, z) + d(z, y).

• The metric is not derived from a norm on R2 since

d(λx, λy) =
√
|λ|d(x, y)

for λ ∈ R, so it is not homogeneous of degree one.

• (b) The unit ball is shown in the figure. It is not convex. For example,
if 1/2 ≤ |a| < 1 and

x = (a, 0), y = (0, a), z =
1

2
(x+ y),
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then d(x, 0) = d(y, 0) =
√
a < 1 and d(z, 0) =

√
2a ≥ 1, so x, y ∈ B1(0)

but z /∈ B1(0).

Remark. The unit ball of a (real) normed space is always convex, since
‖x‖, ‖y‖ < 1 and 0 ≤ λ ≤ 1 implies that

‖λx+ (1− λ)y‖ ≤ λ‖x‖+ (1− λ)‖y‖ < 1.
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Problem 5. Define the closure Ā of a subset A ⊂ X of a metric space X by

Ā =
⋂
{F ⊂ X : F ⊃ A and F is closed} .

Show that

Ā = {x ∈ X : there exists a sequence (xn) with xn ∈ A and xn → x} .

Solution

• First, we show that x ∈ Ā if and only if every neighborhood of x
contains some point in A. To do this, we prove the equivalent statement
that x /∈ Ā if and only if some neighborhood of x is disjoint from A.

• If x /∈ Ā, then since Ā ⊃ A is closed and Āc ⊂ Ac is open, there is a
neighborhood Ux ⊂ Āc of x that is disjoint from A.

• Conversely, if Ux is an open neighborhood of x ∈ X that is disjoint
from A, then F = U c

x is a closed set with F ⊃ A and x /∈ F so x /∈ Ā.

• Let Ã denote the sequential closure of A:

Ã = {x ∈ X : there exists a sequence (xn) with xn ∈ A and xn → x} .

• If x /∈ Ā, then x has a neighborhood that is disjoint from Ā ⊃ A, so no
sequence in A can converge to x and x /∈ Ã. It follows that Ā ⊃ Ã.

• If x ∈ Ā, then for every n ∈ N, there exists xn ∈ B1/n(x)∩A, so (xn) is

a sequence in A that converges to x, and x ∈ Ã. It follows that Ã ⊃ Ā,
so Ã = Ā.
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Problem 6. Is the closure of the open ball

Br(x) = {y ∈ X : d(x, y) < r}

in a metric space (X, d) always equal to the closed ball

B̄r(x) = {y ∈ X : d(x, y) ≤ r}?

Solution

• This is not true in general.

• For example, if X is a set with at least two elements and d : X×X → R
is the discrete metric,

d(x, y) =

{
1 if x 6= y,

0 if x = y,

then every subset of X is closed and B1(x) = {x}, B1(x) = {x}, but
B̄1(x) = X, so B1(x) 6= B̄1(x).
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Problem 7. Let X be the space of all real sequences of the form

x = (x1, x2, x3, . . . , xN , 0, 0, . . . ) for some N ∈ N, where xn ∈ R,

whose terms are zero from some point on. Define

‖x‖ = max
n∈N
|xn|.

(a) Show that (X, ‖ · ‖) is a normed linear space (with vector addition and
scalar multiplication defined componentwise).

(b) Show that X is not complete.

(c) Let c0 denote the space of all real sequences (xn) such that xn → 0 as
n→∞. Show that (c0, ‖ · ‖) is complete and X is dense in c0.

Solution.

• (a) It is immediate to verify that X is a linear space under compo-
nentwise addition and scalar multiplication. (Note that a finite linear
combination of sequences in X also belongs to X.)

• The properties of a norm are straightforward to check. For example, if
x = (xn) and y = (yn), then

‖x+ y‖ = max
n∈N
|xn + yn|

≤ max
n∈N
{|xn|+ |yn|}

≤ max
n∈N
|xn|+ max

n∈N
|yn|

≤ ‖x‖+ ‖y‖.

• (b) Consider the sequence
(
x(k)
)

in X defined for k ∈ N by

x(k) = (1, 1/2, 1/3, . . . , 1/k, 0, 0, . . . ) .

Then, for all j > k, we have∥∥x(j) − x(k)∥∥ =
1

k + 1
,

so the sequence is Cauchy. However, if x = (x1, x2, . . . , xN , 0, 0, . . . ) is
any point in X, then∥∥x(k) − x∥∥ ≥ 1

N + 1
for all k ≥ N + 1,

so the sequence
(
x(k)
)

does not have a limit inX, andX is not complete.
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• (c) First, we show that X is dense in c0. If x = (xn) ∈ c0, then given
any ε > 0 there exists N ∈ N such that |xn| < ε for all n > N . It
follows that if

x(N) = (x1, . . . , xN , 0, 0, . . . ) ∈ X,
then

∥∥x− x(N)
∥∥ < ε, so X is a dense subspace of c0.

• Next, we prove that c0 is complete. Suppose that
(
x(k)
)

is a Cauchy
sequence in c0, where

x(k) =
(
x(k)n
)∞
n=1

.

Since ∣∣x(k)n − x(`)n ∣∣ ≤ ∥∥x(k) − x(`)∥∥ ,
the sequence (x

(k)
n )∞k=1 is Cauchy in R for each n ∈ N, so by the com-

pleteness of R, there is xn ∈ R such that

x(k)n → xn as k →∞.

• Let x = (xn) and let ε > 0 be given. Since
(
x(k)
)

is Cauchy in c0, there
exists Kε ∈ N such that∣∣x(k)n − x(`)n ∣∣ < ε for every n ∈ N and all k, ` ≥ Kε.

Taking the limit of this inequality as `→∞, we get that

|x(k)n − xn| ≤ ε for every n ∈ N and all k ≥ Kε.

It follows that that

‖x(k) − x‖ = sup
n∈N
|x(k)n − xn| ≤ ε for k ≥ Kε,

which shows that ‖x(k) − x‖ → 0 as k →∞.

• Finally, we show that x ∈ c0. Let ε > 0 be given. Then there exists
kε ∈ N such that

‖x− x(kε)‖ < ε

2
,

and since x(kε) ∈ c0, there exists Nε ∈ N such that∣∣x(kε)n

∣∣ < ε

2
for n > Nε.

It follows that

|xn| ≤
∣∣xn − x(kε)n

∣∣+
∣∣x(kε)n

∣∣ < ε for n > Nε,

which shows that x ∈ c0 and c0 is complete.
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