Problem Set 1: Solutions
 Math 201A: Fall 2016

Problem 1. Let (X, d) be a metric space.
(a) Prove the reverse triangle inequality: for every $x, y, z \in X$

$$
d(x, y) \geq|d(x, z)-d(z, y)|
$$

(b) Prove that if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$, then $d\left(x_{n}, y_{n}\right) \rightarrow d(x, y)$.

Solution

- (a) The triangle inequality

$$
d(x, y)+d(y, z) \geq d(x, z)
$$

implies that

$$
d(x, y) \geq d(x, z)-d(y, z) .
$$

Exchanging x and y, and using the symmetry of d, we also have

$$
d(x, y) \geq d(y, z)-d(x, z) .
$$

Hence

$$
d(x, y) \geq|d(x, z)-d(y, z)| .
$$

- (b) Using the reverse triangle inequality, we get that

$$
\begin{aligned}
\left|d\left(x_{n}, y_{n}\right)-d(x, y)\right| & \leq\left|d\left(x_{n}, y_{n}\right)-d\left(x, y_{n}\right)\right|+\left|d\left(x, y_{n}\right)-d(x, y)\right| \\
& \leq d\left(x_{n}, x\right)+d\left(y_{n}, y\right) \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Problem 2. Let E be a finite set and let $P=\mathcal{P}(E)$ be the power set of E (the set of all subsets of E). Define $d: P \times P \rightarrow \mathbb{R}$ by

$$
d(A, B)=\operatorname{card}(A \Delta B)
$$

where $\operatorname{card}(A)$ is the number of elements of A and

$$
A \Delta B=(A \backslash B) \cup(B \backslash A)
$$

is the symmetric difference of $A, B \subset E$. Show that (P, d) is a metric space.

Solution

- We have $d(A, B) \geq 0$. If $d(A, B)=0$, then $A \backslash B=A \cap B^{c}=\emptyset$, so $B \supset A$. Similarly, $A \supset B$, so $A=B$.
- The symmetry of d is immediate.
- Let $A, B, C \subset X$. Then

$$
\begin{aligned}
A \Delta B & =\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right) \\
& =\left(A \cap B^{c} \cap C\right) \cup\left(A \cap B^{c} \cap C^{c}\right) \cup\left(A^{c} \cap B \cap C\right) \cup\left(A^{c} \cap B \cap C^{c}\right) \\
& =F \cup G,
\end{aligned}
$$

where (draw a Venn diagram!)

$$
\begin{aligned}
& F=\left(A^{c} \cap B \cap C\right) \cup\left(A \cap B^{c} \cap C^{c}\right), \\
& G=\left(A \cap B^{c} \cap C\right) \cup\left(A^{c} \cap B \cap C^{c}\right) .
\end{aligned}
$$

- If $x \in F$, then either $x \in A^{c} \cap B$ and $x \in C$, which implies that $x \notin G$, or $x \in A \cap B^{c}$ and $x \in C^{c}$, which also implies that $x \notin G$. It follows that $F \cap G=\emptyset$ and

$$
\operatorname{card}(A \Delta B)=\operatorname{card}(F)+\operatorname{card}(G)
$$

- We have

$$
F \subset\left(A^{c} \cap C\right) \cup\left(A \cap C^{c}\right)=A \Delta C,
$$

so $\operatorname{card}(F) \leq \operatorname{card}(A \Delta C)$. Similarly, $\operatorname{card}(G) \leq \operatorname{card}(B \Delta C)$, which shows that

$$
\operatorname{card}(A \Delta B) \leq \operatorname{card}(A \Delta C)+\operatorname{card}(B \Delta C)
$$

Thus, d satisfies the triangle inequality.
Remark. In coding theory, d is called the Hamming metric, which measures the number of mismatches between two finite strings of 0 s and 1 s .

Problem 3. If (X, d) is a metric space, define $\rho: X \times X \rightarrow \mathbb{R}$ by

$$
\rho(x, y)=\frac{d(x, y)}{1+d(x, y)}
$$

(a) Show that (X, ρ) is a metric space.
(b) Show that (X, d) and (X, ρ) have the same convergent sequences and the same metric topologies. Do they necessarily have the same Cauchy sequences?

Solution

- (a) Let $s, t \geq 0$. Then

$$
\frac{s+t}{1+s+t}=\frac{s}{1+s+t}+\frac{t}{1+s+t} \leq \frac{s}{1+s}+\frac{t}{1+t} .
$$

Moreover,

$$
\frac{s}{1+s}-\frac{t}{1+t}=\frac{s-t}{(1+s)(1+t)}
$$

so $0 \leq t \leq s$ implies that

$$
\frac{t}{1+t} \leq \frac{s}{1+s}
$$

- The positivity and symmetry of ρ are immediate.
- Let $x, y, z \in X$. Using the triangle inequality for d and the previous inequalities, we get that

$$
\begin{aligned}
\rho(x, y) & =\frac{d(x, y)}{1+d(x, y)} \\
& \leq \frac{d(x, z)+d(y, z)}{1+d(x, z)+d(y, z)} \\
& \leq \frac{d(x, z)}{1+d(x, z)}+\frac{d(y, z)}{1+d(y, z)} \\
& \leq \rho(x, z)+\rho(y, z),
\end{aligned}
$$

so ρ satisfies the triangle inequality, and (X, ρ) is a metric space.

- (b) Clearly, $d\left(x_{n}, x\right) \rightarrow 0$ if and only if $\rho\left(x_{n}, x\right) \rightarrow 0$, so d and ρ have the same convergent sequences.
- Let $B_{r}(x)$ denote the open ball with respect to d and $C_{r}(x)$ the open ball with respect to ρ. If $d(x, y)<r$, then $\rho(x, y)<r$, so $B_{r}(x) \subset C_{r}(x)$. It follows that if G is open with respect to ρ and $C_{\epsilon}(x) \subset G$ for each $x \in G$ and some $\epsilon>0$, then $B_{\epsilon}(x) \subset G$, so G is open with respect to d.
- Similarly, if $\rho(x, y)<r$ where $r<1 / 2$, then $d(x, y)<2 r$, so $C_{r}(x) \subset$ $B_{2 r}(x)$. If G is open with respect to d and $B_{\epsilon}(x) \subset G$, then we can choose $\epsilon<1 / 2$ without loss of generality, and $C_{\epsilon / 2}(x) \subset G$, so G is open with respect to ρ.
- The two metrics have the same Cauchy sequences. Suppose that $\left(x_{n}\right)$ is Cauchy in (X, ρ) and let $\epsilon>0$. Choose $N \in \mathbb{N}$ such that

$$
\rho\left(x_{m}, x_{n}\right)<\min \left\{\frac{\epsilon}{2}, \frac{1}{2}\right\} \quad \text { for all } m, n>N
$$

Then $d\left(x_{m}, x_{n}\right)<\epsilon$ for all $m, n>N$, so $\left(x_{n}\right)$ is Cauchy in (X, d). The converse is similar.

Problem 4. Define $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
d(x, y)=\sqrt{\left|x_{1}-y_{1}\right|}+\sqrt{\left|x_{2}-y_{2}\right|} \quad x=\left(x_{1}, x_{2}\right), \quad y=\left(y_{1}, y_{2}\right) .
$$

(a) Show that $\left(\mathbb{R}^{2}, d\right)$ is a metric space. Is this metric derived from a norm $\|\cdot\|$ on \mathbb{R}^{2}, meaning that $d(x, y)=\|x-y\|$?
(b) Sketch the unit ball $B_{1}(0)$ in $\left(\mathbb{R}^{2}, d\right)$. Is it a convex set?

Solution

- (a) The symmetry and positivity of d are immediate, so we just need to verify the triangle inequality.
- For any $a, b \geq 0$, we have

$$
(\sqrt{a}+\sqrt{b})^{2}=a+2 \sqrt{a b}+b \geq a+b
$$

which shows that

$$
\sqrt{a}+\sqrt{b} \geq \sqrt{a+b}
$$

with equality if and only if $a=0$ or $b=0$.

- Let $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$ and $z=\left(z_{1}, z_{2}\right)$. Then, since $x \mapsto \sqrt{x}$ is an increasing function, the previous inequality implies that

$$
\begin{aligned}
d(x, y) & =\sqrt{\left|x_{1}-y_{1}\right|}+\sqrt{\left|x_{2}-y_{2}\right|} \\
& \leq \sqrt{\left|x_{1}-z_{1}\right|+\left|z_{1}-y_{1}\right|}+\sqrt{\left|x_{2}-z_{2}\right|+\left|z_{2}-y_{2}\right|} \\
& \leq \sqrt{\left|x_{1}-z_{1}\right|}+\sqrt{\left|y_{1}-z_{1}\right|}+\sqrt{\left|x_{2}-z_{2}\right|}+\sqrt{\left|y_{2}-z_{2}\right|} \\
& \leq d(x, z)+d(z, y) .
\end{aligned}
$$

- The metric is not derived from a norm on \mathbb{R}^{2} since

$$
d(\lambda x, \lambda y)=\sqrt{|\lambda|} d(x, y)
$$

for $\lambda \in \mathbb{R}$, so it is not homogeneous of degree one.

- (b) The unit ball is shown in the figure. It is not convex. For example, if $1 / 2 \leq|a|<1$ and

$$
x=(a, 0), \quad y=(0, a), \quad z=\frac{1}{2}(x+y)
$$

then $d(x, 0)=d(y, 0)=\sqrt{a}<1$ and $d(z, 0)=\sqrt{2 a} \geq 1$, so $x, y \in B_{1}(0)$ but $z \notin B_{1}(0)$.

Remark. The unit ball of a (real) normed space is always convex, since $\|x\|,\|y\|<1$ and $0 \leq \lambda \leq 1$ implies that

$$
\|\lambda x+(1-\lambda) y\| \leq \lambda\|x\|+(1-\lambda)\|y\|<1 .
$$

Problem 5. Define the closure \bar{A} of a subset $A \subset X$ of a metric space X by

$$
\bar{A}=\bigcap\{F \subset X: F \supset A \text { and } F \text { is closed }\} .
$$

Show that
$\bar{A}=\left\{x \in X:\right.$ there exists a sequence $\left(x_{n}\right)$ with $x_{n} \in A$ and $\left.x_{n} \rightarrow x\right\}$.

Solution

- First, we show that $x \in \bar{A}$ if and only if every neighborhood of x contains some point in A. To do this, we prove the equivalent statement that $x \notin \bar{A}$ if and only if some neighborhood of x is disjoint from A.
- If $x \notin \bar{A}$, then since $\bar{A} \supset A$ is closed and $\bar{A}^{c} \subset A^{c}$ is open, there is a neighborhood $U_{x} \subset \bar{A}^{c}$ of x that is disjoint from A.
- Conversely, if U_{x} is an open neighborhood of $x \in X$ that is disjoint from A, then $F=U_{x}^{c}$ is a closed set with $F \supset A$ and $x \notin F$ so $x \notin \bar{A}$.
- Let \tilde{A} denote the sequential closure of A :
$\tilde{A}=\left\{x \in X:\right.$ there exists a sequence $\left(x_{n}\right)$ with $x_{n} \in A$ and $\left.x_{n} \rightarrow x\right\}$.
- If $x \notin \bar{A}$, then x has a neighborhood that is disjoint from $\bar{A} \supset A$, so no sequence in A can converge to x and $x \notin \tilde{A}$. It follows that $\bar{A} \supset \tilde{A}$.
- If $x \in \bar{A}$, then for every $n \in \mathbb{N}$, there exists $x_{n} \in B_{1 / n}(x) \cap A$, so $\left(x_{n}\right)$ is a sequence in A that converges to x, and $x \in \tilde{A}$. It follows that $\tilde{A} \supset \bar{A}$, so $\tilde{A}=\bar{A}$.

Problem 6. Is the closure of the open ball

$$
B_{r}(x)=\{y \in X: d(x, y)<r\}
$$

in a metric space (X, d) always equal to the closed ball

$$
\bar{B}_{r}(x)=\{y \in X: d(x, y) \leq r\} ?
$$

Solution

- This is not true in general.
- For example, if X is a set with at least two elements and $d: X \times X \rightarrow \mathbb{R}$ is the discrete metric,

$$
d(x, y)= \begin{cases}1 & \text { if } x \neq y \\ 0 & \text { if } x=y\end{cases}
$$

then every subset of X is closed and $B_{1}(x)=\{x\}, \overline{B_{1}(x)}=\{x\}$, but $\bar{B}_{1}(x)=X$, so $\overline{B_{1}(x)} \neq \bar{B}_{1}(x)$.

Problem 7. Let X be the space of all real sequences of the form $x=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{N}, 0,0, \ldots\right) \quad$ for some $N \in \mathbb{N}$, where $x_{n} \in \mathbb{R}$, whose terms are zero from some point on. Define

$$
\|x\|=\max _{n \in \mathbb{N}}\left|x_{n}\right| .
$$

(a) Show that $(X,\|\cdot\|)$ is a normed linear space (with vector addition and scalar multiplication defined componentwise).
(b) Show that X is not complete.
(c) Let c_{0} denote the space of all real sequences $\left(x_{n}\right)$ such that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$. Show that $\left(c_{0},\|\cdot\|\right)$ is complete and X is dense in c_{0}.

Solution.

- (a) It is immediate to verify that X is a linear space under componentwise addition and scalar multiplication. (Note that a finite linear combination of sequences in X also belongs to X.)
- The properties of a norm are straightforward to check. For example, if $x=\left(x_{n}\right)$ and $y=\left(y_{n}\right)$, then

$$
\begin{aligned}
\|x+y\| & =\max _{n \in \mathbb{N}}\left|x_{n}+y_{n}\right| \\
& \leq \max _{n \in \mathbb{N}}\left\{\left|x_{n}\right|+\left|y_{n}\right|\right\} \\
& \leq \max _{n \in \mathbb{N}}\left|x_{n}\right|+\max _{n \in \mathbb{N}}\left|y_{n}\right| \\
& \leq\|x\|+\|y\| .
\end{aligned}
$$

- (b) Consider the sequence $\left(x^{(k)}\right)$ in X defined for $k \in \mathbb{N}$ by

$$
x^{(k)}=(1,1 / 2,1 / 3, \ldots, 1 / k, 0,0, \ldots) .
$$

Then, for all $j>k$, we have

$$
\left\|x^{(j)}-x^{(k)}\right\|=\frac{1}{k+1}
$$

so the sequence is Cauchy. However, if $x=\left(x_{1}, x_{2}, \ldots, x_{N}, 0,0, \ldots\right)$ is any point in X, then

$$
\left\|x^{(k)}-x\right\| \geq \frac{1}{N+1} \quad \text { for all } k \geq N+1
$$

so the sequence $\left(x^{(k)}\right)$ does not have a limit in X, and X is not complete.

- (c) First, we show that X is dense in c_{0}. If $x=\left(x_{n}\right) \in c_{0}$, then given any $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|x_{n}\right|<\epsilon$ for all $n>N$. It follows that if

$$
x^{(N)}=\left(x_{1}, \ldots, x_{N}, 0,0, \ldots\right) \in X
$$

then $\left\|x-x^{(N)}\right\|<\epsilon$, so X is a dense subspace of c_{0}.

- Next, we prove that c_{0} is complete. Suppose that $\left(x^{(k)}\right)$ is a Cauchy sequence in c_{0}, where

$$
x^{(k)}=\left(x_{n}^{(k)}\right)_{n=1}^{\infty} .
$$

Since

$$
\left|x_{n}^{(k)}-x_{n}^{(\ell)}\right| \leq\left\|x^{(k)}-x^{(\ell)}\right\|,
$$

the sequence $\left(x_{n}^{(k)}\right)_{k=1}^{\infty}$ is Cauchy in \mathbb{R} for each $n \in \mathbb{N}$, so by the completeness of \mathbb{R}, there is $x_{n} \in \mathbb{R}$ such that

$$
x_{n}^{(k)} \rightarrow x_{n} \quad \text { as } k \rightarrow \infty .
$$

- Let $x=\left(x_{n}\right)$ and let $\epsilon>0$ be given. Since $\left(x^{(k)}\right)$ is Cauchy in c_{0}, there exists $K_{\epsilon} \in \mathbb{N}$ such that

$$
\left|x_{n}^{(k)}-x_{n}^{(\ell)}\right|<\epsilon \quad \text { for every } n \in \mathbb{N} \text { and all } k, \ell \geq K_{\epsilon} .
$$

Taking the limit of this inequality as $\ell \rightarrow \infty$, we get that

$$
\left|x_{n}^{(k)}-x_{n}\right| \leq \epsilon \quad \text { for every } n \in \mathbb{N} \text { and all } k \geq K_{\epsilon} .
$$

It follows that that

$$
\left\|x^{(k)}-x\right\|=\sup _{n \in \mathbb{N}}\left|x_{n}^{(k)}-x_{n}\right| \leq \epsilon \quad \text { for } k \geq K_{\epsilon}
$$

which shows that $\left\|x^{(k)}-x\right\| \rightarrow 0$ as $k \rightarrow \infty$.

- Finally, we show that $x \in c_{0}$. Let $\epsilon>0$ be given. Then there exists $k_{\epsilon} \in \mathbb{N}$ such that

$$
\left\|x-x^{\left(k_{\epsilon}\right)}\right\|<\frac{\epsilon}{2}
$$

and since $x^{\left(k_{\epsilon}\right)} \in c_{0}$, there exists $N_{\epsilon} \in \mathbb{N}$ such that

$$
\left|x_{n}^{\left(k_{\epsilon}\right)}\right|<\frac{\epsilon}{2} \quad \text { for } n>N_{\epsilon} \text {. }
$$

It follows that

$$
\left|x_{n}\right| \leq\left|x_{n}-x_{n}^{\left(k_{\epsilon}\right)}\right|+\left|x_{n}^{\left(k_{\epsilon}\right)}\right|<\epsilon \quad \text { for } n>N_{\epsilon},
$$

which shows that $x \in c_{0}$ and c_{0} is complete.

