Problem Set 1: Solutions
Math 201A: Fall 2016

Problem 1. Let (X, d) be a metric space.

(a) Prove the reverse triangle inequality: for every z,y,z € X
d(z,y) = |d(z, z) — d(z,y)].
(b) Prove that if z,, = x and y,, — y as n — oo, then d(z,, y,) — d(z,y).
Solution
e (a) The triangle inequality
d(z,y) +d(y,z) > d(z, 2)

implies that
d(l’,y) > d(l’, Z) - d(ya Z)‘

Exchanging x and y, and using the symmetry of d, we also have
d(z,y) > d(y, 2) — d(z, 2).
Hence
d(z,y) = |d(x, z) — d(y, 2)| .
e (b) Using the reverse triangle inequality, we get that
(2, yn) — d(z, y)| < |d(zn, yn) — d(@, ya)| + |d(z, yn) — d(z, )|

< d(zn, ) + d(Yn, y)
—0 as n — o0o.



Problem 2. Let E be a finite set and let P = P(F) be the power set of F
(the set of all subsets of E). Define d: P x P — R by

d(A, B) = card(AAB)
where card(A) is the number of elements of A and
AAB = (A\B)U(B\ A)
is the symmetric difference of A, B C E. Show that (P,d) is a metric space.

Solution
e We have d(A,B) > 0. If d(A,B) = 0, then A\ B = AN B =10, so
B D A. Similarly, A D B, so A= B.

e The symmetry of d is immediate.

e Let A, B,C C X. Then
AAB = (AN B°)U(A°N B)
=(ANB°NC)U(ANB NCY)U (A NBNC)U(ANBNCY)
=FUQG,
where (draw a Venn diagram!)
F=(ANBNC)U(ANB°NC°),
G=(ANBNC)U(A°NBNC").
e If z € F, then either x € A°N B and x € C, which implies that = ¢ G,

orz € AN B¢ and z € C° which also implies that x ¢ G. It follows
that F NG = () and

card(AAB) = card(F) + card(G).
e We have
FC(ANC)UANCY) =AAC,

so card(F) < card(AAC). Similarly, card(G) < card(BAC'), which
shows that

card(AAB) < card(AAC) + card(BAC).
Thus, d satisfies the triangle inequality.

Remark. In coding theory, d is called the Hamming metric, which measures
the number of mismatches between two finite strings of 0s and 1s.



Problem 3. If (X, d) is a metric space, define p: X x X — R by

d(z,y)

p(z,y) = Hd—(x,y)

(a) Show that (X, p) is a metric space.

(b) Show that (X,d) and (X, p) have the same convergent sequences and
the same metric topologies. Do they necessarily have the same Cauchy se-
quences?

Solution
e (a) Let s,t > 0. Then

s+t S t S t
= + < + .
1+s+t l1+s+t 1+s+t 1+s 1+t

Moreover,
] t s—1

1+s 1+t (1+s)(1+1)
so 0 <t < s implies that

t S
<
1+t~ 1+s

e The positivity and symmetry of p are immediate.

o Let x,y,2z € X. Using the triangle inequality for d and the previous
inequalities, we get that

d(z,y)
1+d(x,y)
< d(z,z) 4+ d(y, 2)
T 1+d(x,z)+d(y, 2)
d(x, z) d(y, z)
= 1+ d(z, 2) 3 +d(y, 2)
< p(z,z) + p(y, 2),

p(r,y) =

so p satisfies the triangle inequality, and (X, p) is a metric space.



(b) Clearly, d(x,,x) — 0 if and only if p(z,,z) — 0, so d and p have
the same convergent sequences.

Let B,(x) denote the open ball with respect to d and C,.(z) the open ball
with respect to p. If d(z,y) < r, then p(z,y) < r, so B.(x) C Cy(x).
It follows that if G is open with respect to p and C.(z) C G for each

x € G and some € > 0, then B.(z) C G, so G is open with respect to
d.

Similarly, if p(z,y) < r where r < 1/2, then d(z,y) < 2r, so C,(x) C
By, (z). If G is open with respect to d and B.(xz) C G, then we can
choose € < 1/2 without loss of generality, and C¢j2(z) C G, so G is
open with respect to p.

The two metrics have the same Cauchy sequences. Suppose that (x,,)
is Cauchy in (X, p) and let € > 0. Choose N € N such that

1
(T, x,) < min {g, 5} for all m,n > N.

Then d(z,,, z,) < € for all m,n > N, so (z,) is Cauchy in (X, d). The
converse is similar.



Problem 4. Define d : R? x R? — R by

y)Z\/|x1—y1]+\/|x2—y2| $=($17$2), y=(y1,yz).

(a) Show that (R? d) is a metric space. Is this metric derived from a norm
| - || on R, meaning that d(x,y) = ||z — y||?
(b) Sketch the unit ball B;(0) in (R?,d). Is it a convex set?

Solution

e (a) The symmetry and positivity of d are immediate, so we just need
to verify the triangle inequality.

e For any a,b > 0, we have

2
<\/5+\/5) :a+2\/%+62a~l—b,
which shows that
va+ Vb > Va+ b,
with equality if and only if a =0 or b = 0.

o Let o = (x1,22), y = (y1,¥2) and z = (21, 22). Then, since z — /z is
an increasing function, the previous inequality implies that

a:y):\/|x1—y1]+\/|x2—
< Vl0xr — 21|+ |21 — | + V]ze — 22| + |22 — 3o

<]z — 21|+ Vv — 21| + V]2 — 2] + V]2 — 2
<d(z,z)+d(z,y).

e The metric is not derived from a norm on R? since

d(Az, \y) = /| Ad(z,y)

for A € R, so it is not homogeneous of degree one.

e (b) The unit ball is shown in the figure. It is not convex. For example,
if 1/2 <|a| <1 and

:(a)0)7 y_(o a)v ZZ%(ZL‘—‘;-y),



then d(z,0) = d(y,0) = va < 1 and d(z,0) = v/2a > 1, so z,y € B1(0)
but z ¢ B;(0).

Remark. The unit ball of a (real) normed space is always convex, since
llz]|, ly]l <1 and 0 < A <1 implies that

Az + (1 = Nyl < Alle]l + (1= Alyll < 1.



Problem 5. Define the closure A of a subset A C X of a metric space X by

A:ﬂ{FCX:FDAandFisclosed}.

Show that

A = {z € X : there exists a sequence (r,) with , € A and z,, — z}.

Solution

First, we show that x € A if and only if every neighborhood of x
contains some point in A. To do this, we prove the equivalent statement
that = ¢ A if and only if some neighborhood of z is disjoint from A.

If z ¢ A, then sincejzl D Ais closed and A° C A€ is open, there is a
neighborhood U, C A€ of = that is disjoint from A.

Conversely, if U, is an open neighborhood of z € X that is disjoint
from A, then F' = U¢ is a closed set with F' D A and x ¢ F so x ¢ A.

Let A denote the sequential closure of A:

A = {z € X : there exists a sequence () with =, € A and x,, — z}.

If # ¢ A, then x has a neighborhood that is disjoint from A D A, s0no
sequence in A can converge to z and x ¢ A. It follows that A D A.

If z € A, then for every n € N, there exists ,, € By, (x) N A, so (z,) is

a sequence in A that converges to z, and = € A. Tt follows that A D A,
so A= A.



Problem 6. Is the closure of the open ball
B.(z) ={y e X :d(z,y) <r}
in a metric space (X, d) always equal to the closed ball

B.(x)={y € X :d(z,y) <r}?

Solution
e This is not true in general.

e For example, if X is a set with at least two elements and d : X x X — R
is the discrete metric,

1 ifx #y,
d(x’y):{o ifr=y

then every subset of X is closed and B;(z) = {z}, Bi(x) = {x}, but

Bi(x) = X, so By(z) # Bi(x).



Problem 7. Let X be the space of all real sequences of the form
x = (v1,%2,23,...,25,0,0,...) for some N € N, where z, € R,

whose terms are zero from some point on. Define

o] = ma ).
(a) Show that (X, - ||) is a normed linear space (with vector addition and

scalar multiplication defined componentwise).
(b) Show that X is not complete.

(c) Let ¢y denote the space of all real sequences (x,) such that z,, — 0 as
n — oo. Show that (co, || - ||) is complete and X is dense in .

Solution.

e (a) It is immediate to verify that X is a linear space under compo-
nentwise addition and scalar multiplication. (Note that a finite linear
combination of sequences in X also belongs to X.)

e The properties of a norm are straightforward to check. For example, if
xr = (z,) and y = (y,), then

lz + yll = max |z, + yn|
<
< max {[aa| + [ynl}
< max |z, | + max |y,|
neN neN
< [l + 1yl
e (b) Consider the sequence (z¥)) in X defined for k € N by
e® = (1,1/2,1/3,...,1/k,0,0,...).
Then, for all j > k, we have

, 1
() _ (k)
o — a9 =
so the sequence is Cauchy. However, if x = (21, 22,...,25,0,0,...) is
any point in X, then
1

so the sequence (x(k)) does not have a limit in X, and X is not complete.
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e (c) First, we show that X is dense in ¢y. If x = (z,,) € ¢, then given
any € > 0 there exists N € N such that |z,| < € for alln > N. It
follows that if

eW™N) = (z1,...,2x,0,0,...) € X,

then Hx — a:(N)H < €, 80 X is a dense subspace of c¢.

e Next, we prove that ¢y is complete. Suppose that (x(k)) is a Cauchy

sequence in ¢y, where

2 = (20

Since

‘:1:7(1]“) _ a?ff)’ < Hx(k) _ :[(e)” ’
(k)yoo

the sequence (25, )52, is Cauchy in R for each n € N, so by the com-
pleteness of R, there is x,, € R such that
) — 2, as k — o00.
e Let 2 = (z,) and let € > 0 be given. Since (™) is Cauchy in ¢y, there
exists K, € N such that
|:v,(f) - xﬁf)‘ <e€ for every n € N and all k,¢ > K..
Taking the limit of this inequality as ¢ — oo, we get that
2% — x| <e  for every n € N and all k > K.
It follows that that

2 — x| =sup o — 2o <€ for k2 K.,
neN

which shows that ||z®) — z|| — 0 as k — oo.

e Finally, we show that x € ¢g. Let ¢ > 0 be given. Then there exists
k. € N such that

€
<§,

and since z(*) € ¢y, there exists N, € N such that

otk

o — )

<§ for n > N..

It follows that

+ [a k)

|| < |2y — ko) <€ for n > N,

which shows that x € ¢y and ¢j is complete.
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