Problem Set 2: Math 201B

Due: Friday, January 14

1. If $1 \leq p<\infty$, show that the trigonometric polynomials are dense in $L^{p}(\mathbb{T})$.
2. For fixed $z \in \mathbb{C}$, let $J_{n}(z)$ denote the nth Fourier coefficient of the function $e^{i z \sin x}$, meaning that

$$
J_{n}(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i z \sin x} e^{-i n x} d x \quad \text { for } n \in \mathbb{Z}
$$

(a) What is $J_{n}(0)$? Show that $J_{-n}(z)=(-1)^{n} J_{n}(z)$.
(b) Derive the recurrence relations

$$
\frac{2 n}{z} J_{n}(z)=J_{n-1}(z)+J_{n+1}(z), \quad 2 J_{n}^{\prime}(z)=J_{n-1}(z)-J_{n+1}(z)
$$

where the prime denotes a derivative with respect to z.
(c) Deduce from (b) that $J_{n}(z)$ is a solution of Bessel's equation

$$
z^{2} J_{n}^{\prime \prime}+z J_{n}^{\prime}+\left(z^{2}-n^{2}\right) J_{n}=0 .
$$

3. A family of (not necessarily positive) functions $\left\{\phi_{n} \in L^{1}(\mathbb{T}): n \in \mathbb{N}\right\}$ is an approximate identity if:

$$
\begin{aligned}
\int \phi_{n} d x=1 & \text { for every } n \in \mathbb{N} ; \\
\int\left|\phi_{n}\right| d x \leq M & \text { for some constant } M \text { and all } n \in \mathbb{N} ; \\
\lim _{n \rightarrow \infty} \int_{\delta<|x|<\pi}\left|\phi_{n}\right| d x=0 & \text { for every } \delta>0 .
\end{aligned}
$$

If $f \in L^{1}(\mathbb{T})$, show that $\phi_{n} * f \rightarrow f$ in $L^{1}(\mathbb{T})$ as $n \rightarrow \infty$.
4. (a) Let $\left\{a_{n}: n \geq 0\right\}$ be a sequence of non-negative real numbers such that $a_{n} \rightarrow 0$ as $n \rightarrow \infty$ and

$$
a_{n+1}-2 a_{n}+a_{n-1} \geq 0
$$

Show that the series

$$
\sum_{1}^{\infty} n\left(a_{n+1}-2 a_{n}+a_{n-1}\right)
$$

converges to a_{0}. Hint. $\sum\left(a_{n+1}-a_{n}\right)$ is a convergent, decreasing telescoping series.
(b) For $N \geq 0$, let $K_{N} \geq 0$ denote the Fejér kernel

$$
K_{N}(x)=\sum_{n=-N}^{N}\left(1-\frac{|n|}{N+1}\right) e^{i n x}
$$

Show that the series

$$
f(x)=\sum_{n=1}^{\infty} n\left(a_{n+1}-2 a_{n}+a_{n-1}\right) K_{n-1}(x)
$$

converges in $L^{1}(\mathbb{T})$ to a non-negative function $f \in L^{1}(\mathbb{T})$ whose Fourier coefficients are $a_{|n|}$ i.e.

$$
f(x) \sim \sum_{n \in \mathbb{Z}} a_{|n|} e^{i n x} .
$$

(c) Show that there is a function $f \in L^{1}(\mathbb{T})$ such that

$$
f(x) \sim \sum_{|n| \geq 2} \frac{1}{\log |n|} e^{i n x}
$$

(d) Suppose that $f \in L^{1}(\mathbb{T})$ has imaginary Fourier coefficients $\left\{i b_{n}: n \in \mathbb{Z}\right\}$ such that $b_{n} \geq 0$ for $n \geq 0$ and $b_{-n}=-b_{n}$. Show that

$$
\sum_{n=1}^{\infty} \frac{b_{n}}{n}
$$

converges. Hint. The integral

$$
F(x)=\int_{0}^{x} f(t) d t
$$

is a continuous function (in fact, absolutely continuous) with Fourier coefficients

$$
\frac{1}{2 \pi} \int F(x) e^{-i n x} d x=\frac{b_{n}}{i n} \quad \text { for } n \neq 0
$$

Use the fact that $K_{N} * F(0)$ converges to $F(0)$ since $\left\{K_{N}\right\}$ is an approximate identity.
(e) Show that there is no function $f \in L^{1}(\mathbb{T})$ such that

$$
f(x) \sim \sum_{|n| \geq 2} \frac{i \operatorname{sgn} n}{\log |n|} e^{i n x}
$$

(Here, $\operatorname{sgn} n$ is equal to 1 if $n>0$ and -1 if $n<0$.)

