
Methods of Applied Mathematics
Math 207A, Fall 2018
Midterm: Solutions

1 [40%] An SIR model for the spread of a disease in a population is given by
the following equations:

St = a (I +R + S)− aS − bSI,
It = bSI − (a+ c)I,

Rt = cI − aR,

where S(t) is the number of susceptible individuals, I(t) is the number of
infected individuals, and R(t) is the number of recovered individuals at time
t. The positive parameters a, b, c > 0 have the following interpretations: a is
the birth rate, which is assumed to equal the death rate; b is the transmission
likelihood when a susceptible individual comes into contact with an infected
individual; and c is the recovery rate. Recovered individuals are immune to
the disease.

(a) Show that S(t) + I(t) + R(t) = N is constant (where N > 0 is the total
population).

(b) Introduce dimensionless variables T = at, x = S/N , y = I/N , z = R/N ,
and show that x(T ), y(T ) satisfy

xT = 1− x− βxy, yT = βxy − (1 + γ)y

for suitable dimensionless parameters β, γ > 0.

(c) Find all fixed points with x, y ≥ 0 and (where possible) use linearization
to determine their stability. Consider all parameter values β, γ > 0. What
do your results say in terms of modeling a disease?

Solution

• (a) It follows from the ODEs that (S + I + R)t = St + It + Rt = 0, so
S + I +R = constant.

• (b) Writing ∂t = a∂T and transforming to dimensionless variables, we
get that

xT = (x+ y + z)− x− βxy,
yT = βxy − (1 + γ)y,

zt = γy − z,
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where

β =
bN

a
, γ =

c

a
.

Note that [a] = [c] = 1/T and [b] = 1/TP where T denotes a dimen-
sion of time and P denotes a dimension of population, so β, γ are
dimensionless.

• From (a), we have x+ y+ z = 1, so elimination of z from the equation
for x gives the stated equations for (x, y).

• (c) The equilibria satisfy

1− x− βxy = 0, (βx− (1 + γ)) y = 0.

From the second equation, either y = 0 when x = 1 from the first
equation, or x = x̄ when y = ȳ where

x̄ =
1 + γ

β
, ȳ =

1

1 + γ
− 1

β
.

This solution for ȳ is only nonnegative when β ≥ 1 + γ, in which case
0 ≤ x̄, ȳ, z̄ ≤ 1, where z̄ = 1− x̄− ȳ.

• The Jacobian matrix of the system is

Df(x, y) =

(
−1− βy −βx
βy βx− (1 + γ)

)
.

• For the equilibrium (x, y) = (1, 0), we have

Df(1, 0) =

(
−1 −β
0 β − (1 + γ)

)
,

with eigenvalues λ1 = −1, λ2 = β − (1 + γ). Hence, (1, 0) is an
asymptotically stable node if β < 1 + γ and an unstable saddle point
if β > 1 + γ. The equilibrium is nonhyperbolic if β = 1 + γ, and we
can’t conclude its stability from the linearization.

• For the equilibrium (x, y) = (x̄, ȳ), we have

Df(x̄, ȳ) =

(
−β/(1 + γ) −(1 + γ)
β/(1 + γ)− 1 0

)
,
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with eigenvalues

λ =
1

2

− β

1 + γ
±

√(
β

1 + γ

)2

− 4 (β − (1 + γ))

 .
If β > 1 + γ, then both of these eigenvalues have negative real part,
and the equilibrium is an asymptotically stable node or spiral point. If
β = 1 + γ, then the equilibrium coincides with (1, 0).

• In dimensional terms, it follows that the equilibrium (S, I, R) = (N, 0, 0)
with no disease present is asymptotically stable when bN < a+c, mean-
ing that the transmission rate is less that the sum of the death rate and
the recovery rate. If bN > a + c, then this equilibrium loses stability
and the new stable state (S, I, R) = (Nx̄,Nȳ,Nz̄) is one in which a
nonzero fraction of the population is infected.

Remark. As β increases through 1+γ, the two equilibria cross and exchange
stability. This is an example of a transcritical bifurcation.
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2 [30%] Duffing’s equation is

ẍ+ δẋ+ x− x3 = 0.

(a) Sketch the (x, ẋ)-phase plane for δ = 0. Classify the equilibria and
identify any homoclinic or heteroclinic orbits.

(b) Sketch the (x, ẋ)-phase plane for 0 < δ � 1. Classify the equilibria and
indicate the points in the phase plane whose ω-limit set consists of the point
(x, ẋ) = (0, 0).

Solution

• (a) For δ = 0, the system is a conservative system ẍ + V ′(x) = 0 with
potential

V (x) =
1

2
x2 − 1

4
x4.

There are three equilibria: (0, 0) is a nonlinear center; and (±1, 0) are
saddle points. There are two heteroclinic orbits, one connecting (−1, 0)
to (1, 0), the other connecting (1, 0) to (−1, 0). The phase plane is
sketched on the next page.

• (b) When small damping is included, (0, 0) becomes an asymptotically
stable spiral point, and (±1, 0) remain saddle points. The basin of
attraction of (0, 0) is the shaded region enclosed by the two stable
manifolds of the saddle points.

4



(a)

cic)

‘C
—i I

5



3 [30%] Consider the system

ẋ = y, ẏ = −(x2 + y2 − 4)y − x3.

(a) Let

E(x, y) =
1

4
x4 +

1

2
y2.

Derive an equation for Ė (x(t), y(t)), and show that there exist constants
0 < a < b such that a ≤ E(x, y) ≤ b is a trapping region for the flow.

(b) Show that the system has a limit cycle in the region a ≤ E(x, y) ≤ b.

Solution

• (a) We compute that

Ė = x3ẋ+ yẏ = −y2
(
x2 + y2 − 4

)
.

It follows that E is decreasing on trajectories if x2 + y2 ≥ 4 and in-
creasing on trajectories if x2 + y2 ≤ 4.

• For c ≥ 0, the level set E(x, y) = c is compact, so the continuous
function x2 + y2 attains its maximum value M(c) and minimum value
m(c) on the level set. Moreover, M(c)→ 0 as c→ 0+ and m(c)→∞
as c → ∞. Choose 0 < a < b such that M(a) ≤ 4 and m(b) ≥ 4.
Then the compact set a ≤ E(x, y) ≤ b is invariant since x2 + y2 ≤ 4 on
E(x, y) = a, so E is increasing, and x2 + y2 ≥ 4 on E(x, y) = b, so E
is decreasing.

• (b) The only equilibrium of the system is (x, y) = (0, 0), so the invariant
region a ≤ E(x, y) ≤ b doesn’t contain any equilibria. The Poincaré-
Bendixson theorem implies that the ω-limit set of any orbit starting
in the region is a periodic solution, so the region contains a periodic
solution (which is, in fact, a limit cycle).

Remark. Using the method of Lagrange multipliers, one can show that
the optimal values for enclosing the circle x2 + y2 = 4 between the curves
E(x, y) = a and E(x, y) = b are a = 7/4 and b = 4. Alternatively, note that

x2 + y2 = 2c+ x2 − 1

2
x4, 0 ≤ x2 ≤ 2

√
c on E(x, y) = c.

For c ≥ 1, we have M(c) = 2c + 1/2, attained at x2 = 1, and m(c) = 2
√
c,

attained at x2 = 2
√
c, so M(c) = 4 when c = 7/4 and m(c) = 4 when c = 4.
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