
Sample Final Questions
Math 207B, Winter 2012

Brief Solutions

1. Find an explicit expression for the Green’s function for the problem

− u′′ + u = f(x), 0 < x < 1

u′(0) = 0, u′(1) = 0.

Write down the Green’s function representation of the solution for u(x).

Solution

• Homogeneous solutions that satisfy the BCs at the left and right end-
points are

u1(x) = cosh x, u2(x) = cosh(1− x)

with Wronskian − sinh 1, so the Green’s function is

G(x, ξ) =

{
coshx cosh(1− ξ)/ sinh 1 0 ≤ x ≤ ξ,

cosh ξ cosh(1− x)/ sinh 1 ξ ≤ x ≤ 1.

• The Green’s function representation of the solution is

u(x) =

∫ 1

0

G(x, ξ)f(ξ) dξ.



2. Use separation of variables and Fourier series to solve the following IBVP
for the Schrödinger equation for the complex-valued function ψ(x, t)

iψt = −ψxx, 0 < x < 1

ψ(0, t) = 0, ψ(1, t) = 0,

ψ(x, 0) = f(x)

where f ∈ L2(0, 1) is given initial data. Show from your solution that∫ 1

0

|ψ(x, t)|2 dx =

∫ 1

0

|f(x)|2 dx for all t ∈ R.

Solution

• The solution is

ψ(x, t) =
∞∑
n=1

cne
−in2π2t sin(nπx)

where

cn = 2

∫ 1

0

f(x) sin(nπx) dx.

• By Parseval’s theorem, and the fact that |e−iθ| = 1, we have for any
t ∈ R that ∫ 1

0

|ψ(x, t)|2 dx =
1

2

∞∑
n=1

∣∣∣cne−in2π2t
∣∣∣2

=
1

2

∞∑
n=1

|cn|2

=

∫ 1

0

|f(x)|2 dx.



3. After non-dimensionalization, the displacement u(x) of a non-uniform
string, with density ρ(x), fixed at each end and vibrating with frequency ω
satisfies the EVP

− u′′ = λρ(x)u, 0 < x < 1,

u(0) = 0, u(1) = 0

where λ = ω2. The fundamental frequency of the string is ω1 =
√
λ1, where

λ = λ1 is the smallest eigenvalue. If m ≤ ρ(x) ≤M where m, M are positive
constants, show that

π√
M
≤ ω1 ≤

π√
m
.

Does this result make sense physically?

Solution

• The Rayleigh quotient for the minimum eigenvalue is

λ1 = min
u6=0

∫ 1

0
u′(x)2 dx∫ 1

0
ρ(x)u(x)2 dx

.

• The Rayleigh quotient for the minimum eigenvalue µ1 of the problem
with constant density ρ0

− u′′ = µρ0u, 0 < x < 1,

u(0) = 0, u(1) = 0

is

µ1 = min
u6=0

∫ 1

0
u′(x)2 dx∫ 1

0
ρ0u(x)2 dx

.

In this case, we have an explicit solution for the minimum eigenvalue

µ1 =
π2

ρ0

with eigenfunction sin(πx).



• If ρ(x) ≥ m for all x ∈ [0, 1] then (taking ρ0 = m)∫ 1

0

ρ(x)u(x)2 dx ≥
∫ 1

0

mu(x)2 dx

for every function u(x), so∫ 1

0
u′(x)2 dx∫ 1

0
ρ(x)u(x)2 dx

≤
∫ 1

0
u′(x)2 dx∫ 1

0
mu(x)2 dx

.

It follows that λ1 ≤ µ1, or

ω1 ≤
π√
m

• If ρ(x) ≤M for all x ∈ [0, 1] then (taking ρ0 = M)∫ 1

0

ρ(x)u(x)2 dx ≤
∫ 1

0

Mu(x)2 dx

for every function u(x), so∫ 1

0
u′(x)2 dx∫ 1

0
ρ(x)u(x)2 dx

≥
∫ 1

0
u′(x)2 dx∫ 1

0
Mu(x)2 dx

.

It follows that λ1 ≥ µ1, or

ω1 ≥
π√
M

• The result states that the fundamental frequency of a nonuniform string
is greater than that of a heavier uniform string and less than that of a
lighter uniform string, which is what one would expect physically.



4. Consider the Volterra integral operator K : L2(0, 1) → L2(0, 1) defined
by

Ku(x) =

∫ x

0

u(y) dy, 0 < x < 1

Show that the integral equation Ku = λu has no nonzero solutions for any
λ ∈ C, meaning that K has no eigenvalues. Why doesn’t this contradict the
spectral theorem for compact (or Hilbert-Schmidt) self-adjoint operators?

Solution

• If λ = 0, then Ku = 0 and

u = (Ku)′ = 0,

so 0 is not an eigenvalue of K.

• If λ 6= 0, then differentiating the equation Ku = λu, and also setting
x = 0 in the integral equation, we get

λu′ = u, u(0) = 0.

The general solution of the ODE is

u(x) = cex/λ.

The IC implies that c = 0, so u = 0 and λ is not an eigenvalue of K.

• The operator K is Hilbert-Schmidt, but it is not self-adjoint on L2(0, 1).
In fact, its adjoint is

(K∗u)(x) =

∫ 1

x

u(y) dy

(Moral: The spectral theory of non-self-adjoint operators is not nearly
as nice as the theory for self-adjoint operators.)



5. Let Ω ⊂ Rn be a smooth bounded region, and define an operator L by

Lu = −∇ · (p∇u) + qu

where p, q are smooth functions on Ω̄. Show that∫
Ω

uLv dx =

∫
Ω

vLu dx

for all functions u, v : Ω→ R that vanish on the boundary ∂Ω, meaning that
L with Dirichlet BCs is formally self-adjoint.

Solution

• We have the identity

u∇ · (p∇v)− v∇ · (p∇u) = ∇ · (pu∇v − pv∇u) .

To show this, we compute in Cartesian components (using the summa-
tion convention) that

∇ · (pu∇v − pu∇v) =
∂

∂xi

(
pu

∂v

∂xi
− pv ∂u

∂xi

)
= u

∂

∂xi

(
p
∂v

∂xi

)
+ p

∂u

∂xi

∂v

∂xi

− v ∂

∂xi

(
p
∂u

∂xi

)
− p ∂v

∂xi

∂u

∂xi

= u
∂

∂xi

(
p
∂v

∂xi

)
− u ∂

∂xi

(
p
∂v

∂xi

)
= u∇ · (p∇v)− v∇ · (p∇u) .

• Using this identity and the divergence theorem, we get∫
Ω

(uLv − vLu) dx =

∫
Ω

{−u∇ · (p∇v) + quv + v∇ · (p∇u)− quv} dx

= −
∫

Ω

{u∇ · (p∇v)− v∇ · (p∇u)} dx

= −
∫

Ω

∇ · (pu∇v − pu∇v) dx

= −
∫
∂Ω

(
pu
∂v

∂n
− pv∂u

∂n

)
dS.



The integral over the boundary vanishes since u, v = 0 on ∂Ω, so∫
Ω

uLv dx =

∫
Ω

vLu dx

• This is a multi-dimensional analog of the corresponding self-adjointness
identity for the one-dimensional Sturm-Liouville operator

Lu = −(pu′)′ + qu

with Dirichlet BCs.



6. Let Ω ⊂ Rn be a smooth bounded region, Consider the Neumann BVP

−∆u = f(x) x ∈ Ω,

∂u

∂n
= g(x) x ∈ ∂Ω.

(a) Show that a solution can only exist if∫
Ω

fdx+

∫
∂Ω

gdS = 0

Give a physical interpretation of this result in terms of heat flow.

(b) If a solution exists, show that it is unique up to an arbitrary additive
constant.

Solution

• (a) Assume there is a solution u. Then, using the divergence theorem,
we get ∫

Ω

f dx = −
∫

Ω

∆u dx = −
∫
∂Ω

∂u

∂n
dS = −

∫
∂Ω

gdS

which gives the result.

• The problem describes the equilibrium temperature of a body with heat
source density f and prescribed heat flux g into the body through its
boundary. An equilibrium solution is only possible if the net rate at
which internal sources generate heat (

∫
Ω
f dx) is equal to the heat flux

out of the body (−
∫
∂Ω
g dS).

• (b) Suppose u1, u2 are two solutions, and let v = u1 − u2. Then, by
linearity,

∆v = 0 x ∈ Ω,

∂v

∂n
= 0 x ∈ ∂Ω.

• According to Green’s first identity∫
Ω

(
v∆v + |∇v|2

)
dx =

∫
Ω

∇ · (v∇v) dx =

∫
∂Ω

v
∂v

∂n
dS.



Using the equations for v in this identity, we get that∫
Ω

|∇v|2 dx = 0.

It follows that ∇v = 0 in Ω, meaning that v is constant, so any two
solutions are equal up to a constant.


