Sample Final Questions

Math 207B, Winter 2012
Brief Solutions

1. Find an explicit expression for the Green's function for the problem

$$
\begin{aligned}
& -u^{\prime \prime}+u=f(x), \quad 0<x<1 \\
& u^{\prime}(0)=0, \quad u^{\prime}(1)=0 .
\end{aligned}
$$

Write down the Green's function representation of the solution for $u(x)$.

Solution

- Homogeneous solutions that satisfy the BCs at the left and right endpoints are

$$
u_{1}(x)=\cosh x, \quad u_{2}(x)=\cosh (1-x)
$$

with Wronskian $-\sinh 1$, so the Green's function is

$$
G(x, \xi)= \begin{cases}\cosh x \cosh (1-\xi) / \sinh 1 & 0 \leq x \leq \xi \\ \cosh \xi \cosh (1-x) / \sinh 1 & \xi \leq x \leq 1\end{cases}
$$

- The Green's function representation of the solution is

$$
u(x)=\int_{0}^{1} G(x, \xi) f(\xi) d \xi
$$

2. Use separation of variables and Fourier series to solve the following IBVP for the Schrödinger equation for the complex-valued function $\psi(x, t)$

$$
\begin{array}{ll}
i \psi_{t}=-\psi_{x x}, & 0<x<1 \\
\psi(0, t)=0, & \psi(1, t)=0 \\
\psi(x, 0)=f(x) &
\end{array}
$$

where $f \in L^{2}(0,1)$ is given initial data. Show from your solution that

$$
\int_{0}^{1}|\psi(x, t)|^{2} d x=\int_{0}^{1}|f(x)|^{2} d x \quad \text { for all } t \in \mathbb{R}
$$

Solution

- The solution is

$$
\psi(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-i n^{2} \pi^{2} t} \sin (n \pi x)
$$

where

$$
c_{n}=2 \int_{0}^{1} f(x) \sin (n \pi x) d x
$$

- By Parseval's theorem, and the fact that $\left|e^{-i \theta}\right|=1$, we have for any $t \in \mathbb{R}$ that

$$
\begin{aligned}
\int_{0}^{1}|\psi(x, t)|^{2} d x & =\frac{1}{2} \sum_{n=1}^{\infty}\left|c_{n} e^{-i n^{2} \pi^{2} t}\right|^{2} \\
& =\frac{1}{2} \sum_{n=1}^{\infty}\left|c_{n}\right|^{2} \\
& =\int_{0}^{1}|f(x)|^{2} d x .
\end{aligned}
$$

3. After non-dimensionalization, the displacement $u(x)$ of a non-uniform string, with density $\rho(x)$, fixed at each end and vibrating with frequency ω satisfies the EVP

$$
\begin{aligned}
& -u^{\prime \prime}=\lambda \rho(x) u, \quad 0<x<1, \\
& u(0)=0, \quad u(1)=0
\end{aligned}
$$

where $\lambda=\omega^{2}$. The fundamental frequency of the string is $\omega_{1}=\sqrt{\lambda_{1}}$, where $\lambda=\lambda_{1}$ is the smallest eigenvalue. If $m \leq \rho(x) \leq M$ where m, M are positive constants, show that

$$
\frac{\pi}{\sqrt{M}} \leq \omega_{1} \leq \frac{\pi}{\sqrt{m}}
$$

Does this result make sense physically?

Solution

- The Rayleigh quotient for the minimum eigenvalue is

$$
\lambda_{1}=\min _{u \neq 0} \frac{\int_{0}^{1} u^{\prime}(x)^{2} d x}{\int_{0}^{1} \rho(x) u(x)^{2} d x} .
$$

- The Rayleigh quotient for the minimum eigenvalue μ_{1} of the problem with constant density ρ_{0}

$$
\begin{aligned}
& -u^{\prime \prime}=\mu \rho_{0} u, \quad 0<x<1, \\
& u(0)=0, \quad u(1)=0
\end{aligned}
$$

is

$$
\mu_{1}=\min _{u \neq 0} \frac{\int_{0}^{1} u^{\prime}(x)^{2} d x}{\int_{0}^{1} \rho_{0} u(x)^{2} d x}
$$

In this case, we have an explicit solution for the minimum eigenvalue

$$
\mu_{1}=\frac{\pi^{2}}{\rho_{0}}
$$

with eigenfunction $\sin (\pi x)$.

- If $\rho(x) \geq m$ for all $x \in[0,1]$ then (taking $\rho_{0}=m$)

$$
\int_{0}^{1} \rho(x) u(x)^{2} d x \geq \int_{0}^{1} m u(x)^{2} d x
$$

for every function $u(x)$, so

$$
\frac{\int_{0}^{1} u^{\prime}(x)^{2} d x}{\int_{0}^{1} \rho(x) u(x)^{2} d x} \leq \frac{\int_{0}^{1} u^{\prime}(x)^{2} d x}{\int_{0}^{1} m u(x)^{2} d x}
$$

It follows that $\lambda_{1} \leq \mu_{1}$, or

$$
\omega_{1} \leq \frac{\pi}{\sqrt{m}}
$$

- If $\rho(x) \leq M$ for all $x \in[0,1]$ then (taking $\rho_{0}=M$)

$$
\int_{0}^{1} \rho(x) u(x)^{2} d x \leq \int_{0}^{1} M u(x)^{2} d x
$$

for every function $u(x)$, so

$$
\frac{\int_{0}^{1} u^{\prime}(x)^{2} d x}{\int_{0}^{1} \rho(x) u(x)^{2} d x} \geq \frac{\int_{0}^{1} u^{\prime}(x)^{2} d x}{\int_{0}^{1} M u(x)^{2} d x}
$$

It follows that $\lambda_{1} \geq \mu_{1}$, or

$$
\omega_{1} \geq \frac{\pi}{\sqrt{M}}
$$

- The result states that the fundamental frequency of a nonuniform string is greater than that of a heavier uniform string and less than that of a lighter uniform string, which is what one would expect physically.

4. Consider the Volterra integral operator $K: L^{2}(0,1) \rightarrow L^{2}(0,1)$ defined by

$$
K u(x)=\int_{0}^{x} u(y) d y, \quad 0<x<1
$$

Show that the integral equation $K u=\lambda u$ has no nonzero solutions for any $\lambda \in \mathbb{C}$, meaning that K has no eigenvalues. Why doesn't this contradict the spectral theorem for compact (or Hilbert-Schmidt) self-adjoint operators?

Solution

- If $\lambda=0$, then $K u=0$ and

$$
u=(K u)^{\prime}=0
$$

so 0 is not an eigenvalue of K.

- If $\lambda \neq 0$, then differentiating the equation $K u=\lambda u$, and also setting $x=0$ in the integral equation, we get

$$
\lambda u^{\prime}=u, \quad u(0)=0
$$

The general solution of the ODE is

$$
u(x)=c e^{x / \lambda}
$$

The IC implies that $c=0$, so $u=0$ and λ is not an eigenvalue of K.

- The operator K is Hilbert-Schmidt, but it is not self-adjoint on $L^{2}(0,1)$. In fact, its adjoint is

$$
\left(K^{*} u\right)(x)=\int_{x}^{1} u(y) d y
$$

(Moral: The spectral theory of non-self-adjoint operators is not nearly as nice as the theory for self-adjoint operators.)
5. Let $\Omega \subset \mathbb{R}^{n}$ be a smooth bounded region, and define an operator L by

$$
L u=-\nabla \cdot(p \nabla u)+q u
$$

where p, q are smooth functions on $\bar{\Omega}$. Show that

$$
\int_{\Omega} u L v d x=\int_{\Omega} v L u d x
$$

for all functions $u, v: \Omega \rightarrow \mathbb{R}$ that vanish on the boundary $\partial \Omega$, meaning that L with Dirichlet BCs is formally self-adjoint.

Solution

- We have the identity

$$
u \nabla \cdot(p \nabla v)-v \nabla \cdot(p \nabla u)=\nabla \cdot(p u \nabla v-p v \nabla u) .
$$

To show this, we compute in Cartesian components (using the summation convention) that

$$
\begin{aligned}
\nabla \cdot(p u \nabla v-p u \nabla v) & =\frac{\partial}{\partial x_{i}}\left(p u \frac{\partial v}{\partial x_{i}}-p v \frac{\partial u}{\partial x_{i}}\right) \\
& =u \frac{\partial}{\partial x_{i}}\left(p \frac{\partial v}{\partial x_{i}}\right)+p \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}} \\
& -v \frac{\partial}{\partial x_{i}}\left(p \frac{\partial u}{\partial x_{i}}\right)-p \frac{\partial v}{\partial x_{i}} \frac{\partial u}{\partial x_{i}} \\
& =u \frac{\partial}{\partial x_{i}}\left(p \frac{\partial v}{\partial x_{i}}\right)-u \frac{\partial}{\partial x_{i}}\left(p \frac{\partial v}{\partial x_{i}}\right) \\
& =u \nabla \cdot(p \nabla v)-v \nabla \cdot(p \nabla u)
\end{aligned}
$$

- Using this identity and the divergence theorem, we get

$$
\begin{aligned}
\int_{\Omega}(u L v-v L u) d x & =\int_{\Omega}\{-u \nabla \cdot(p \nabla v)+q u v+v \nabla \cdot(p \nabla u)-q u v\} d x \\
& =-\int_{\Omega}\{u \nabla \cdot(p \nabla v)-v \nabla \cdot(p \nabla u)\} d x \\
& =-\int_{\Omega} \nabla \cdot(p u \nabla v-p u \nabla v) d x \\
& =-\int_{\partial \Omega}\left(p u \frac{\partial v}{\partial n}-p v \frac{\partial u}{\partial n}\right) d S
\end{aligned}
$$

The integral over the boundary vanishes since $u, v=0$ on $\partial \Omega$, so

$$
\int_{\Omega} u L v d x=\int_{\Omega} v L u d x
$$

- This is a multi-dimensional analog of the corresponding self-adjointness identity for the one-dimensional Sturm-Liouville operator

$$
L u=-\left(p u^{\prime}\right)^{\prime}+q u
$$

with Dirichlet BCs.
6. Let $\Omega \subset \mathbb{R}^{n}$ be a smooth bounded region, Consider the Neumann BVP

$$
\begin{aligned}
-\Delta u & =f(x) & & x \in \Omega \\
\frac{\partial u}{\partial n} & =g(x) & & x \in \partial \Omega
\end{aligned}
$$

(a) Show that a solution can only exist if

$$
\int_{\Omega} f d x+\int_{\partial \Omega} g d S=0
$$

Give a physical interpretation of this result in terms of heat flow.
(b) If a solution exists, show that it is unique up to an arbitrary additive constant.

Solution

- (a) Assume there is a solution u. Then, using the divergence theorem, we get

$$
\int_{\Omega} f d x=-\int_{\Omega} \Delta u d x=-\int_{\partial \Omega} \frac{\partial u}{\partial n} d S=-\int_{\partial \Omega} g d S
$$

which gives the result.

- The problem describes the equilibrium temperature of a body with heat source density f and prescribed heat flux g into the body through its boundary. An equilibrium solution is only possible if the net rate at which internal sources generate heat $\left(\int_{\Omega} f d x\right)$ is equal to the heat flux out of the body $\left(-\int_{\partial \Omega} g d S\right)$.
- (b) Suppose u_{1}, u_{2} are two solutions, and let $v=u_{1}-u_{2}$. Then, by linearity,

$$
\begin{array}{ll}
\Delta v=0 & x \in \Omega \\
\frac{\partial v}{\partial n}=0 & x \in \partial \Omega
\end{array}
$$

- According to Green's first identity

$$
\int_{\Omega}\left(v \Delta v+|\nabla v|^{2}\right) d x=\int_{\Omega} \nabla \cdot(v \nabla v) d x=\int_{\partial \Omega} v \frac{\partial v}{\partial n} d S .
$$

Using the equations for v in this identity, we get that

$$
\int_{\Omega}|\nabla v|^{2} d x=0 .
$$

It follows that $\nabla v=0$ in Ω, meaning that v is constant, so any two solutions are equal up to a constant.

