SAMPLE FINAL QUESTIONS Math 207B, Winter 2012 Brief Solutions

1. Find an explicit expression for the Green's function for the problem

$$-u'' + u = f(x), \qquad 0 < x < 1$$

$$u'(0) = 0, \qquad u'(1) = 0.$$

Write down the Green's function representation of the solution for u(x).

Solution

• Homogeneous solutions that satisfy the BCs at the left and right endpoints are

 $u_1(x) = \cosh x, \qquad u_2(x) = \cosh(1-x)$

with Wronskian $-\sinh 1$, so the Green's function is

$$G(x,\xi) = \begin{cases} \cosh x \cosh(1-\xi) / \sinh 1 & 0 \le x \le \xi, \\ \cosh \xi \cosh(1-x) / \sinh 1 & \xi \le x \le 1. \end{cases}$$

• The Green's function representation of the solution is

$$u(x) = \int_0^1 G(x,\xi) f(\xi) \, d\xi.$$

2. Use separation of variables and Fourier series to solve the following IBVP for the Schrödinger equation for the complex-valued function $\psi(x, t)$

$$i\psi_t = -\psi_{xx}, \qquad 0 < x < 1$$

 $\psi(0,t) = 0, \qquad \psi(1,t) = 0,$
 $\psi(x,0) = f(x)$

where $f \in L^2(0,1)$ is given initial data. Show from your solution that

$$\int_{0}^{1} |\psi(x,t)|^{2} dx = \int_{0}^{1} |f(x)|^{2} dx \quad \text{for all } t \in \mathbb{R}.$$

Solution

• The solution is

$$\psi(x,t) = \sum_{n=1}^{\infty} c_n e^{-in^2 \pi^2 t} \sin(n\pi x)$$

where

$$c_n = 2 \int_0^1 f(x) \sin(n\pi x) \, dx.$$

• By Parseval's theorem, and the fact that $|e^{-i\theta}| = 1$, we have for any $t \in \mathbb{R}$ that

$$\int_0^1 |\psi(x,t)|^2 dx = \frac{1}{2} \sum_{n=1}^\infty \left| c_n e^{-in^2 \pi^2 t} \right|^2$$
$$= \frac{1}{2} \sum_{n=1}^\infty |c_n|^2$$
$$= \int_0^1 |f(x)|^2 dx.$$

3. After non-dimensionalization, the displacement u(x) of a non-uniform string, with density $\rho(x)$, fixed at each end and vibrating with frequency ω satisfies the EVP

$$-u'' = \lambda \rho(x)u, \qquad 0 < x < 1, u(0) = 0, \qquad u(1) = 0$$

where $\lambda = \omega^2$. The fundamental frequency of the string is $\omega_1 = \sqrt{\lambda_1}$, where $\lambda = \lambda_1$ is the smallest eigenvalue. If $m \leq \rho(x) \leq M$ where m, M are positive constants, show that

$$\frac{\pi}{\sqrt{M}} \le \omega_1 \le \frac{\pi}{\sqrt{m}}.$$

Does this result make sense physically?

Solution

• The Rayleigh quotient for the minimum eigenvalue is

$$\lambda_1 = \min_{u \neq 0} \frac{\int_0^1 u'(x)^2 \, dx}{\int_0^1 \rho(x) u(x)^2 \, dx}.$$

• The Rayleigh quotient for the minimum eigenvalue μ_1 of the problem with constant density ρ_0

$$-u'' = \mu \rho_0 u, \qquad 0 < x < 1,$$

$$u(0) = 0, \qquad u(1) = 0$$

is

$$\mu_1 = \min_{u \neq 0} \frac{\int_0^1 u'(x)^2 \, dx}{\int_0^1 \rho_0 u(x)^2 \, dx}$$

In this case, we have an explicit solution for the minimum eigenvalue

$$\mu_1 = \frac{\pi^2}{\rho_0}$$

with eigenfunction $\sin(\pi x)$.

• If $\rho(x) \ge m$ for all $x \in [0, 1]$ then (taking $\rho_0 = m$)

$$\int_{0}^{1} \rho(x)u(x)^{2} \, dx \ge \int_{0}^{1} mu(x)^{2} \, dx$$

for every function u(x), so

$$\frac{\int_0^1 u'(x)^2 \, dx}{\int_0^1 \rho(x) u(x)^2 \, dx} \le \frac{\int_0^1 u'(x)^2 \, dx}{\int_0^1 m u(x)^2 \, dx}.$$

It follows that $\lambda_1 \leq \mu_1$, or

$$\omega_1 \le \frac{\pi}{\sqrt{m}}$$

• If $\rho(x) \leq M$ for all $x \in [0, 1]$ then (taking $\rho_0 = M$)

$$\int_0^1 \rho(x) u(x)^2 \, dx \le \int_0^1 M u(x)^2 \, dx$$

for every function u(x), so

$$\frac{\int_0^1 u'(x)^2 \, dx}{\int_0^1 \rho(x) u(x)^2 \, dx} \ge \frac{\int_0^1 u'(x)^2 \, dx}{\int_0^1 M u(x)^2 \, dx}.$$

It follows that $\lambda_1 \geq \mu_1$, or

$$\omega_1 \ge \frac{\pi}{\sqrt{M}}$$

• The result states that the fundamental frequency of a nonuniform string is greater than that of a heavier uniform string and less than that of a lighter uniform string, which is what one would expect physically.

4. Consider the Volterra integral operator $K : L^2(0,1) \to L^2(0,1)$ defined by

$$Ku(x) = \int_0^x u(y) \, dy, \qquad 0 < x < 1$$

Show that the integral equation $Ku = \lambda u$ has no nonzero solutions for any $\lambda \in \mathbb{C}$, meaning that K has no eigenvalues. Why doesn't this contradict the spectral theorem for compact (or Hilbert-Schmidt) self-adjoint operators?

Solution

• If $\lambda = 0$, then Ku = 0 and

$$u = (Ku)' = 0,$$

so 0 is not an eigenvalue of K.

• If $\lambda \neq 0$, then differentiating the equation $Ku = \lambda u$, and also setting x = 0 in the integral equation, we get

$$\lambda u' = u, \qquad u(0) = 0.$$

The general solution of the ODE is

$$u(x) = c e^{x/\lambda}.$$

The IC implies that c = 0, so u = 0 and λ is not an eigenvalue of K.

• The operator K is Hilbert-Schmidt, but it is not self-adjoint on $L^2(0,1)$. In fact, its adjoint is

$$(K^*u)(x) = \int_x^1 u(y) \, dy$$

(Moral: The spectral theory of non-self-adjoint operators is not nearly as nice as the theory for self-adjoint operators.) 5. Let $\Omega \subset \mathbb{R}^n$ be a smooth bounded region, and define an operator L by

$$Lu = -\nabla \cdot (p\nabla u) + qu$$

where p, q are smooth functions on $\overline{\Omega}$. Show that

$$\int_{\Omega} uLv \, dx = \int_{\Omega} vLu \, dx$$

for all functions $u, v : \Omega \to \mathbb{R}$ that vanish on the boundary $\partial \Omega$, meaning that L with Dirichlet BCs is formally self-adjoint.

Solution

• We have the identity

$$u\nabla\cdot(p\nabla v) - v\nabla\cdot(p\nabla u) = \nabla\cdot(pu\nabla v - pv\nabla u).$$

To show this, we compute in Cartesian components (using the summation convention) that

$$\nabla \cdot (pu\nabla v - pu\nabla v) = \frac{\partial}{\partial x_i} \left(pu\frac{\partial v}{\partial x_i} - pv\frac{\partial u}{\partial x_i} \right)$$
$$= u\frac{\partial}{\partial x_i} \left(p\frac{\partial v}{\partial x_i} \right) + p\frac{\partial u}{\partial x_i}\frac{\partial v}{\partial x_i}$$
$$- v\frac{\partial}{\partial x_i} \left(p\frac{\partial u}{\partial x_i} \right) - p\frac{\partial v}{\partial x_i}\frac{\partial u}{\partial x_i}$$
$$= u\frac{\partial}{\partial x_i} \left(p\frac{\partial v}{\partial x_i} \right) - u\frac{\partial}{\partial x_i} \left(p\frac{\partial v}{\partial x_i} \right)$$
$$= u\nabla \cdot (p\nabla v) - v\nabla \cdot (p\nabla u) .$$

• Using this identity and the divergence theorem, we get

$$\begin{split} \int_{\Omega} \left(uLv - vLu \right) \, dx &= \int_{\Omega} \left\{ -u\nabla \cdot \left(p\nabla v \right) + quv + v\nabla \cdot \left(p\nabla u \right) - quv \right\} \, dx \\ &= -\int_{\Omega} \left\{ u\nabla \cdot \left(p\nabla v \right) - v\nabla \cdot \left(p\nabla u \right) \right\} \, dx \\ &= -\int_{\Omega} \nabla \cdot \left(pu\nabla v - pu\nabla v \right) \, dx \\ &= -\int_{\partial\Omega} \left(pu \frac{\partial v}{\partial n} - pv \frac{\partial u}{\partial n} \right) \, dS. \end{split}$$

The integral over the boundary vanishes since u, v = 0 on $\partial \Omega$, so

$$\int_{\Omega} uLv \, dx = \int_{\Omega} vLu \, dx$$

• This is a multi-dimensional analog of the corresponding self-adjointness identity for the one-dimensional Sturm-Liouville operator

$$Lu = -(pu')' + qu$$

with Dirichlet BCs.

6. Let $\Omega \subset \mathbb{R}^n$ be a smooth bounded region, Consider the Neumann BVP

$$-\Delta u = f(x) \qquad x \in \Omega,$$
$$\frac{\partial u}{\partial n} = g(x) \qquad x \in \partial \Omega.$$

(a) Show that a solution can only exist if

$$\int_{\Omega} f dx + \int_{\partial \Omega} g dS = 0$$

Give a physical interpretation of this result in terms of heat flow.

(b) If a solution exists, show that it is unique up to an arbitrary additive constant.

Solution

• (a) Assume there is a solution u. Then, using the divergence theorem, we get

$$\int_{\Omega} f \, dx = -\int_{\Omega} \Delta u \, dx = -\int_{\partial \Omega} \frac{\partial u}{\partial n} \, dS = -\int_{\partial \Omega} g dS$$

which gives the result.

- The problem describes the equilibrium temperature of a body with heat source density f and prescribed heat flux g into the body through its boundary. An equilibrium solution is only possible if the net rate at which internal sources generate heat $(\int_{\Omega} f \, dx)$ is equal to the heat flux out of the body $(-\int_{\partial\Omega} g \, dS)$.
- (b) Suppose u_1 , u_2 are two solutions, and let $v = u_1 u_2$. Then, by linearity,

$$\Delta v = 0 \qquad x \in \Omega,$$
$$\frac{\partial v}{\partial n} = 0 \qquad x \in \partial \Omega.$$

• According to Green's first identity

$$\int_{\Omega} \left(v \Delta v + |\nabla v|^2 \right) \, dx = \int_{\Omega} \nabla \cdot \left(v \nabla v \right) \, dx = \int_{\partial \Omega} v \frac{\partial v}{\partial n} \, dS.$$

Using the equations for v in this identity, we get that

$$\int_{\Omega} |\nabla v|^2 \, dx = 0.$$

It follows that $\nabla v = 0$ in Ω , meaning that v is constant, so any two solutions are equal up to a constant.