Solutions: Problem set 3

Math 207B, Winter 2012

1. Suppose that $u(x)$ is a solution of the Sturm-Liouville problem with nonhomogeneous ODE and BCs

$$
\begin{aligned}
& -\left(p u^{\prime}\right)^{\prime}+q u=f(x) \quad a<x<b, \\
& u(a)=A, \quad u(b)=B
\end{aligned}
$$

Write

$$
u(x)=A\left(\frac{b-x}{b-a}\right)+B\left(\frac{x-a}{b-a}\right)+v(x)
$$

and show that v satisfies a Sturm-Liouville problem of the form

$$
\begin{aligned}
& -\left(p v^{\prime}\right)^{\prime}+q v=g(x) \quad a<x<b \\
& v(a)=0, \quad v(b)=0
\end{aligned}
$$

with homogeneous BCs.

Solution

- Write the ODE as

$$
L u=f, \quad L=-\frac{d}{d x}\left(p \frac{d}{d x}\right)+q
$$

Let $u(x)=u_{0}(x)+v(x)$. Then since L is linear $L u=L u_{0}+L v$, and therefore

$$
L v=g, \quad g=f-L u_{0}
$$

Moreover if $u_{0}(a)=A, u_{0}(b)=B$, then $v(a)=v(b)=0$.

- Apply this result with the given u_{0}.

Remark. For a linear problem with nonhomogeneous boundary conditions, we can subtract off any function that satisfies the boundary conditions and transfer the nonhomogeneity to the ODE.
2. Consider the nonhomogeneous Sturm-Liouville problem

$$
\begin{aligned}
& -\left(p u^{\prime}\right)^{\prime}+q u=\lambda u+f(x) \quad a<x<b, \\
& u(a)=0, \quad u(b)=0 .
\end{aligned}
$$

If λ is an eigenvalue with eigenfunction ϕ, show that the problem only has a solution if f satisfies

$$
\int_{a}^{b} f \bar{\phi} d x=0
$$

Under what conditions on f is the BVP

$$
\begin{aligned}
-u^{\prime \prime} & =f(x) & 0<x<1, \\
u^{\prime}(0) & =0, & u^{\prime}(1)=0
\end{aligned}
$$

solvable? How about the BVP

$$
\begin{aligned}
-u^{\prime \prime} & =f(x)
\end{aligned} \quad 0<x<1, ~ 子, ~ u^{\prime}(1)=1 .
$$

Solution

- Write the ODE as

$$
(L-\lambda I) u=f
$$

and assume that there is a solution u. Taking the inner product of this equation with ϕ, we get

$$
((L-\lambda I) u, \phi)=(f, \phi) .
$$

Since L is self-adjoint, any eigenvalue λ is real and $(L-\lambda I)^{*}=L-\lambda I$ is self-adjoint. (If $\lambda \in \mathbb{C}$ is complex, then $(L-\lambda I)^{*}=L-\bar{\lambda} I$.) Hence, since u, ϕ satisfy self-adjoint BCs, we have

$$
(f, \phi)=(u,(L-\lambda I) \phi)=0
$$

- If $L=-d^{2} / d x^{2}$, with Neumann BCs, then $\lambda=0$ is an eigenvalue with eigenfunction $\phi=1$. If follows that the equation $L u=f$, with BCs $u^{\prime}(0)=u^{\prime}(1)=0$ is only solvable if $(f, 1)=0$, or

$$
\int_{0}^{1} f(x) d x=0
$$

- We can verify this condition directly: if $-u^{\prime \prime}=f(x)$ and $u^{\prime}(0)=u^{\prime}(1)=$ 0 , then

$$
\int_{0}^{1} f(x) d x=-\int_{0}^{1} u^{\prime \prime} d x=\left[u^{\prime}\right]_{0}^{1}=0
$$

- If $-u^{\prime \prime}=f(x)$ and $u^{\prime}(0)=0, u^{\prime}(1)=1$, let

$$
u(x)=\frac{1}{2} x^{2}+v(x) .
$$

Then

$$
-v^{\prime \prime}=-u^{\prime \prime}+1=f(x)+1, \quad v^{\prime}(0)=v^{\prime}(1)=0 .
$$

Hence the equation is only solvable if

$$
\int_{0}^{1}[f(x)+1] d x=0
$$

or

$$
\int_{0}^{1} f(x) d x=-1
$$

Alternatively, as a direct verification,

$$
\int_{0}^{1} f(x) d x=-\int_{0}^{1} u^{\prime \prime} d x=\left[u^{\prime}\right]_{0}^{1}=-1 .
$$

Remark. In general, a necessary condition for the solvability of a singular linear equation $L u=f$ is that f is orthogonal to the right null space of the adjoint L^{*}.
3. Consider the weighted Sturm-Liouville eigenvalue problem

$$
\begin{aligned}
& -\left(p u^{\prime}\right)^{\prime}+q u=\lambda r u \quad a<x<b \\
& u(a)=0, \quad u(b)=0
\end{aligned}
$$

where $p(x), q(x), r(x)$ are given real-valued coefficient functions and $r>0$. Let $L_{r}^{2}(a, b)$ denote the space of functions $f:[a, b] \rightarrow \mathbb{C}$ such that

$$
\int_{a}^{b} r|f|^{2} d x<\infty
$$

with weighted inner product

$$
(f, g)_{r}=\int_{a}^{b} r f \bar{g} d x
$$

(a) If $\phi(x)$ is an eigenfunction with eigenvalue $\lambda \in \mathbb{C}$, show that $\lambda \in \mathbb{R}$ is real.
(b) If $\phi(x), \psi(x)$ are eigenfunctions with distinct eigenvalues λ, μ show that they are orthogonal with respect to the weighted inner-product, meaning that

$$
\int_{a}^{b} r \phi \bar{\psi} d x=0
$$

(c) Suppose that the eigenvalue problem has a complete set of eigenfunctions $\left\{\phi_{n}: n=1,2,3, \ldots\right\}$. If $f \in L_{r}^{2}(a, b)$, give an expression for the coefficients c_{n} in the eigenfunction expansion

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \phi_{n}(x)
$$

Solution

- Suppose that

$$
L \phi=\lambda r \phi, \quad L \psi=\lambda r \psi, \quad \phi(a)=\phi(b)=0, \psi(a)=\psi(b)=0
$$

where $\lambda, \mu \in \mathbb{C}$ and

$$
L=-\frac{d}{d x}\left(p \frac{d}{d x}\right)+q
$$

Using the self-adjointness of L on $L^{2}(a, b)$ with Dirichlet BCs, we have

$$
\begin{aligned}
\lambda(\phi, \psi)_{r} & =\int_{a}^{b} \lambda r \phi \bar{\psi} d x=\int_{a}^{b}(L \phi) \bar{\psi} d x \\
& =\int_{a}^{b} \phi \overline{(L \psi)} d x=\int_{a}^{b} \phi \overline{(\mu r \psi)} d x=\bar{\mu}(\phi, \psi)_{r} .
\end{aligned}
$$

- (a) If $\phi=\psi$ and $\lambda=\mu$ then, since $(\phi, \phi)_{r}>0$, we conclude that $\lambda=\bar{\lambda}$ so $\lambda \in \mathbb{R}$.
- (b) If $\lambda \neq \mu$ then

$$
\lambda(\phi, \psi)_{r}=\mu(\phi, \psi)_{r}
$$

so $(\phi, \psi)_{r}=0$.

- (c) Taking the weighted inner product of the series for f, and using the the orthogonality of the ϕ_{n}, we find that

$$
\int_{a}^{b} r f \overline{\phi_{n}} d x=c_{n} \int_{a}^{b} r\left|\phi_{n}\right|^{2} d x
$$

which gives

$$
c_{n}=\frac{\int_{a}^{b} r f \overline{\phi_{n}} d x}{\int_{a}^{b} r\left|\phi_{n}\right|^{2} d x}
$$

4. Use separation of variables to solve the following IBVP for $u(x, t)$ for the wave equation:

$$
\begin{array}{lc}
u_{t t}=u_{x x} & 0<x<1 \\
u_{x}(0, t)=0, & u(1, t)=0 \\
u(x, 0)=f(x), & u_{t}(x, 0)=g(x)
\end{array}
$$

Solution

- Look for separable solutions of the form

$$
u(x, t)=X(x) T(t)
$$

Then

$$
X \ddot{T}=X^{\prime \prime} T
$$

so

$$
\frac{\ddot{T}}{T}=\frac{X^{\prime \prime}}{X}=-\lambda
$$

where λ is a separation constant.

- Imposing the BCs on X, we get the Sturm-Liouville problem

$$
-X^{\prime \prime}=\lambda X, \quad X^{\prime}(0)=0, \quad X(1)=0
$$

The eigenvalues and eigenfunctions are

$$
\lambda_{n}=\pi^{2}\left(n+\frac{1}{2}\right)^{2}, \quad X_{n}(x)=\cos \left[\pi\left(n+\frac{1}{2}\right) x\right]
$$

for $n=0,1,2, \ldots$.

- The corresponding functions T_{n} satisfy

$$
\ddot{T}_{n}+\pi^{2}\left(n+\frac{1}{2}\right)^{2} T_{n}=0
$$

whose solution is

$$
T_{n}(t)=a_{n} \cos \left[\pi\left(n+\frac{1}{2}\right) t\right]+b_{n} \sin \left[\pi\left(n+\frac{1}{2}\right) t\right] .
$$

- Superposing these solutions, we get as a solution of the PDE

$$
\begin{aligned}
u(x, t)= & \sum_{n=0}^{\infty} a_{n} \cos \left[\pi\left(n+\frac{1}{2}\right) t\right] \cos \left[\pi\left(n+\frac{1}{2}\right) x\right] \\
& +\sum_{n=0}^{\infty} b_{n} \sin \left[\pi\left(n+\frac{1}{2}\right) t\right] \cos \left[\pi\left(n+\frac{1}{2}\right) x\right] .
\end{aligned}
$$

- By completeness of the eigenfunctions, the initial conditions are satisfied if

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} a_{n} \cos \left[\pi\left(n+\frac{1}{2}\right) x\right], \\
& g(x)=\sum_{n=0}^{\infty} b_{n} \pi\left(n+\frac{1}{2}\right) \cos \left[\pi\left(n+\frac{1}{2}\right) x\right] .
\end{aligned}
$$

- Using the orthogonality relations

$$
\begin{aligned}
\int_{0}^{1} & \cos \\
\quad & {\left[\pi\left(m+\frac{1}{2}\right) x\right] \cos \left[\pi\left(n+\frac{1}{2}\right) x\right] d x } \\
& = \begin{cases}1 / 2 & \text { if } m=n \\
0 & \text { if } m \neq n\end{cases}
\end{aligned}
$$

we get

$$
\begin{aligned}
a_{n} & =2 \int_{0}^{1} f(x) \cos \left[\pi\left(n+\frac{1}{2}\right) x\right] d x \\
b_{n} & =\frac{4}{\pi(2 n+1)} \int_{0}^{1} g(x) \cos \left[\pi\left(n+\frac{1}{2}\right) x\right] d x
\end{aligned}
$$

