Solutions: Problem set 8
 Math 207B, Winter 2012

1. Let $G(x, \xi)$ be the Green's function for the Sturm-Liouville problem

$$
-u^{\prime \prime}=\lambda u, \quad u(0)=u(1)=0
$$

given by

$$
G(x, \xi)=x_{<}\left(1-x_{>}\right) .
$$

(a) What are the eigenvalues μ_{n} and eigenfunctions ϕ_{n} of G, where $n=$ $1,2, \ldots$? (Find them from the corresponding eigenvalues and eigenfunctions of the Sturm-Liouville problem.)
(b) Compute

$$
\int_{0}^{1} \int_{0}^{1} G^{2}(x, \xi) d x d \xi
$$

(c) Use the identity

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{1} G^{2}(x, \xi) d x d \xi=\sum_{n=1}^{\infty} \mu_{n}^{2} \tag{1}
\end{equation*}
$$

to deduce that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90} \tag{2}
\end{equation*}
$$

Solution

- (a) The Sturm-Liouville problem has eigenvalues and orthonormal eigenfunctions

$$
\lambda_{n}=n^{2} \pi^{2}, \quad \phi_{n}(x)=\sqrt{2} \sin n \pi x, \quad n=1,2,3, \ldots
$$

Hence, the integral operator whose kernel is the Green's function has eigenvalues

$$
\mu_{n}=\frac{1}{n^{2} \pi^{2}}
$$

- (b) We compute that

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1} G^{2}(x, \xi) d x d \xi= & \int_{0}^{1}\left(\int_{0}^{\xi} G^{2}(x, \xi) d x\right) d \xi \\
& \quad+\int_{0}^{1}\left(\int_{\xi}^{1} G^{2}(x, \xi) d x\right) d \xi \\
= & \int_{0}^{1}\left(\int_{0}^{\xi} x^{2}(1-\xi)^{2} d x\right) d \xi \\
& \quad+\int_{0}^{1}\left(\int_{\xi}^{1} \xi^{2}(1-x)^{2} d x\right) d \xi \\
= & \frac{1}{3} \int_{0}^{1} \xi^{3}(1-\xi)^{2} d \xi+\frac{1}{3} \int_{0}^{1} \xi^{2}(1-\xi)^{3} d \xi \\
= & \frac{1}{3} \int_{0}^{1}\left(\xi^{2}-2 \xi^{3}+\xi^{4}\right) d \xi \\
= & \frac{1}{90}
\end{aligned}
$$

- (c) Using these results in (1), we get (2).

2. Define the Abel integral operator K, acting on continuous functions $u(x)$ where $0 \leq x \leq 1$, by

$$
\begin{equation*}
(K u)(x)=\int_{0}^{x} \frac{u(y)}{(x-y)^{1 / 2}} d y, \quad 0 \leq x \leq 1 \tag{3}
\end{equation*}
$$

(a) Is K a Hilbert-Schmidt operator?
(b) Show that $K^{2}=\pi L$ where L is the integration operator

$$
L u(x)=\int_{0}^{x} u(y) d y
$$

Hint. The substitution $t=x \sin ^{2} \theta+y \cos ^{2} \theta$ shows that

$$
\int_{y}^{x} \frac{d t}{(x-t)^{1 / 2}(t-y)^{1 / 2}}=\pi
$$

(c) Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is a smooth function with $f(0)=0$. Deduce that the solution of the Abel integral equation

$$
\int_{0}^{x} \frac{u(y)}{(x-y)^{1 / 2}} d y=f(x), \quad 0 \leq x \leq 1
$$

is given by

$$
\begin{equation*}
u(x)=\frac{1}{\pi} \int_{0}^{x} \frac{f^{\prime}(y)}{(x-y)^{1 / 2}} d y \tag{4}
\end{equation*}
$$

Hint. Solve the equation $L u=(1 / \pi) K f$.

Solution

- (a) The kernel of K is

$$
k(x, y)= \begin{cases}(x-y)^{-1 / 2} & \text { if } 0 \leq y<x \\ 0 & \text { if } x<y \leq 1\end{cases}
$$

It follows that

$$
\int_{0}^{1} k^{2}(x, y) d y=\int_{0}^{x} \frac{1}{x-y} d y
$$

which is not finite, so

$$
\int_{0}^{1} \int_{0}^{1} k^{2}(x, y) d x d y
$$

is not finite, and K is not a Hilbert-Schmidt operator.

- (b) Writing $K^{2} u$ as a double integral and exchanging the order of integration, we get

$$
\begin{aligned}
\left(K^{2} u\right)(x) & =\int_{0}^{x} \frac{(K u)(t)}{(x-t)^{1 / 2}} d t \\
& =\int_{0}^{x} \frac{1}{(x-t)^{1 / 2}}\left(\int_{0}^{t} \frac{u(y)}{(t-y)^{1 / 2}} d y\right) d t \\
& =\int_{0}^{x} u(y)\left(\int_{y}^{x} \frac{1}{(x-t)^{1 / 2}(t-y)^{1 / 2}} d t\right) d y
\end{aligned}
$$

- Using the given substitution to change the integration variable from t to θ, we get

$$
\int_{y}^{x} \frac{1}{(x-t)^{1 / 2}(t-y)^{1 / 2}} d t=\int_{0}^{\pi / 2} 2 d \theta=\pi
$$

Hence,

$$
\left(K^{2} u\right)(x)=\pi \int_{0}^{x} u(y) d y
$$

or $K^{2}=\pi L$.

- (c) Note that by setting $x=0$ in the integral equation, we see that we must have $f(0)=0$ if the equation is solvable, and we assume this is the case.
- If $K u=f$ then $K^{2} u=K f$ or

$$
\pi \int_{0}^{x} u(y) d y=K f(x)
$$

Differentiating this equation with respect to x, we get $\pi u=(K f)^{\prime}$ or

$$
u(x)=\frac{1}{\pi} \frac{d}{d x} \int_{0}^{x} \frac{f(y)}{(x-y)^{1 / 2}} d y
$$

- We want to apply the x-derivative to the integral, but the integrand is too singular to allow this as it stands. We therefore first integrate by parts to regularize the integral:

$$
\begin{aligned}
\int_{0}^{x} \frac{f(y)}{(x-y)^{1 / 2}} d y & =\left[-2(x-y)^{1 / 2} f(y)\right]_{0}^{x}+2 \int_{0}^{x}(x-y)^{1 / 2} f^{\prime}(y) d y \\
& =2 \int_{0}^{x}(x-y)^{1 / 2} f^{\prime}(y) d y
\end{aligned}
$$

Differentiating this equation, we get

$$
\begin{aligned}
\frac{d}{d x} \int_{0}^{x} \frac{f(y)}{(x-y)^{1 / 2}} d y & =2 \frac{d}{d x} \int_{0}^{x}(x-y)^{1 / 2} f^{\prime}(y) d y \\
& =2(x-x)^{1 / 2} f^{\prime}(x)+2 \int_{0}^{x} \frac{d}{d x}\left[(x-y)^{1 / 2}\right] f^{\prime}(y) d y \\
& =\int_{0}^{x} \frac{f^{\prime}(y)}{(x-y)^{1 / 2}} d y
\end{aligned}
$$

Hence, any solution of (3) is given by (4).

- Conversely, if u is given by (4), where $f(0)=0$, then

$$
\begin{aligned}
K u(x) & =\frac{1}{\pi} \int_{0}^{x} \frac{1}{(x-t)^{1 / 2}}\left(\int_{0}^{t} \frac{f^{\prime}(y)}{(t-y)^{1 / 2}} d y\right) d t \\
& =\frac{1}{\pi} \int_{0}^{x} f^{\prime}(y)\left(\int_{y}^{x} \frac{1}{(x-t)^{1 / 2}(t-y)^{1 / 2}} d t\right) d y \\
& =\int_{0}^{x} f^{\prime}(y) d y \\
& =f(x)
\end{aligned}
$$

so (4) is the unique solution of (3).

