
Advanced Calculus

Math 25, Fall 2015

Final: Solutions

1. [20 pts] Say if the following statements are true or false. If false, give a
counter-example, if true give a brief explanation why (a complete proof is
not required).

(a) If (an) is a sequence such that for every k ∈ N there exists j ∈ N such
that aj = aj+1 = · · · = aj+k (meaning that the sequence contains arbitrarily
long strings of repeated terms), then (an) converges.

(b) If the series
∑

an is conditionally convergent, then the series
∑√

nan
diverges.

(c) If A ⊂ R and every a ∈ A is an interior point of A, then A is open.

(d) If A ⊂ R and every a ∈ A is an isolated point of A, then A is closed.

Solution.

• (a) False. For example, the sequence (1, 2, 2, 3, 3, 3, 4, 4, 4, 4, . . .) with
n successive integers n does not converge.

• (b) False. For example, if an = (−1)n+1/n, then the alternating har-
monic series

∑

(−1)n+1/n is conditionally convergent and
∑

(−1)n+1/
√
n

converges by the alternating series test.

• (c) True. This follows immediately from the definitions. If a ∈ A is an
interior point, then there exists δ > 0 such that (a − δ, a + δ) ⊂ A, so
A is open if (and only if) every a ∈ A is an interior point.

• (d) False. For example, if A = {1/n : n ∈ N}, then every point of A is
an isolated point, but A is not closed since 0 /∈ A is a limit point of A.
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2. [20 pts] Prove by induction that

(1 + 2 + 3 + · · ·+ n)2 = 13 + 23 + 33 + · · ·+ n3

for every natural number n ∈ N.

Hint. You can use the fact that the sum of the first n natural numbers is
given by 1 + 2 + 3 + · · ·+ n = 1

2
n(n+ 1).

Solution.

• The result is true for n = 1, since 12 = 13.

• Assume the result is true for some n ∈ N. Then, using the induction
hypothesis and the sum given in the hint, we get that

13 + 23 + 3 + · · ·+ n3 + (n+ 1)3 = (1 + 2 + 3 + · · ·+ n)2 + (n+ 1)3

=

[

1

2
n(n + 1)

]2

+ (n + 1)3

= (n+ 1)2
[

1

4
n2 + n+ 1

]

=
1

4
(n + 1)2(n+ 2)2

= (1 + 2 + 3 + · · ·+ n+ n + 1)2,

so the result is true for n + 1. It follows by induction that the result
holds for every n ∈ N.

• Alternatively, you could prove by induction that

13 + 23 + · · ·+ n3 =
1

4
n2(n+ 1)2

and observe that the result follows from the sum in the hint.
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3. [20 pts] Suppose that the sets A,B ⊂ R are bounded from above. Let

A +B = {x ∈ R : x = a+ b for some a ∈ A and b ∈ B} .

Prove that sup(A+B) = supA+ supB.

Solution.

• Let P = supA, Q = supB, and M = P + Q. Since P is an upper
bound of A and Q is an upper bound of B, we have a+ b ≤ P +Q for
every a ∈ A and b ∈ B, so M is an upper bound of A+B.

• Suppose that M ′ < M and let ǫ = M −M ′ > 0. If P ′ = P − ǫ/2 and
Q′ = Q − ǫ/2, then P ′ + Q′ = M ′. Since P is a least upper bound of
A and P ′ < P , there exists a ∈ A such that a > P ′; similarly, there
exists b ∈ B such that b > Q′. It follows that a+ b > M ′, so M ′ is not
an upper bound of A+B, which proves that M is a least upper bound
and sup(A+B) = supA+ supB.
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4. [20 pts] (a) State the definition of the convergence of a sequence (an) of
real numbers to a limit L.

(b) Suppose that an ≥ 0 and limn→∞ an = 0. Prove from the definition that
limn→∞

√
an = 0.

Solution.

• (a) an → L as n → ∞ if for every ǫ > 0 there exists N ∈ N such that
n > N implies that |an − L| < ǫ.

• (b) Let ǫ > 0. Since an → 0, there exists N ∈ N such that n > N
implies that 0 ≤ an < ǫ2. It follows that n > N implies that

√
an < ǫ,

which proves that
√
an → 0 as n → ∞.
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5. [20 pts] Let (an) be a bounded sequence of real numbers.

(a) State the definition of lim supn→∞
an.

(b) Prove that there is a subsequence (ank
) of (an) such that

lim
k→∞

ank
= lim sup

n→∞

an.

(c) Prove that if (ank
) is any convergent subsequence of (an), then

lim
k→∞

ank
≤ lim sup

n→∞

an.

Solution.

• (a)
lim sup
n→∞

an = lim
n→∞

bn, bn = sup{ak : k ≥ n}.

• (b) Let L = lim sup an, so bn ↓ L. For each k ∈ N there exists Nk ∈ N

such that n > Nk implies that

L ≤ bn < L+
1

k + 1
.

We construct a subsequence (ank
) recursively as follows. First, choose

any n1 ∈ N. Then, given nk for k ∈ N, choose some n > max{nk, Nk}.
By the definition of the supremum that defines bn, there exists nk+1 ≥ n
such that

bn −
1

k + 1
≤ ank+1

≤ bn,

It follows that nk+1 > nk and

L− 1

k + 1
< ank+1

< L+
1

k + 1
,

or |ank
−L| < 1/k, for every k ≥ 2. The sandwich theorem then implies

that ank
→ L as k → ∞.

• (c) Suppose that (ank
) is a convergent subsequence of (an). For every

k ∈ N, we have ank
≤ bnk

. Taking the limit of this inequality as k → ∞,
then using the monotonicity property of limits and the fact that every
subsequence of (bn) converges to the same limit as (bn), we get that

lim
k→∞

ank
≤ lim sup

n→∞

an.
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6. [20 pts] Determine the convergence of the following series. Justify your
answers.

(a)

∞
∑

n=1

2n√
n!

(b)

∞
∑

n=1

n− 1

n2 + 1
(c)

∞
∑

n=1

(−1)n+1

(

4n − 3

n4 + 3

)

(d)
∞
∑

n=1

(

n− 1

n
− n

n+ 1

)

Solution.

• (a) If n ≥ 16, then 2/
√
n ≤ 1/2, and it follows that

2n√
n!

=
2√
1
· 2√

2
· 2√

3
. . .

2√
n
≤ C

2n

for a suitable constant C that is independent of n. So the series con-
verges absolutely by comparison with a convergent geometric series.

• (b) For n ≥ 2, we have n− 1 ≥ n/2 and

n− 1

n2 + 1
>

n/2

n2 + n2
=

1

4n
.

It follows that the series diverges to ∞ by comparison with the diver-
gent harmonic series.

• (c) The series diverges because 4n/n4 → ∞ as n → ∞, so its terms
diverge to ∞. To prove this limit, note that for n ≥ 6 we have

4n = (1 + 3)n >

(

n

4

)

3n−4 =
n(n− 1)(n− 2)(n− 3)3n

4!34
>

n43n

4!3423
,

where we retain only one term in the binomial expansion of (1 + 3)n,
and 3n → ∞ as n → ∞.

• (d) This is a telescoping series of negative terms, and

N
∑

n=1

∣

∣

∣

∣

n− 1

n
− n

n + 1

∣

∣

∣

∣

=
N
∑

n=1

(

n

n+ 1
− n− 1

n

)

=
N

N + 1
− 0 → 1

as N → ∞, so the series converges absolutely (to −1).
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7. [20 pts] (a) Define an open set G ⊂ R.

(b) If {G1, G2, . . . , Gn} is a finite collection of open sets Gi ⊂ R, prove that
G =

⋂n

i=1
Gi is open

(c) If {Gi : i ∈ N} is an infinite collection of open sets Gi ⊂ R, give an
example to show that that

⋂

∞

i=1
Gi need not be open.

Solution.

• (a) A set G ⊂ R is open if for every x ∈ G there exists δ > 0 such that
(x− δ, x+ δ) ⊂ G.

• (b) Suppose that x ∈ ⋂n

i=1
Gi. Then x ∈ Gi for every 1 ≤ i ≤ n. Since

Gi is open, there exists δi > 0 such that (x− δi, x+ δi) ⊂ Gi. If

δ = min{δi : 1 ≤ i ≤ n},

then δ > 0 and (x−δ, x+δ) ⊂ Gi for every i, so (x−δ, x+δ) ⊂
⋂n

i=1
Gi,

which proves that
⋂n

i=1
Gi is open.

• (c) Let

Gi =

(

0, 1 +
1

i

)

Then Gi is open but
∞
⋂

i=1

Gi = (0, 1]

is not open.
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