Advanced Calculus Math 25, Fall 2015 Final: Solutions

1. [20 pts] Say if the following statements are true or false. If false, give a counter-example, if true give a brief explanation why (a complete proof is not required).

(a) If (a_n) is a sequence such that for every $k \in \mathbb{N}$ there exists $j \in \mathbb{N}$ such that $a_j = a_{j+1} = \cdots = a_{j+k}$ (meaning that the sequence contains arbitrarily long strings of repeated terms), then (a_n) converges.

(b) If the series $\sum a_n$ is conditionally convergent, then the series $\sum \sqrt{n}a_n$ diverges.

(c) If $A \subset \mathbb{R}$ and every $a \in A$ is an interior point of A, then A is open.

(d) If $A \subset \mathbb{R}$ and every $a \in A$ is an isolated point of A, then A is closed.

Solution.

- (a) False. For example, the sequence (1, 2, 2, 3, 3, 3, 4, 4, 4, 4, ...) with n successive integers n does not converge.
- (b) False. For example, if $a_n = (-1)^{n+1}/n$, then the alternating harmonic series $\sum (-1)^{n+1}/n$ is conditionally convergent and $\sum (-1)^{n+1}/\sqrt{n}$ converges by the alternating series test.
- (c) True. This follows immediately from the definitions. If $a \in A$ is an interior point, then there exists $\delta > 0$ such that $(a \delta, a + \delta) \subset A$, so A is open if (and only if) every $a \in A$ is an interior point.
- (d) False. For example, if $A = \{1/n : n \in \mathbb{N}\}$, then every point of A is an isolated point, but A is not closed since $0 \notin A$ is a limit point of A.

2. [20 pts] Prove by induction that

$$(1+2+3+\dots+n)^2 = 1^3+2^3+3^3+\dots+n^3$$

for every natural number $n \in \mathbb{N}$.

HINT. You can use the fact that the sum of the first *n* natural numbers is given by $1 + 2 + 3 + \cdots + n = \frac{1}{2}n(n+1)$.

Solution.

- The result is true for n = 1, since $1^2 = 1^3$.
- Assume the result is true for some $n \in \mathbb{N}$. Then, using the induction hypothesis and the sum given in the hint, we get that

$$1^{3} + 2^{3} + 3 + \dots + n^{3} + (n+1)^{3} = (1+2+3+\dots+n)^{2} + (n+1)^{3}$$
$$= \left[\frac{1}{2}n(n+1)\right]^{2} + (n+1)^{3}$$
$$= (n+1)^{2}\left[\frac{1}{4}n^{2} + n + 1\right]$$
$$= \frac{1}{4}(n+1)^{2}(n+2)^{2}$$
$$= (1+2+3+\dots+n+n+1)^{2},$$

so the result is true for n + 1. It follows by induction that the result holds for every $n \in \mathbb{N}$.

• Alternatively, you could prove by induction that

$$1^{3} + 2^{3} + \dots + n^{3} = \frac{1}{4}n^{2}(n+1)^{2}$$

and observe that the result follows from the sum in the hint.

3. [20 pts] Suppose that the sets $A, B \subset \mathbb{R}$ are bounded from above. Let

 $A + B = \{x \in \mathbb{R} : x = a + b \text{ for some } a \in A \text{ and } b \in B\}.$

Prove that $\sup(A + B) = \sup A + \sup B$.

Solution.

- Let $P = \sup A$, $Q = \sup B$, and M = P + Q. Since P is an upper bound of A and Q is an upper bound of B, we have $a + b \le P + Q$ for every $a \in A$ and $b \in B$, so M is an upper bound of A + B.
- Suppose that M' < M and let $\epsilon = M M' > 0$. If $P' = P \epsilon/2$ and $Q' = Q \epsilon/2$, then P' + Q' = M'. Since P is a least upper bound of A and P' < P, there exists $a \in A$ such that a > P'; similarly, there exists $b \in B$ such that b > Q'. It follows that a + b > M', so M' is not an upper bound of A + B, which proves that M is a least upper bound and $\sup(A + B) = \sup A + \sup B$.

4. [20 pts] (a) State the definition of the convergence of a sequence (a_n) of real numbers to a limit L.

(b) Suppose that $a_n \ge 0$ and $\lim_{n\to\infty} a_n = 0$. Prove from the definition that $\lim_{n\to\infty} \sqrt{a_n} = 0$.

Solution.

- (a) $a_n \to L$ as $n \to \infty$ if for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that n > N implies that $|a_n L| < \epsilon$.
- (b) Let $\epsilon > 0$. Since $a_n \to 0$, there exists $N \in \mathbb{N}$ such that n > N implies that $0 \le a_n < \epsilon^2$. It follows that n > N implies that $\sqrt{a_n} < \epsilon$, which proves that $\sqrt{a_n} \to 0$ as $n \to \infty$.

- **5.** [20 pts] Let (a_n) be a bounded sequence of real numbers.
- (a) State the definition of $\limsup_{n\to\infty} a_n$.
- (b) Prove that there is a subsequence (a_{n_k}) of (a_n) such that

$$\lim_{k \to \infty} a_{n_k} = \limsup_{n \to \infty} a_n$$

(c) Prove that if (a_{n_k}) is any convergent subsequence of (a_n) , then

$$\lim_{k \to \infty} a_{n_k} \le \limsup_{n \to \infty} a_n$$

Solution.

• (a)

$$\limsup_{n \to \infty} a_n = \lim_{n \to \infty} b_n, \qquad b_n = \sup\{a_k : k \ge n\}$$

• (b) Let $L = \limsup a_n$, so $b_n \downarrow L$. For each $k \in \mathbb{N}$ there exists $N_k \in \mathbb{N}$ such that $n > N_k$ implies that

$$L \le b_n < L + \frac{1}{k+1}.$$

We construct a subsequence (a_{n_k}) recursively as follows. First, choose any $n_1 \in \mathbb{N}$. Then, given n_k for $k \in \mathbb{N}$, choose some $n > \max\{n_k, N_k\}$. By the definition of the supremum that defines b_n , there exists $n_{k+1} \ge n$ such that

$$b_n - \frac{1}{k+1} \le a_{n_{k+1}} \le b_n,$$

It follows that $n_{k+1} > n_k$ and

$$L - \frac{1}{k+1} < a_{n_{k+1}} < L + \frac{1}{k+1},$$

or $|a_{n_k} - L| < 1/k$, for every $k \ge 2$. The sandwich theorem then implies that $a_{n_k} \to L$ as $k \to \infty$.

• (c) Suppose that (a_{n_k}) is a convergent subsequence of (a_n) . For every $k \in \mathbb{N}$, we have $a_{n_k} \leq b_{n_k}$. Taking the limit of this inequality as $k \to \infty$, then using the monotonicity property of limits and the fact that every subsequence of (b_n) converges to the same limit as (b_n) , we get that

$$\lim_{k \to \infty} a_{n_k} \le \limsup_{n \to \infty} a_n.$$

6. [20 pts] Determine the convergence of the following series. Justify your answers.

(a)
$$\sum_{n=1}^{\infty} \frac{2^n}{\sqrt{n!}}$$
 (b) $\sum_{n=1}^{\infty} \frac{n-1}{n^2+1}$ (c) $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{4^n-3}{n^4+3}\right)$
(d) $\sum_{n=1}^{\infty} \left(\frac{n-1}{n} - \frac{n}{n+1}\right)$

Solution.

• (a) If $n \ge 16$, then $2/\sqrt{n} \le 1/2$, and it follows that

$$\frac{2^n}{\sqrt{n!}} = \frac{2}{\sqrt{1}} \cdot \frac{2}{\sqrt{2}} \cdot \frac{2}{\sqrt{3}} \dots \frac{2}{\sqrt{n}} \le \frac{C}{2^n}$$

for a suitable constant C that is independent of n. So the series converges absolutely by comparison with a convergent geometric series.

• (b) For $n \ge 2$, we have $n - 1 \ge n/2$ and

$$\frac{n-1}{n^2+1} > \frac{n/2}{n^2+n^2} = \frac{1}{4n}.$$

It follows that the series diverges to ∞ by comparison with the divergent harmonic series.

(c) The series diverges because 4ⁿ/n⁴ → ∞ as n → ∞, so its terms diverge to ∞. To prove this limit, note that for n ≥ 6 we have

$$4^{n} = (1+3)^{n} > \binom{n}{4} 3^{n-4} = \frac{n(n-1)(n-2)(n-3)3^{n}}{4!3^{4}} > \frac{n^{4}3^{n}}{4!3^{4}2^{3}},$$

where we retain only one term in the binomial expansion of $(1+3)^n$, and $3^n \to \infty$ as $n \to \infty$.

• (d) This is a telescoping series of negative terms, and

$$\sum_{n=1}^{N} \left| \frac{n-1}{n} - \frac{n}{n+1} \right| = \sum_{n=1}^{N} \left(\frac{n}{n+1} - \frac{n-1}{n} \right) = \frac{N}{N+1} - 0 \to 1$$

as $N \to \infty$, so the series converges absolutely (to -1).

7. [20 pts] (a) Define an open set $G \subset \mathbb{R}$.

(b) If $\{G_1, G_2, \ldots, G_n\}$ is a finite collection of open sets $G_i \subset \mathbb{R}$, prove that $G = \bigcap_{i=1}^n G_i$ is open

(c) If $\{G_i : i \in \mathbb{N}\}\$ is an infinite collection of open sets $G_i \subset \mathbb{R}$, give an example to show that that $\bigcap_{i=1}^{\infty} G_i$ need not be open.

Solution.

- (a) A set $G \subset \mathbb{R}$ is open if for every $x \in G$ there exists $\delta > 0$ such that $(x \delta, x + \delta) \subset G$.
- (b) Suppose that $x \in \bigcap_{i=1}^{n} G_i$. Then $x \in G_i$ for every $1 \le i \le n$. Since G_i is open, there exists $\delta_i > 0$ such that $(x \delta_i, x + \delta_i) \subset G_i$. If

$$\delta = \min\{\delta_i : 1 \le i \le n\},\$$

then $\delta > 0$ and $(x - \delta, x + \delta) \subset G_i$ for every i, so $(x - \delta, x + \delta) \subset \bigcap_{i=1}^n G_i$, which proves that $\bigcap_{i=1}^n G_i$ is open.

• (c) Let

$$G_i = \left(0, 1 + \frac{1}{i}\right)$$

Then G_i is open but

$$\bigcap_{i=1}^{\infty} G_i = (0,1]$$

is not open.