Advanced Calculus
Math 25, Fall 2015

Final: Solutions

1. [20 pts] Say if the following statements are true or false. If false, give a counter-example, if true give a brief explanation why (a complete proof is not required).
(a) If $\left(a_{n}\right)$ is a sequence such that for every $k \in \mathbb{N}$ there exists $j \in \mathbb{N}$ such that $a_{j}=a_{j+1}=\cdots=a_{j+k}$ (meaning that the sequence contains arbitrarily long strings of repeated terms), then $\left(a_{n}\right)$ converges.
(b) If the series $\sum a_{n}$ is conditionally convergent, then the series $\sum \sqrt{n} a_{n}$ diverges.
(c) If $A \subset \mathbb{R}$ and every $a \in A$ is an interior point of A, then A is open.
(d) If $A \subset \mathbb{R}$ and every $a \in A$ is an isolated point of A, then A is closed.

Solution.

- (a) False. For example, the sequence $(1,2,2,3,3,3,4,4,4,4, \ldots)$ with n successive integers n does not converge.
- (b) False. For example, if $a_{n}=(-1)^{n+1} / n$, then the alternating harmonic series $\sum(-1)^{n+1} / n$ is conditionally convergent and $\sum(-1)^{n+1} / \sqrt{n}$ converges by the alternating series test.
- (c) True. This follows immediately from the definitions. If $a \in A$ is an interior point, then there exists $\delta>0$ such that $(a-\delta, a+\delta) \subset A$, so A is open if (and only if) every $a \in A$ is an interior point.
- (d) False. For example, if $A=\{1 / n: n \in \mathbb{N}\}$, then every point of A is an isolated point, but A is not closed since $0 \notin A$ is a limit point of A.

2. [20 pts] Prove by induction that

$$
(1+2+3+\cdots+n)^{2}=1^{3}+2^{3}+3^{3}+\cdots+n^{3}
$$

for every natural number $n \in \mathbb{N}$.
Hint. You can use the fact that the sum of the first n natural numbers is given by $1+2+3+\cdots+n=\frac{1}{2} n(n+1)$.

Solution.

- The result is true for $n=1$, since $1^{2}=1^{3}$.
- Assume the result is true for some $n \in \mathbb{N}$. Then, using the induction hypothesis and the sum given in the hint, we get that

$$
\begin{aligned}
1^{3}+2^{3}+3+\cdots+n^{3}+(n+1)^{3} & =(1+2+3+\cdots+n)^{2}+(n+1)^{3} \\
& =\left[\frac{1}{2} n(n+1)\right]^{2}+(n+1)^{3} \\
& =(n+1)^{2}\left[\frac{1}{4} n^{2}+n+1\right] \\
& =\frac{1}{4}(n+1)^{2}(n+2)^{2} \\
& =(1+2+3+\cdots+n+n+1)^{2},
\end{aligned}
$$

so the result is true for $n+1$. It follows by induction that the result holds for every $n \in \mathbb{N}$.

- Alternatively, you could prove by induction that

$$
1^{3}+2^{3}+\cdots+n^{3}=\frac{1}{4} n^{2}(n+1)^{2}
$$

and observe that the result follows from the sum in the hint.
3. [20 pts] Suppose that the sets $A, B \subset \mathbb{R}$ are bounded from above. Let

$$
A+B=\{x \in \mathbb{R}: x=a+b \text { for some } a \in A \text { and } b \in B\}
$$

Prove that $\sup (A+B)=\sup A+\sup B$.

Solution.

- Let $P=\sup A, Q=\sup B$, and $M=P+Q$. Since P is an upper bound of A and Q is an upper bound of B, we have $a+b \leq P+Q$ for every $a \in A$ and $b \in B$, so M is an upper bound of $A+B$.
- Suppose that $M^{\prime}<M$ and let $\epsilon=M-M^{\prime}>0$. If $P^{\prime}=P-\epsilon / 2$ and $Q^{\prime}=Q-\epsilon / 2$, then $P^{\prime}+Q^{\prime}=M^{\prime}$. Since P is a least upper bound of A and $P^{\prime}<P$, there exists $a \in A$ such that $a>P^{\prime}$; similarly, there exists $b \in B$ such that $b>Q^{\prime}$. It follows that $a+b>M^{\prime}$, so M^{\prime} is not an upper bound of $A+B$, which proves that M is a least upper bound and $\sup (A+B)=\sup A+\sup B$.

4. [20 pts] (a) State the definition of the convergence of a sequence $\left(a_{n}\right)$ of real numbers to a limit L.
(b) Suppose that $a_{n} \geq 0$ and $\lim _{n \rightarrow \infty} a_{n}=0$. Prove from the definition that $\lim _{n \rightarrow \infty} \sqrt{a_{n}}=0$.

Solution.

- (a) $a_{n} \rightarrow L$ as $n \rightarrow \infty$ if for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $n>N$ implies that $\left|a_{n}-L\right|<\epsilon$.
- (b) Let $\epsilon>0$. Since $a_{n} \rightarrow 0$, there exists $N \in \mathbb{N}$ such that $n>N$ implies that $0 \leq a_{n}<\epsilon^{2}$. It follows that $n>N$ implies that $\sqrt{a_{n}}<\epsilon$, which proves that $\sqrt{a_{n}} \rightarrow 0$ as $n \rightarrow \infty$.

5. [20 pts] Let $\left(a_{n}\right)$ be a bounded sequence of real numbers.
(a) State the definition of $\limsup _{n \rightarrow \infty} a_{n}$.
(b) Prove that there is a subsequence $\left(a_{n_{k}}\right)$ of $\left(a_{n}\right)$ such that

$$
\lim _{k \rightarrow \infty} a_{n_{k}}=\limsup _{n \rightarrow \infty} a_{n}
$$

(c) Prove that if $\left(a_{n_{k}}\right)$ is any convergent subsequence of $\left(a_{n}\right)$, then

$$
\lim _{k \rightarrow \infty} a_{n_{k}} \leq \limsup _{n \rightarrow \infty} a_{n} .
$$

Solution.

- (a)

$$
\limsup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}, \quad b_{n}=\sup \left\{a_{k}: k \geq n\right\}
$$

- (b) Let $L=\limsup a_{n}$, so $b_{n} \downarrow L$. For each $k \in \mathbb{N}$ there exists $N_{k} \in \mathbb{N}$ such that $n>N_{k}$ implies that

$$
L \leq b_{n}<L+\frac{1}{k+1}
$$

We construct a subsequence $\left(a_{n_{k}}\right)$ recursively as follows. First, choose any $n_{1} \in \mathbb{N}$. Then, given n_{k} for $k \in \mathbb{N}$, choose some $n>\max \left\{n_{k}, N_{k}\right\}$. By the definition of the supremum that defines b_{n}, there exists $n_{k+1} \geq n$ such that

$$
b_{n}-\frac{1}{k+1} \leq a_{n_{k+1}} \leq b_{n}
$$

It follows that $n_{k+1}>n_{k}$ and

$$
L-\frac{1}{k+1}<a_{n_{k+1}}<L+\frac{1}{k+1}
$$

or $\left|a_{n_{k}}-L\right|<1 / k$, for every $k \geq 2$. The sandwich theorem then implies that $a_{n_{k}} \rightarrow L$ as $k \rightarrow \infty$.

- (c) Suppose that $\left(a_{n_{k}}\right)$ is a convergent subsequence of $\left(a_{n}\right)$. For every $k \in \mathbb{N}$, we have $a_{n_{k}} \leq b_{n_{k}}$. Taking the limit of this inequality as $k \rightarrow \infty$, then using the monotonicity property of limits and the fact that every subsequence of $\left(b_{n}\right)$ converges to the same limit as $\left(b_{n}\right)$, we get that

$$
\lim _{k \rightarrow \infty} a_{n_{k}} \leq \limsup _{n \rightarrow \infty} a_{n} .
$$

6. [20 pts] Determine the convergence of the following series. Justify your answers.
(a) $\sum_{n=1}^{\infty} \frac{2^{n}}{\sqrt{n!}}$
(b) $\sum_{n=1}^{\infty} \frac{n-1}{n^{2}+1}$
(c) $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{4^{n}-3}{n^{4}+3}\right)$
(d) $\sum_{n=1}^{\infty}\left(\frac{n-1}{n}-\frac{n}{n+1}\right)$

Solution.

- (a) If $n \geq 16$, then $2 / \sqrt{n} \leq 1 / 2$, and it follows that

$$
\frac{2^{n}}{\sqrt{n!}}=\frac{2}{\sqrt{1}} \cdot \frac{2}{\sqrt{2}} \cdot \frac{2}{\sqrt{3}} \ldots \frac{2}{\sqrt{n}} \leq \frac{C}{2^{n}}
$$

for a suitable constant C that is independent of n. So the series converges absolutely by comparison with a convergent geometric series.

- (b) For $n \geq 2$, we have $n-1 \geq n / 2$ and

$$
\frac{n-1}{n^{2}+1}>\frac{n / 2}{n^{2}+n^{2}}=\frac{1}{4 n} .
$$

It follows that the series diverges to ∞ by comparison with the divergent harmonic series.

- (c) The series diverges because $4^{n} / n^{4} \rightarrow \infty$ as $n \rightarrow \infty$, so its terms diverge to ∞. To prove this limit, note that for $n \geq 6$ we have

$$
4^{n}=(1+3)^{n}>\binom{n}{4} 3^{n-4}=\frac{n(n-1)(n-2)(n-3) 3^{n}}{4!3^{4}}>\frac{n^{4} 3^{n}}{4!3^{4} 2^{3}}
$$

where we retain only one term in the binomial expansion of $(1+3)^{n}$, and $3^{n} \rightarrow \infty$ as $n \rightarrow \infty$.

- (d) This is a telescoping series of negative terms, and

$$
\sum_{n=1}^{N}\left|\frac{n-1}{n}-\frac{n}{n+1}\right|=\sum_{n=1}^{N}\left(\frac{n}{n+1}-\frac{n-1}{n}\right)=\frac{N}{N+1}-0 \rightarrow 1
$$

as $N \rightarrow \infty$, so the series converges absolutely (to -1).
7. [20 pts] (a) Define an open set $G \subset \mathbb{R}$.
(b) If $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ is a finite collection of open sets $G_{i} \subset \mathbb{R}$, prove that $G=\bigcap_{i=1}^{n} G_{i}$ is open
(c) If $\left\{G_{i}: i \in \mathbb{N}\right\}$ is an infinite collection of open sets $G_{i} \subset \mathbb{R}$, give an example to show that that $\bigcap_{i=1}^{\infty} G_{i}$ need not be open.

Solution.

- (a) A set $G \subset \mathbb{R}$ is open if for every $x \in G$ there exists $\delta>0$ such that $(x-\delta, x+\delta) \subset G$.
- (b) Suppose that $x \in \bigcap_{i=1}^{n} G_{i}$. Then $x \in G_{i}$ for every $1 \leq i \leq n$. Since G_{i} is open, there exists $\delta_{i}>0$ such that $\left(x-\delta_{i}, x+\delta_{i}\right) \subset G_{i}$. If

$$
\delta=\min \left\{\delta_{i}: 1 \leq i \leq n\right\}
$$

then $\delta>0$ and $(x-\delta, x+\delta) \subset G_{i}$ for every i, so $(x-\delta, x+\delta) \subset \bigcap_{i=1}^{n} G_{i}$, which proves that $\bigcap_{i=1}^{n} G_{i}$ is open.

- (c) Let

$$
G_{i}=\left(0,1+\frac{1}{i}\right)
$$

Then G_{i} is open but

$$
\bigcap_{i=1}^{\infty} G_{i}=(0,1]
$$

is not open.

