Analysis Preliminary Exam Workshop: Hilbert Spaces

1. Hilbert spaces

A Hilbert space \mathcal{H} is a complete real or complex inner product space. Consider complex Hilbert spaces for definiteness. If $(\cdot, \cdot) : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ is the inner product, then

$$\|x\| = \sqrt{(x,x)}, \qquad \|\cdot\| : \mathcal{H} \to [0,\infty)$$

defines a norm on \mathcal{H} , and \mathcal{H} is complete with respect to this norm.

Examples: \mathbb{R}^n (or \mathbb{C}^n) with the standard Euclidean (or Hermitian) inner product; $\ell^2(\mathbb{N})$; $L^2(\mathbb{R})$; $L^2(\mathbb{T})$.

THEOREM 1 (Cauchy-Schwarz). If \mathcal{H} is a Hilbert space and $x, y \in \mathcal{H}$, then $|(x, y)| \leq ||x|| ||y||$.

2. Geometry

Two vectors $x, y \in \mathcal{H}$ are orthogonal, written $x \perp y$, if (x, y) = 0. If $X \subset \mathcal{H}$, then

$$X^{\perp} = \{ y \in \mathcal{H} : (x, y) = 0 \text{ for all } x \in X \}.$$

THEOREM 2 (Orthogonal complements). If \mathcal{M} is a closed linear subspace of a Hilbert space \mathcal{H} , then $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$, where \mathcal{M}^{\perp} is also a closed linear subspace.

A set of vectors $\{e_{\alpha} : \alpha \in I\}$ in \mathcal{H} is orthonormal if

$$(e_{\alpha}, e_{\beta}) = \begin{cases} 1 & \text{if } \alpha = \beta, \\ 0 & \text{if } \alpha \neq \beta. \end{cases}$$

An orthonormal basis is a maximal orthonormal set.

THEOREM 3 (Basis). Every Hilbert space \mathcal{H} has an orthonormal basis $\{e_{\alpha} : \alpha \in I\}$. Every element $x \in \mathcal{H}$ has a norm-convergent expansion

$$x = \sum_{\alpha \in I} x_{\alpha} e_{\alpha}, \qquad x_{\alpha} = (e_{\alpha}, x)$$

and $x \in \mathcal{H}$ if and only if

$$\sum_{\alpha \in I} |x_{\alpha}|^2 < \infty.$$

Moreover, any two orthonormal bases of \mathcal{H} have the same cardinality.

Any two Hilbert spaces with bases of the same cardinality are isomorphic by a unitary transformation that maps an orthonormal basis of one space to an orthonormal basis of the other. A finite-dimensional complex Hilbert space is isomorphic to \mathbb{C}^n . An infinite-dimensional separable Hilbert space, with a countable orthonormal basis, is isomorphic to $\ell^2(\mathbb{N})$.

THEOREM 4 (Parseval). If \mathcal{H} is a Hilbert space with orthonormal basis $\{e_{\alpha} : \alpha \in I\}$ and $x, y \in \mathcal{H}$ have expansions

$$x = \sum_{\alpha \in I} x_{\alpha} e_{\alpha}, \qquad y = \sum_{\alpha \in I} y_{\alpha} e_{\alpha},$$

then

$$(x,y) = \sum_{\alpha \in I} \overline{x_{\alpha}} y_{\alpha}.$$

In particular,

$$||x||^2 = \sum_{\alpha \in I} |x_{\alpha}|^2.$$

3. Bounded linear operators

A linear operator $A: \mathcal{H} \to \mathcal{K}$ between Hilbert spaces \mathcal{H}, \mathcal{K} is bounded if its operator norm

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}$$

is finite. We denote the Banach space of all such bounded linear operators by $\mathcal{B}(\mathcal{H},\mathcal{K})$, or $\mathcal{B}(\mathcal{H})$ if $\mathcal{H} = \mathcal{K}$.

Every bounded linear operator $A : \mathcal{H} \to \mathcal{K}$ has a (Hilbert space) adjoint $A^* : \mathcal{K} \to \mathcal{H}$ that is bounded and linear and uniquely defined by the condition

$$(x, Ay) = (A^*x, y)$$
 for all $x \in \mathcal{K}$ and $y \in \mathcal{H}$.

An operator $A \in \mathcal{B}(\mathcal{H})$ is self-adjoint if $A = A^*$, meaning that

$$(x, Ay) = (Ax, y)$$
 for all $x, y \in \mathcal{H}$,

unitary (or orthogonal in the real case) if $A^* = A^{-1}$, and normal if $A^*A = AA^*$.

Denote the kernel, or null space, of $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ by ker A (a closed subspace of \mathcal{H}) and the range of A by ran A (a not necessarily closed subspace of \mathcal{K}). The rank of an operator is the dimension of its range, and A has finite rank if ran A is finite-dimensional (in which case it is closed).

THEOREM 5. If $A \in \mathcal{B}(\mathcal{H})$, then

$$\ker A = \operatorname{ran} (A^*)^{\perp}, \qquad \overline{\operatorname{ran} (A^*)} = (\ker A)^{\perp}.$$

An orthogonal projection $P : \mathcal{H} \to \mathcal{H}$ is a self-adjoint bounded linear operator on \mathcal{H} such that $P^2 = P$. It follows that ||P|| = 1, unless P = 0.

THEOREM 6 (Projection). If \mathcal{M} is a closed linear subspace of a Hilbert space \mathcal{H} , then there is a orthogonal projection $P : \mathcal{H} \to \mathcal{H}$ with range \mathcal{M} and kernel \mathcal{M}^{\perp} . Conversely, if $P : \mathcal{H} \to \mathcal{H}$ is an orthogonal projection, then $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$ where the closed subspaces \mathcal{M} and \mathcal{M}^{\perp} are the range and kernel of P, respectively.

4. Compact operators

A subset K of a Hilbert space \mathcal{H} is compact if every sequence in K has a bounded subsequence whose limit is in K. The set K is precompact if its closure is compact, meaning that every sequence in K has a convergent subsequence whose limit is in \mathcal{H} . A bounded linear operator $T : \mathcal{H} \to \mathcal{K}$ between Hilbert spaces \mathcal{H}, \mathcal{K} is compact if it maps bounded sets in \mathcal{H} to precompact sets in \mathcal{K} (i.e. sets whose closure is compact).

THEOREM 7. An operator $T \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is compact if and only if there is a sequence of operators $T_n \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ with finite rank such that

$$||T - T_n|| \to 0 \qquad as \ n \to \infty.$$

5. Spectrum

Suppose that \mathcal{H} is a complex Hilbert space and $A \in \mathcal{B}(\mathcal{H})$. The resolvent set $\rho(A) \subset \mathbb{C}$ of A is the set of $\lambda \in \mathbb{C}$ such that

$$(A - \lambda I) : \mathcal{H} \to \mathcal{H}$$

is one-to-one and onto.¹ The spectrum $\sigma(A)$ of A is the complement of $\rho(A)$ in \mathbb{C} . The resolvent set is open and the spectrum is compact (closed and bounded).

We classify the spectrum of A as follows:

• The point spectrum consists of the $\lambda \in \sigma(A)$ such that $A - \lambda I$ is not one-to-one (then λ is an eigenvalue of A and $x \neq 0$ such that $Ax = \lambda x$ an eigenvector);

• The continuous spectrum consists of the $\lambda \in \sigma(A)$ such that $A - \lambda I$ is one-to-one but not onto and ran $(A - \lambda I)$ is a dense subspace of \mathcal{H} ;

• The residual spectrum consists of $\lambda \in \sigma(A)$ such that $A - \lambda I$ is one-to-one but not onto and ran $(A - \lambda I)$ is not dense in \mathcal{H} .

THEOREM 8. If $A \in \mathcal{B}(\mathcal{H})$ is self-adjoint, then its spectrum $\sigma(A) \subset \mathbb{R}$ is real and the residual spectrum of A is empty

6. Spectral theorem for compact self-adjoint operators

THEOREM 9 (Spectral theorem for compact self-adjoint operators). Let $A \in \mathcal{B}(\mathcal{H})$ be a compact, self-adjoint operator on a Hilbert space \mathcal{H} . Then A has a finite or countably infinite sequence of real, non-zero eigenvalues (λ_n) . If this sequence is countably infinite, then $\lambda_n \to 0$ as $n \to \infty$. Every eigenspace associated with a nonzero eigenvalue is finite dimensional. If 0 is an eigenvalue of A, the null space of A may be finite or infinite dimensional. Furthermore, \mathcal{H} has an orthonormal basis consisting of eigenvectors of A.

THEOREM 10 (Projection form of spectral theorem). Suppose that $A \in \mathcal{B}(\mathcal{H})$ is a compact, self-adjoint operator on a Hilbert space \mathcal{H} with distinct nonzero eigenvalues $(\lambda_n \to 0)$. Let P_n be the orthogonal projection onto

¹The open mapping theorem then implies that the inverse $(A - \lambda I)^{-1}$ is bounded.

the eigenspace associated with λ_n and P_0 the projection onto the null space of A. Then P_n has finite rank, $P_m P_n = 0$, and

$$A = \sum_{n} \lambda_n P_n,$$

where the series converges uniformly with respect to the operator norm. Moreover,

$$I = P_0 + \sum_n P_n,$$

where the series converges strongly i.e. $(P_0 + \sum_{n=1}^N P_n)x \to x$ in norm as $N \to \infty$ for every $x \in \mathcal{H}$.

6. Weak convergence

The dual space of every Hilbert space is isomorphic (real case) or antiisomorphic (complex case) to the Hilbert space.

THEOREM 11 (Riesz representation). Every bounded linear functional $\omega: \mathcal{H} \to \mathbb{C}$ has the form

$$\omega(y) = (x, y)$$

for some $x \in \mathcal{H}$, and $\|\omega\| = \|x\|$.

A sequence (x_n) in \mathcal{H} converges weakly to $x \in \mathcal{H}$, written $x_n \rightharpoonup x$, if

$$(x_n, y) \to (x, y)$$
 for every $y \in \mathcal{H}$.

THEOREM 12. If $x_n \rightharpoonup x$, then $\{x_n\}$ is bounded and

$$||x|| \le \liminf_{n \to \infty} ||x_n||.$$

THEOREM 13 (Banach-Alaoglu). The closed unit ball in \mathcal{H} is weakly compact.