Bandlimited Fourier Transform
 Analysis Prelim Worksop
 Fall 2012

Problem 9. (a) For $f \in L^{1}(\mathbb{R})$ and $R>0$, let

$$
\left(S_{R} f\right)(x)=\frac{1}{\sqrt{2 \pi}} \int_{-R}^{R} \hat{f}(\xi) e^{i x \xi} d \xi
$$

where \hat{f} is the Fourier transform of f, defined by

$$
\hat{f}(\xi)=\frac{1}{\sqrt{2 \pi}} \int f(x) e^{-i x \xi} d x
$$

Show that

$$
S_{R} f=K_{R} * f
$$

where

$$
K_{R}(x)=\frac{\sin R x}{\pi x}
$$

Show this result also holds for $f \in L^{2}(\mathbb{R})$.
(b) If $f \in L^{2}$, show that $S_{R} f \rightarrow f$ in L^{2} as $R \rightarrow \infty$.

Solution. (a) For $f \in L^{1}(\mathbb{R})$,

$$
\begin{aligned}
\left(S_{R} f\right)(x) & =\frac{1}{2 \pi} \int_{-R}^{R}\left[\int_{-\infty}^{\infty} f(y) e^{-i y \xi} d y\right] e^{i x \xi} d \xi \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(y)\left[\int_{-R}^{R} e^{i(x-y) \xi} d \xi\right] d y \\
& =\int_{-\infty}^{\infty} K_{R}(x-y) f(y) d y,
\end{aligned}
$$

or $S_{R} f=K_{R} * f$, where

$$
K_{R}(x)=\frac{1}{2 \pi} \int_{-R}^{R} e^{i x \xi} d \xi=\frac{\sin R x}{\pi x}
$$

Here, Fubini's theorem allows us to exchange the order of integration because

$$
\int_{-R}^{R}\left[\int_{-\infty}^{\infty}\left|f(y) e^{i(x-y) \xi}\right| d y\right] d \xi=\int_{-R}^{R}\left[\int_{-\infty}^{\infty}|f(y)| d y\right] d \xi=2 R\|f\|_{L^{1}}<\infty
$$

An alternative derivation of this result is by the general convolution theorem. We have $K_{R} \in L^{p}$ for $1<p \leq 2$ and $f \in L^{1}$, so $K_{R} * f \in L^{p}$ and

$$
\begin{aligned}
S_{R} f & =\mathcal{F}^{-1}\left[\chi_{(-R, R)} \hat{f}\right] \\
& =\sqrt{2 \pi} \mathcal{F}^{-1}\left[\chi_{(-R, R)}\right] * \mathcal{F}^{-1}[\hat{f}] \\
& =K_{R} * f .
\end{aligned}
$$

Now suppose that $f \in L^{2}$ with Fourier transform $\hat{f} \in L^{2}$. For each $x \in \mathbb{R}$, define $\hat{g}_{x} \in L^{1} \cap L^{2}$ by

$$
\hat{g}_{x}(\xi)=\frac{1}{\sqrt{2 \pi}} \chi_{(-R, R)}(\xi) e^{-i x \xi} .
$$

Then $g_{x} \in L^{2}$ is given by

$$
g_{x}(y)=K_{R}(x-y) .
$$

(Multiplication of the Fourier transform by $e^{i h \cdot \xi}$ corresponds to translation of the function by h.) By the Plancherel theorem,

$$
\left(g_{x}, f\right)_{L^{2}}=\left(\hat{g}_{x}, \hat{f}\right)_{L^{2}}
$$

or

$$
\int \overline{g_{x}(y)} f(y) d y=\int \overline{\hat{g}_{x}(\xi)} \hat{f}(\xi) d \xi
$$

which gives

$$
\int K_{R}(x-y) f(y) d y=\frac{1}{\sqrt{2 \pi}} \int_{-R}^{R} \hat{f}(\xi) e^{i x \xi} d \xi
$$

(b) If $f \in L^{2}(\mathbb{R})$, then $\hat{f} \in L^{2}(\mathbb{R})$ by the Plancherel theorem. Writing

$$
\hat{f}_{R}=\chi_{(-R, R)} \hat{f}
$$

where $\chi_{(-R, R)}$ is the characteristic function of $(-R, R)$, we have

$$
\hat{f}_{R} \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})
$$

since f_{R} has compact support. Thus,

$$
S_{R} f=\mathcal{F}^{-1}\left[\hat{f}_{R}\right]
$$

is well-defined as an integral. We also have

$$
\hat{f}_{R} \rightarrow \hat{f} \quad \text { in } L^{2}(\mathbb{R}) \text { as } R \rightarrow \infty
$$

It then follows from the Plancherel theorem that

$$
S_{R} f \rightarrow f \quad \text { in } L^{2}(\mathbb{R}) \text { as } R \rightarrow \infty .
$$

