Solutions 5 Analysis Prelim Workshop Fall 2013

Problem 5. (Fall, 2011) Let $u(x) = (1 + |\log x|)^{-1}$. Prove that $u \in W^{1,1}(0,1)$ and u(0) = 0 but $(u/x) \notin L^1(0,1)$.

Solution. Since $u \in C^{\infty}(0, 1)$ is smooth, its pointwise derivative v = u',

$$v(x) = \frac{1}{x(1+|\log x|)^2},$$

is also its weak derivative (i.e., $\int_0^1 u\phi' dx = -\int_0^1 v\phi dx$ for every $\phi \in C_c^\infty(0,1)$). The substitution $t=1+|\log x|$ gives

$$\int_0^1 \frac{1}{x(1+|\log x|)^{\alpha}} \, dx = \int_1^\infty \frac{1}{t^{\alpha}} \, dt,$$

which is finite if $\alpha > 1$ and infinite if $\alpha \le 1$. It follows that $v \in L^1(0, 1)$ and $u \in W^{1,1}(0, 1)$. Moreover, u extends to an absolutely continuous function on [0, 1] with $u(0) = \lim_{x \to 0^+} (1 + |\log x|)^{-1} = 0$. The previous calculation (with $\alpha = 1$) shows that $(u/x) \notin L^1(0, 1)$.

Problem 6. (Spring, 2011) Let $C^{0,\alpha}([0,1])$ be the Banach space of Hölder continuous functions on [0,1] with exponent $0 < \alpha \leq 1$ and norm

$$||u||_{C^{0,\alpha}} = \sup_{x \in [0,1]} |u(x)| + \sup_{x \neq y \in [0,1]} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}}.$$

Prove that the closed unit ball $B = \{u \in C^{0,\alpha}([0,1]) : ||u||_{C^{0,\alpha}} \leq 1\}$ in $C^{0,\alpha}([0,1])$ is a compact subset of C([0,1]) with the sup-norm topology.

Solution. By the Arzelà-Ascoli theorem, *B* is a compact subset of C([0, 1]) if and only if it is closed, bounded, and equicontinuous. If $u \in B$, then $||u||_{\infty} \leq ||u||_{C^{0,\alpha}} \leq 1$, where $||\cdot||_{\infty}$ denotes the sup-norm, so *B* is bounded, and $|u(x) - u(y)| \leq |x - y|^{\alpha} < \epsilon$ if $|x - y| < \epsilon^{1/\alpha}$, so *B* is equicontinuous. Finally, if $u_n \in B$ and $u_n \to u$ in C([0, 1]), then $u_n \to u$ pointwise and

$$\frac{|u(x) - u(y)|}{|x - y|^{\alpha}} = \lim_{n \to \infty} \frac{|u_n(x) - u_n(y)|}{|x - y|^{\alpha}} \le 1 \quad \text{for all } x \neq y \in [0, 1]$$

so $u \in B$, and B is closed.

Problem 2. (Spring, 2012) Let $X \subset L^2(0, 2\pi)$ be the set of functions u such that

$$u(x) = \sum_{k \in \mathbb{Z}} a_k e^{ikx}, \qquad |a_k| \le \frac{1}{1+|k|}.$$

Prove that X is a compact subset of $L^2(0, 2\pi)$.

Solution. The H^s -Sobolev norm of $u \in X$ with Fourier coefficients a_k satisfies

$$||u||_{H^s}^2 = \sum_{k \in \mathbb{Z}} (1+|k|^2)^s |a_k|^2 \le \sum_{k \in \mathbb{Z}} \frac{(1+|k|^2)^s}{(1+|k|)^2}$$

The series on the right converges if 2-2s > 1 or s < 1/2. It follows that X is a bounded subset of $H^s(0, 2\pi)$ for 0 < s < 1/2, and the Rellich theorem implies that X is a precompact subset of $L^2(0, 2\pi)$. Furthermore, if $u_n \to u$ as $n \to \infty$ in $L^2(0, 2\pi)$ and $u_n \in X$, then by the continuity of the inner product,

$$|a_k| = \frac{1}{2\pi} \left| \int_0^{2\pi} u(x) e^{-ikx} \, dx \right| = \lim_{n \to \infty} \frac{1}{2\pi} \left| \int_0^{2\pi} u_n(x) e^{-ikx} \, dx \right| \le \frac{1}{1+|k|},$$

so $u \in X$, and X is closed, which proves that X is compact.

Remark. For completeness, we prove the version of Rellich's theorem used here. (It wouldn't be necessary to do this in an exam!)

If s > 1/2, then H^s -functions are Hölder continuous, and the result follows directly from Sobolev embedding and the Arzelà-Ascoli theorem: bounded sets in H^s are bounded in $C^{0,\alpha}$ with $\alpha = s - 1/2 > 0$; so they are bounded and equicontinuous and therefore precompact in $C([0, 2\pi])$; which implies that they are precompact in L^2 , since uniform convergence is stronger than L^2 -convergence.

This argument doesn't work directly if $0 < s \leq 1/2$, when H^s -functions needn't even be continuous, but we can fix it up. The idea is to approximate a bounded sequence of H^s -functions uniformly in L^2 by sequences of smooth functions (we simply truncate their Fourier series), apply the Arzelà-Ascoli theorem and a diagonal argument to show that there is a subsequence of the original sequence all of whose approximate subsequences converge uniformly, and conclude that the subsequence converges in L^2 . THEOREM 1. If s > 0, then $H^s(0, 2\pi)$ is compactly embedded in $L^2(0, 2\pi)$.

Proof. We need to show that a bounded sequence in H^s has a subsequence that converges strongly in L^2 . If

$$u(x) = \sum_{k \in \mathbb{Z}} a_k e^{ikx}, \qquad a_k = \frac{1}{2\pi} \int_0^{2\pi} u(x) e^{-ikx},$$

we use as norms

$$\|u\|_{L^2} = \left(\frac{1}{2\pi} \int_0^{2\pi} |u|^2 \, dx\right)^{1/2} = \left(\sum_{k \in \mathbb{Z}} |a_k|^2\right)^{1/2},$$
$$\|u\|_{H^s} = \left(\sum_{k \in \mathbb{Z}} (1+k^2)^s |a_k|^2\right)^{1/2}.$$

For $N \in \mathbb{N}$, we denote the orthogonal projection $u^N \in C^{\infty}([0, 2\pi])$ of $u \in L^2(0, 2\pi)$ onto the space of trigonometric polynomials of degree less than or equal to N by

$$u^N(x) = \sum_{|k| \le N} a_k e^{ikx}.$$

If $u \in H^s$, then

$$\|u - u^{N}\|_{L^{2}} = \left(\sum_{|k| > N} |a_{k}|^{2}\right)^{1/2}$$

$$\leq \frac{1}{(1 + N^{2})^{s/2}} \left(\sum_{|k| > N} (1 + k^{2})^{s} |a_{k}|^{2}\right)^{1/2} \qquad (1)$$

$$\leq \frac{\|u\|_{H^{s}}}{(1 + N^{2})^{s/2}}.$$

Now suppose that (u_n) is a bounded sequence in H^s with $||u_n||_{H^s} \leq R$ for all $n \in \mathbb{N}$. Denoting the Fourier coefficients of u_n by $a_{n,k}$, we have

$$|u_n^N(x)| \le \sum_{|k|\le N} |a_{n,k}| \le (1+2N)^{1/2} \left(\sum_{|k|\le N} |a_{n,k}|^2\right)^{1/2} \le C_N R,$$

where C_N is a generic constant depending on N, and

$$\begin{aligned} |u_n^N(x) - u_n^N(y)| &\leq \sum_{|k| \leq N} |a_{n,k}| \cdot |e^{ikx} - e^{iky}| \\ &\leq \sum_{|k| \leq N} |a_{n,k}| \cdot \sqrt{2} |kx - ky| \\ &\leq \sqrt{2} \left(\sum_{|k| \leq N} k^2 \right)^{1/2} \left(\sum_{|k| \leq N} |a_{n,k}|^2 \right)^{1/2} |x - y| \\ &\leq C_N R |x - y|. \end{aligned}$$

It follows that $\{u_n^N : n \in \mathbb{N}\}$ is a bounded, equicontinuous subset of $C([0, 2\pi])$ for every $N \in \mathbb{N}$, so it is precompact by the Arzelà-Ascoli theorem.

Using a diagonal argument, we can extract a subsequence (u_{n_j}) of the original sequence (u_n) such that $(u_{n_j}^N)_{j=1}^{\infty}$ converges uniformly as $j \to \infty$ for every $N \in \mathbb{N}$. To do this, choose a subsequence (u_{n_j}) of (u_n) so that $(u_{n_j}^1)$ converges uniformly, then choose a subsequence $(u_{n_j}^2)$ of $(u_{n_j}^1)$ so that $(u_{n_j}^2)$ converges uniformly, and so on to get successive subsequences $(u_{n_j}^N)$ such that $(u_{n_j}^M)$ converges uniformly as $j \to \infty$ for every $1 \le M \le N$, and define $u_{n_j} = u_{n_i}^j$.

Using (1) and the inequality $||u||_{L^2} \leq \sqrt{2\pi} ||u||_{L^{\infty}}$, we get that

$$\begin{aligned} \|u_{n_{i}} - u_{n_{j}}\|_{L^{2}} &\leq \|u_{n_{i}} - u_{n_{i}}^{N}\|_{L^{2}} + \|u_{n_{i}}^{N} - u_{n_{j}}^{N}\|_{L^{2}} + \|u_{n_{j}}^{N} - u_{n_{j}}\|_{L^{2}} \\ &\leq \frac{2R}{(1+N^{2})^{s/2}} + \sqrt{2\pi} \|u_{n_{i}}^{N} - u_{n_{j}}^{N}\|_{L^{\infty}}. \end{aligned}$$

Given $\epsilon > 0$, choose N sufficiently large that

$$\frac{2R}{(1+N^2)^{s/2}} < \frac{\epsilon}{2}.$$

Since $(u_{n_j}^N)$ converges uniformly, it is uniformly Cauchy, and there exists $J \in \mathbb{N}$ such that

$$\sqrt{2\pi} \|u_{n_i}^N - u_{n_j}^N\|_{L^{\infty}} < \frac{\epsilon}{2} \qquad \text{for all } i, j > J.$$

It follows that $||u_{n_i} - u_{n_j}||_{L^2} < \epsilon$ for all i, j > J, so the subsequence (u_{n_j}) is Cauchy in L^2 , and therefore it converges in L^2 .