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Abstract

We give a short proof of Scharlemann’s Strong Haken Theorem for closed 3-manifolds
(and manifolds with spherical boundary). As an application, we also show that given
a decomposing sphere R for a 3-manifold M that splits off an S2 × S1 summand, any
Heegaard splitting of M restricts to the standard Heegaard splitting on the summand.

1 Introduction

Any (closed, oriented, connected) three-dimensional manifold M admits a Heegaard split-
ting, that is, it can be decomposed into two three-dimensional handlebodies V, V ′ of the
same genus g along an embedded surface S ⊂ M :

M = V ∪S V ′.

In theory, all information about the three-manifold is encoded in the identification of the
two handlebodies. However, in practice, interpreting topological properties of M using a
Heegaard splitting is often nontrivial.

A basic example of this occurs when studying spheres in M . If α ⊂ S is a curve which
bounds disks D,D′ in both V and V ′, then gluing these disks yields a 2–sphere D∪D′ ⊂ M
which intersects S in the single curve α. When essential, such a sphere is called a Haken
sphere – but a priori it is completely unclear what kind of spheres in M are of this form.

A classical theorem of Haken [5] shows that if M admits any essential sphere σ, then it
also admits a Haken sphere σ′. In fact, Scharlemann [16] recently proved a Strong Haken
Theorem, showing that σ′ can in fact be chosen to be isotopic to σ:

Theorem 1.1. (Strong Haken Theorem) Let M = V ∪S V ′ be a Heegaard splitting. Every
essential 2-sphere in M is isotopic to a Haken sphere for M = V ∪S V ′.

The purpose of this article is to give an independent, short proof of Theorem 1.1 for
any M which is closed or has spherical boundary. We want to mention that Scharlemann’s
version of the strong Haken theorem is in fact more general, allowing for manifolds with
arbitrary boundary, and also showing that any properly embedded disk is isotopic to a
Haken disk. This more general case could also be obtained from our methods; for clarity
we focus on the closed case throughout the article.

To prove Theorem 1.1, we make crucial use of the (surviving) sphere complex, which is
a combinatorial complex encoding the intersection pattern of essential (surviving) spheres
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in M . Such complexes have already been used successfully in the study of outer auto-
morphism groups of free groups (via mapping class groups of connected sums of S2 × S1).
Here, we show that this perspective can also be useful in streamlining arguments in low-
dimensional topology. The other crucial ingredient is the classical Waldhausen theorem on
Heegaard splittings of the three-sphere [19]. Together, these allow an inductive approach
to Theorem 1.1.

Our methods and results also allow to control Heegaard splittings of reducible manifolds.
As a motivating example, we prove:

Proposition 1.2. Every Heegaard splitting of Wn = n(S2×S1) is isotopic to a stabilization
of the standard Heegaard splitting.

Combining the uniqueness for W1 with the Strong Haken Theorem, we obtain the fol-
lowing structural result on Heegaard splittings of arbitrary reducible three-manifolds.

Corollary 1.3. Given a reducible 3-manifold M with a Heegaard splitting M = V ∪S V ′,
any decomposing sphere that splits off a S2 × S1 summand can be isotoped so that S is
standard in this summand.

Acknowledgements We would like to thank Martin Scharlemann for finding a mistake
in an earlier draft, and many helpful comments.

2 Heegaard Splittings of Closed 3–Manifolds

In this section we recall some preliminaries on closed three-manifolds, their Heegaard split-
tings, and spheres in such manifolds. The results presented here are classical.

2.1 Heegaard Splittings

Definition 2.1. (Heegaard splitting) A handlebody is a 3-manifold that is homeomorphic
to a regular neighborhood of a graph in S3. A Heegaard splitting of a 3-manifold M is a
decomposition M = V ∪S V ′, where V, V ′ are handlebodies and S = ∂V = ∂V ′ = V ∩ V ′.

The surface S is called the splitting surface or Heegaard surface. Heegaard splittings
are considered equivalent if their splitting surfaces are isotopic.

Remark 2.2. The Heegaard splitting M = V ∪S V ′ is completely specified by the pair
(M,S), so we will sometimes write (M,S) instead of M = V ∪S V ′.

Remark 2.3. The connected sum of two 3-manifolds M1,M2 with Heegaard splittings
(M1, S1), (M2, S2) inherits a Heegaard splitting (M1#M2, S1#S2). This Heegaard split-
ting is unique in the sense that it is completely determined by the construction. Later,
we will briefly consider a refined notion of equivalence for Heegaard splittings where we
distinguish between the two sides of the splitting surface. With respect to this refined notion
of equivalence, the Heegaard splitting of a connected sum is then not (a priori) unique, as
the construction allows two different choices, namely which side of S1 is identified to which
side of S2.
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Definition 2.4. Given a Heegaard splitting (M,S), the Heegaard splitting obtained from
the pairwise connected sum (M,S)#(S3, T ), where T is the standard unknotted torus in S3,
is called a stabilization of (M,S). A Heegaard splitting is stabilized if it is the stabilization
of another Heegaard splitting and unstabilized otherwise.

A sphere that separates (M,S)#(S3, T ), i.e., a sphere that splits off a punctured 3-ball
containing an unknotted punctured torus, is called a stabilizing sphere.

A stabilizing pair of disks is a pair (D,D′) of disks such that D is properly embedded
in V , D′ is properly embedded in V ′ and ∂D ∩ ∂D′ is exactly one point.

Remark 2.5. A Heegaard splitting is stabilized if and only if it admits a stabilizing pair
of disks. Indeed, consider the standard unknotted torus in the 3-sphere and observe that it
separates S3 into two solid tori. The boundaries of the meridian disks of these solid tori
intersect in exactly one point.

A crucial theorem of Waldhausen’s characterises all Heegaard splittings of the three-
sphere. See [19].

Theorem 2.6 (Waldhausen’s Theorem). Every Heegaard splitting of the three-sphere is a
stabilization of the unique standard genus 0 Heegaard splitting.

2.2 Sphere Complexes

A core tool in our argument is the following simplicial complex, which encodes the inter-
section patterns of spheres in M .

Definition 2.7 (Sphere complex). A sphere S in a 3-manifold is compressible if it bounds
a 3-ball. Otherwise, it is incompressible. We say that a sphere is peripheral if it is isotopic
into the boundary of the manifold.

The sphere complex of a 3-manifold M is the simplicial complex S(M) determined by
the following three conditions:

1. Vertices of S(M) correspond to isotopy classes of incompressible, non-peripheral em-
bedded 2-spheres;

2. Edges of S(M) correspond to pairs of vertices with disjoint representatives;

3. The complex S(M) is flag.

It is not hard to see that a simplex in the sphere complex corresponds to a collection of
nonisotopic spheres that can be realised disjointly. Compare Figure 1 for an example of a
simplex.

Furthermore, a standard argument involving surgery at innermost intersection circles
shows that the sphere complex of any closed 3–manifold is connected (if it is nonempty).
See e.g., [6] for a proof in the case of doubled handlebodies, which also works in general.

2.3 Haken Spheres

Our central aim will be to understand how essential spheres in M interact with Heegaard
splittings of M . The following notion is crucial.
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Figure 1: A 3-simplex in the sphere complex of W4, the double of a genus 4 handlebody
(alternatively, the connected sum of 4 copies of S2×S1). Here, only one of the handlebodies
is pictured; the spheres comprising the simplex intersect it in the pictured disks.

Definition 2.8. Let M = V ∪S V ′ be a Heegaard splitting. An essential sphere in M that
meets the Heegaard surface S in a single simple closed curve is called a Haken sphere. A
(not necessarily essential) sphere that intersects S in a single simple closed curve essential
in S is called a reducing sphere.

The following theorem was originally proved by Haken in [5]. Proofs can be found in
the standard references on 3-manifolds, see [7], [8], [18].

Theorem 2.9 (Haken’s Lemma). If a closed three-manifold M contains an essential sphere
and M = V ∪S V ′ is a Heegaard splitting, then M admits a Haken sphere.

In general, the Haken sphere is obtained by modifying the given essential sphere by
surgery, and so cannot be guaranteed to be related to the sphere given at the outset.

3 Three-manifolds with spherical boundary

In this section, we present versions of the results and notions of the previous section for
3-manifolds with spherical boundary. These appear naturally in our inductive proof of the
Strong Haken Theorem (even if one is just interested in proving it in the closed case). For
ease of notation, if M is a 3-manifold with spherical boundary, then we call each component
of ∂M a puncture. Similarly, we call such a manifold a punctured manifold.

3.1 Heegaard Splittings

To define Heegaard splittings of punctured manifolds, we use spotted handlebodies.

Definition 3.1. A spotted handlebody is a handlebody with a specified set of disks D1t· · ·t
Dk in its boundary. Each disk is called a spot. A Heegaard splitting of a 3-manifold M with
spherical boundary is a decomposition M = V ∪S V ′ where V, V ′ are spotted handlebodies
with spots D1 t · · · tDk and D′

1 t · · · tD′
k, respectively, and S = ∂V − (D1 t · · · tDk) =

∂V ′ − (D′
1 t · · · tD′

k).
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Remark 3.2. In a Heegaard splitting of a 3-manifold with spherical boundary each puncture
meets the splitting surface in a single simple closed curve. This simple closed curve is the
boundary of a spot on each of the handlebodies.

Suppose M1,M2 are two punctured manifolds, with boundary components ∂i ⊂ Mi, and
M = M1 ∪∂1=∂2 M2 is the manifold obtained by gluing the boundary components. Given
Heegaard splittings of M1,M2, the manifold M inherits a Heegaard splitting which is obtained
by gluing the handlebodies at the corresponding spots.

The glued boundary components yield an essential 2–sphere σ in M , which intersects the
induced Heegaard splitting in a single circle (i.e., it becomes a Haken sphere). Conversely,
given a Haken sphere σ for any manifold M , one can cut the manifold and the splitting at
σ.

We need a version of Waldhausen’s Theorem in the context of punctured 3-spheres
(which is a fairly straightforward consequence of Waldhausen’s theorem for S3).

Theorem 3.3 (Waldhausen’s Theorem for punctured 3-spheres). Every Heegaard splitting
of a punctured 3-sphere is a stabilization of a unique standard genus 0 Heegaard splitting.

Proof. Let M be a punctured 3-sphere and M = V ∪S V ′ a Heegaard splitting. Construct
M̂ = S3 from M by attaching a 3-ball to each puncture. By Alexander’s Theorem, the
result does not depend on the attaching map. Moreover, the attaching maps can be chosen
so that a meridional disk of each 3-ball caps off a component of ∂S. We thus obtain a closed
surface Ŝ that defines a Heegaard splitting S3 = V̂ ∪Ŝ V̂ ′.

Each 3-ball that has been attached to a puncture is a regular neighborhood of a point
and, as such, arbitrarily small. By Waldhausen’s Theorem, S3 = V̂ ∪Ŝ V̂ ′ is a stabilization
of the standard genus 0 Heegaard splitting of S3. The stabilizing pairs of disks can be
chosen to be disjoint from the attached 3-balls. Thus, after destabilizing, if necessary, we
may assume that S is genus 0.

Hence, to prove the theorem, it suffices to show that any genus 0 splitting of a punctured
S3 is standard. To this end, observe that the spotted genus 0 handlebody V ⊂ S3 can be
isotoped to be a regular neighbourhood of a graph Γ ⊂ V . The graph Γ can be chosen to
have the following form: it has one vertex v0 in the interior of M , and one vertex on each
boundary component. Each vertex on a boundary component is joined to v0 by an edge.
Now, observe that any two such graphs are isotopic, as any two arcs from v0 to a boundary
sphere are isotopic, by the Lightbulb Trick. This shows that any two genus 0 splittings of
a punctured S3 are isotopic.

At this point, we briefly want to address the ambiguity appearing in the previous proof
when filling the boundary and drilling it out again – namely, one can isotope a pair of sta-
bilizing disks across a puncture. This leads to a homeomorphism of the manifold preserving
the Heegaard surface. Given a Heegaard splitting of a 3-manifold, the Goeritz group of
the splitting is the group of isotopy classes of orientation preserving diffeomorphisms of the
manifold that preserve the splitting. Loosely speaking, the Goeritz group will be small if
the surface automorphism that defines the Heegaard splitting is complicated relative to the
handlebodies. Conversely, the Goeritz group will be as large as possible in the case of Wn,
the manifold for which this surface automorphism is the identity, and the Goeritz group is
equal to the handlebody group. Scharlemann finds a system of 4g + 1 generators for the
Goeritz group of a handlebody (see [15]). On the other hand, the Goeritz group of the
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three-sphere is still largely mysterious. We refer the interested reader to the recent [17] and
the references therein.

3.2 Sphere Complexes

We now want to define a useful sphere complex for punctured manifolds. One obvious
change is that for the vertices one should also exclude peripheral spheres, i.e., spheres
which are homotopic into the boundary (otherwise, such spheres are adjacent to any other
vertex, rendering the resulting complex useless). However, even with this modification, the
resulting sphere complex will be somewhat problematic for our purposes, as it may often
be disconnected. Namely, suppose that M0 is an aspherical three-manifold with infinite
fundamental group. Let M be the manifold obtained from M0 by removing two open balls.
The manifold M admits many essential non peripheral spheres obtained by joining the two
punctures by a nontrivial tube. In fact, by asphericity of M0, any essential non peripheral
sphere in M is of this form. In particular, no two such are disjoint.

To sidestep this issue, we use the following variant of the sphere complex.

Definition 3.4 (Surviving Sphere complex). A sphere S in a punctured 3-manifold is
almost peripheral if it bounds a punctured S3 in M . If S is not almost peripheral, then it
is surviving.

The surviving sphere complex of a 3-manifold M is the simplicial complex Ss(M)
determined by the following three conditions:

1. Vertices of Ss(M) correspond to isotopy classes of incompressible, embedded, surviving
2-spheres;

2. Edges of Ss(M) correspond to pairs of vertices with disjoint representatives;

3. The complex Ss(M) is flag.

The terminology stems from the fact that the spheres “survive filling in the punctures”
and is in analogy to the surviving curve complex used in the study of mapping class groups
of surfaces, see e.g., [1, 4]. It turns out that these complexes are much better behaved in
our setting.

Lemma 3.5. Let M be a 3–manifold. Then the surviving sphere complex Ss(M) is connected
(if it is nonempty).

Proof. Let σ, σ′ be two incompressible, embedded, surviving 2-spheres in M . Up to isotopy,
we may assume that σ, σ′ intersect transversely. Further, we may assume that up to isotopy,
the number of intersection components σ ∩ σ′ is minimal.

Let C ⊂ σ ∩ σ′ be an innermost intersection circle, i.e., suppose that it bounds a disk
D ⊂ σ with D ∩ σ′ = ∂D = C. Denote by S+, S− ⊂ σ′ the two disks bounded by C, and
denote by σ± = S± ∪D the two 2–spheres obtained by disk-swapping. Observe that up to
isotopy, both of these are disjoint from σ′, and intersect σ in at least one fewer circle than
σ′. If either σ+, σ− were compressible, then we could reduce the number of components in
σ ∩ σ′ by sliding σ over the ball bounded by the compressible sphere, which is impossible
by our choice.
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Figure 2: In the proof of Lemma 3.5: the innermost intersection circle of σ, σ′ cuts σ′ into
two disks S+, S−. If σ− is almost peripheral, then σ+ is isotopic to σ after filling the
punctures.

.

Assume that σ− is almost peripheral. Then, after filling in the punctures of M , the
spheres σ and σ+ are isotopic (by sliding D over the now unpunctured ball bounded by σ−;
compare Figure 2). In particular, σ+ is surviving, as the same is true for σ.

Hence, at least one of σ± is surviving, and we are done. Indeed, repeating this process
produces a sequence of spheres corresponding to vertices in a path, in Ss(M), between [σ]
and [σ′].

3.3 Haken Spheres

Just as in the closed case, we call an essential sphere which intersects a Heegaard splitting
of a punctured manifold in a single curve a Haken sphere. For punctured manifolds, almost
peripheral and surviving Haken spheres behave slightly differently.

On the one hand, using the same strategy as in the proof of Theorem 3.3, we obtain
the following corollary of Theorem 2.9.

Theorem 3.6 (Surviving Haken’s Lemma). If M contains a surviving sphere and M =
V ∪S V ′ is a Heegaard splitting, then there is a surviving Haken sphere.

Proof. Denote by σ an essential surviving sphere in M . Let M ′ be the three-manifold
obtained from M by gluing a ball to each boundary component. Denote by B ⊂ M ′ the
disjoint union of the resulting balls. By definition of almost peripheral, the image of σ in
M ′ is still essential. Thus, Haken’s lemma (Theorem 2.9) applies, and yields a Haken sphere
σ′ ⊂ M ′. By an isotopy preserving the Heegaard surface, we may assume that σ′ is disjoint
from B. We can thus interpret σ′ as a sphere in M ⊂ M ′, where it is the desired Haken
sphere.

On the other hand, almost peripheral spheres are also Haken spheres:

Lemma 3.7 (Almost Peripheral Strong Haken Theorem). Let M be a three-manifold with
at least two punctures, and M = V ∪SV

′ be a Heegaard splitting. Then any almost peripheral
sphere σ in M is isotopic to a Haken sphere.

Proof. We begin with the case where σ cuts off exactly two punctures δ1, δ2. The almost
peripheral sphere σ is then isotopic to the boundary of a regular neighbourhood of δ1∪α∪δ2,
where α ⊂ M is a properly embedded arc. We may homotope α to lie in S, as any arc in a
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Figure 3: Removing self-intersections of an arc joining two spots.
.

handlebody is homotopic into the boundary. However, the arc may now not be embedded
anymore. We can remove the self-intersections by “popping subarcs over δ1 ∩ S”. To be
more precise, parametrise α : [0, 1] → S so that it starts on δ1∩S, and homotope so that all
self-intersections are transverse. Consider the first self-intersection point α(t) = α(s), t < s.
In particular, this implies that α|[0,t] is an embedded arc.

Now homotope a small subarc α|[s−ε,s+ε] to instead be the arc obtained by following
α|[0,t] backwards to δ1 ∩ S, following around δ1 ∩ S, and returning along α|[0,t] (compare
Figure 3). This homotopy is possible in V , and the resulting arc has at least one fewer
self-intersection.

After a finite number of modifications of this type, the boundary of a regular neigh-
bourhood of δ1 ∪ α ∪ δ2 (which is homotopic to σ) interects S in a single curve, and thus is
a Haken sphere. By a theorem of Laudenbach, see [9], homotopy and isotopy are the same
for spheres in 3–manifolds, hence the claim follows1.

Now we suppose σ is a sphere cutting off k > 2 punctures. Then there is a sphere σ′,
disjoint from σ, which cuts off 2 punctures, and which is contained in the punctured S3

bounded by σ. By the initial case, σ′ may be assumed to be Haken. Let M ′ be the manifold
obtained by cutting M at σ′, with the induced Heegaard splitting; observe that σ ⊂ M ′ is
still almost peripheral, but now cuts off at most k − 1 spheres. By induction, σ is a Haken
sphere.

Since any essential, non peripheral sphere in a punctured S3 is almost peripheral, this
implies the following:

Corollary 3.8 (Strong Haken Theorem for punctured 3–spheres). Any essential sphere in
a punctured 3-sphere is isotopic to a Haken sphere.

4 Heegaard splittings of n(S1 × S2)

In this section, we study Heegaard splittings of a specific manifold, namely

Definition 4.1. We denote the double of the genus n handlebody by Wn. It is the connected
sum of n copies of S2 × S1.

1One could also avoid citing this theorem by isotoping α into a regular neighbourhood of S and resolving
crossings of the projection to S by isotopies which slide strands over the puncture similar to Figure 3.

8



A reader only interested in the strong Haken Theorem may safely skip ahead to the
next section. Our goal here will be to prove that, similar to Waldhausen’s Theorem for the
three-sphere, all Heegaard splittings of Wn are “standard” in the following sense.

Definition 4.2. A Heegaard splitting of Wn is standard if it is the double of a genus n
handlebody. A standard Heegaard splitting of Wn is a Heegaard splitting that is the connected
sum of n copies of W1 with the standard Heegaard splitting.

Waldhausen seems to claim in [19] that all Heegaard splittings of Wn are standard
(although it is not entirely clear up to which equivalence relation, and the proof sketch is
incomplete). In the unpublished preprint [12], Oertel and Navarro Carvalho prove the result,
using results on the homeomorphism groups of handlebodies and Wn (in a very similar way
to the argument we will use below). In this section, we show that these techniques could
also be used to prove a Strong Haken Theorem (and obtain the uniqueness of splittings
as a corollary). We want to emphasize that this of course follows from the general Strong
Haken Theorem (Theorem 1.1), but consider the argument using homeomorphisms of Wn

interesting enough to warrant this alternate proof.

Proposition 4.3. Every unstabilized Heegaard splitting of W1 is standard.

Proof. Suppose that W1 = V ∪S V ′ is a Heegaard splitting. We wish to show that W1 =
V ∪S V ′ is standard. Since W1 is reducible, Haken’s lemma tells us that there is a Haken
sphere R for W1 = V ∪S V ′. Denote V ∩R by D and V ′ ∩R by D′. Note that all essential
spheres in W1, in particular R, are isotopic to S2 × (point).

We may assume that S intersects a bicollar of R in an annulus (S ∩ R) × [−1, 1].
Removing this bicollar leaves a copy of S2 × [−1, 1], i.e., a twice punctured 3-sphere that
inherits a Heegaard splitting. By Theorem 3.3, this Heegaard splitting is either of genus 0
or stabilized.

Since W1 = V ∪S V
′ is unstabilized, the Heegaard splitting obtained on the complement

of S2 × [−1, 1] must be of genus 0. Specifically, the splitting surface is a twice punctured
2-sphere, i.e., an annulus. Hence we can reconstruct W1 = V ∪S V ′: Indeed, say, V , is
composed of a 3-ball attached to the two copies D × {±1} of D. It follows that V is a
solid torus. The same is true of V ′ and hence W1 = V ∪S V ′ is the standard Heegaard
splitting.

First, we have the following classical result due to Griffiths [3].

Theorem 4.4. The action of the mapping class group of a handlebody Vn on its fundamental
group π1(Vn) = Fn induces a surjection

Mcg(Vn) → Out(Fn) → 1.

We remark that the kernel of this map is quite complicated, and generated by twists
about disk-bounding curves [11]. Next, we need a theorem of François Laudenbach [9] (see
also [10] and [2] for a modern proof):

Theorem 4.5. The action of the mapping class group of a doubled handlebody Wn on its
fundamental group π1(Wn) = Fn induces a short exact sequence

1 → K → Mcg(Wn) → Out(Fn) → 1.

The kernel K is finite, generated by Dehn twists about non-separating spheres, and acts
trivially on the isotopy class of every embedded sphere or loop.
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Corollary 4.6. For the standard Heegaard splitting of Wn, every essential sphere in Wn is
isotopic to a Haken sphere.

Proof. First observe that any two nonseparating spheres in Wn can be mapped to each
other by a homeomorphism. Namely, the complement of such a sphere is homeomorphic
to Wn−1 with two punctures. Similarly, separating spheres can be mapped to each other if
and only if the fundamental groups of the complements are free groups of the same rank
(as the complement is a disjoint union of once-punctured Wk and Wn−k).

Next, observe that there are Haken spheres of all such possible types, obtained by
doubling a suitable disk in the handlebody.

Let i : Vn → Wn be the inclusion induced by doubling. Observe that on the one
hand, the boundary of Vn maps under i to the standard Heegaard splitting of Wn, and
on the other hand i induces an isomorphism i∗ of fundamental groups. For any outer
automorphism ϕ ∈ Out(π1(Vn)) of the fundamental group of Vn, by Theorem 4.4, there is
a homeomorphism f : Vn → Vn inducing it. Let F : Wn → Wn be the homeomorphism of
Wn obtained by doubling f . Observe that F preserves the standard Heegaard splitting of
Wn by construction, and F induces ϕ via the isomorphism i∗ : π1(Vn) → π1(Wn). Since ϕ
was arbitrary, this shows that any outer automorphism of π1(Wn) can in fact be realised
by a homeomorphism of Wn preserving the standard Heegaard splitting.

Together with Laudenbach’s Theorem 4.5 this shows that any sphere is isotopic to
the image of a Haken sphere under a homeomorphism preserving the standard Heegaard
splitting – hence, it is isotopic to a Haken sphere.

Lemma 4.7. There is a unique Heegaard splitting of Wn of genus n.

Proof. Connected sum decompositions of Wn are not unique. However, let Wn = V ∪S V ′

be the standard Heegaard splitting and let Wn = X ∪Y X ′ be any Heegaard splitting of
genus n. By repeated application of Theorem 2.9 there are Haken spheres R1 ∪ · · · ∪Rn−1

for Wn that cut Wn = X ∪Y X ′ into standard Heegaard splittings of W1. By Corollary
4.6, R1, . . . , Rn−1 are also Haken spheres for Wn = V ∪S V ′. By an Euler characteristic
argument, these cut Wn = V ∪S V ′ into genus 1 Heegaard splittings of the summands. By
Proposition 4.3 these are standard. In particular, Y is isotopic to S.

Proof of Proposition 1.2. For an unstabilized Heegaard splitting, this is Lemma 4.7. Fur-
thermore, if n = 1, then this follows from Proposition 4.3. So suppose that n > 1 and
Wn = V ∪S V ′ is stabilized. By Corollary 4.6, there is a Haken sphere R that decomposes
Wn into W1#Wn−1. Moreover, by [13], one of the Heegaard splittings inherited by the
summands is stabilized. By induction, Wn = V ∪S V ′ is a stabilization of a connected sum
of standard Heegaard splittings, i.e., a stabilization of the standard Heegaard splitting of
Wn.

5 Strong Haken Theorem

Combining the uniqueness of Heegaard splittings for Wn (Proposition 1.2) with Corollary 4.6
yields a Strong Haken Theorem for Wn: any sphere in Wn is isotopic to a Haken sphere.
This statement was recently proved by Scharlemann [16] for all three-manifolds. In this
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section, we provide a short independent proof of this theorem for closed manifolds and
manifold with spherical boundary.

The following proof proceeds by two nested inductions. It naturally involves 3-manifolds
with spherical boundary, even if we just want to prove the theorem in the closed case.
Recall that for such 3-manifolds, we decree that each boundary sphere (puncture) meets
the splitting surface in a single simple closed curve.

Proof of Theorem 1.1. We prove the theorem by considering all punctured 3-manifolds and
all Heegaard splittings, ordered according to a suitable complexity. Namely, if M = V ∪S V

′

is a Heegaard splitting, we define the complexity as the pair (g(S), n(S)) of genus and number
of spots of the handlebodies (ordered lexicographically). We perform a nested induction on
the genus g and the number of boundary components n. The argument for the inductive
step is in fact the same in both cases, and so we describe both inductions simultaneously.

Induction Start g = 0, n ≥ 0 Observe that the only punctured 3–manifold that can be
obtained from a Heegaard splitting of genus 0 is the three-sphere. Thus, the Strong Haken
Theorem in this case is simply Corollary 3.8.

Induction Steps Now suppose that the Strong Haken Theorem is known for all manifolds
of complexity at most (g, n), and suppose that M is a manifold of complexity (g, n+1), or
suppose that the Strong Haken Theorem is known for all manifolds of complexity (g, k), k ≥
0, and M is a manifold of complexity (g + 1, k).

First observe that, by Lemma 3.7 any almost peripheral sphere in M is isotopic to a
Haken sphere. We thus have to show that surviving spheres in M are also isotopic to Haken
spheres. We now make the following

Claim 5.1. Suppose that R is a surviving Haken sphere in M , and suppose that R′ is a
surviving sphere disjoint from R, and not isotopic to R. Then R′ is isotopic to a Haken
sphere.

Proof of Claim. Denote by M − R the punctured 3–manifold obtained by cutting at R.
M − R has two punctures more than M , corresponding to the two sides of R. M − R has
one or two components, depending on whether R is separating or not.

Let M ′ be the component of M − R containing R′. This manifold inherits a Heegaard
splitting from V ∪S V ′ with splitting surface a component of S′ = S − (R ∩ S). If R ∩ S is
nonseparating, then g(S′) < g(S). If R∩S is separating, then either the genus or the number
of boundary components is smaller for S′. In either case, (g(S′), n(S′)) < (g(S), n(S))
lexicographically.

The sphere R′ defines an essential sphere in M ′: if it would bound a ball in M ′, the
same would be true in M (violating incompressibility of R′ in M), and if it were isotopic
to a boundary component of M ′, then R′ would be peripheral in M or isotopic to R (both
of which we exclude).

Now, if R′ is almost peripheral in M ′, then by Theorem 3.6 it is isotopic to a Haken
sphere in M ′. Otherwise, since the complexity of the splitting of M ′ is smaller than the
original one, we can use the inductive hypothesis on M ′ to conclude that R′ is isotopic to a
Haken sphere in M ′. Interpreting M ′ as a submanifold of M , and using that the Heegaard
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splitting of M ′ is inherited from M , this shows that R′ is isotopic to a Haken sphere in M
as well. //

Now, if M contains any surviving spheres, then the Surviving Haken Lemma (Theo-
rem 3.6) implies that there is a surviving Haken sphere σ0. Connectivity of the surviving
sphere complex (Lemma 3.5), together with the Claim then inductively implies that any
surviving sphere is isotopic to a Haken sphere. This finishes the proof of the inductive
steps.
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