VALUE DISTRIBUTION OF L'(p)

JUNXIAN LI AND ALEXANDRU ZAHARESCU

ABSTRACT. Let L be an automorphic L-function. Assuming the Riemann Hypothesis
for L(s) and the Selberg normality conjecture, we obtain a lower bound for the second
negative moment and extreme small values of L'(p), where p is a zero of L(s).

1. INTRODUCTION

We first introduce a class 8§ which consists of L-functions with the following proper-
ties.

(1) Dirichlet series representation: For $(s) > 1, L(s) can be represented as an abso-

lutely convergent Dirichlet series L(s) = 3, 4%

n ns °

(2) Analytic continuation: There exists a non-negative integer m such that

(s = 1)™L(s) (1)
is an entire function of finite order.
(3) Functional equation: L(s) satisfies the functional equation
EL(S) = wLEL(l - .§) = wLEZ(l — S),

where

s
En(s) = L(s)Q° [[T(\js + 1) = L(5)Q*u(s), L(s) = L(3), (2)

J=1

and the parameters f > 0,0 > 0,A; > 0 are real numbers and p;, w;, are complex
numbers satisfying u; > 0, |w| = 1.

(4) Euler product: For R(s) sufficiently large, L(s) has the Euler product representa-
tion

1(5) = [T Lo(s), Ly(s) = exp (Z M) , 3)

ks
k=1 p

where b(p*) are some coefficients satisfying b(p*) < p*?z, for some constant 6 <
1/2.
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(5) The degree of L(s) is defined as dj, = 22;;1 A; and the arithmetic conductor of

L(s) is defined as q;, = (27)%Q? H;c:l A?’\j. Define the analytic conductor as

/
Cr(s) = qr [ J(Is + ] +3)*, (4)
j=1
where p1; and @) are defined in ({2).

If one further assumes the Ramanujan conjecture, which says that a, <. n® for any
fixed € > 0, then this class of L-functions is known as the Selberg class. The Riemann
zeta function, Dirichlet L-functions, the Dedekind zeta function of a number field,
and L-functions associated to holomorphic cusp forms are all examples of functions in
the Selberg class. However, there are also many examples of L-functions where the
Ramanujan conjecture is not known. Thus the above class 8§ contains a larger class of
L-functions, such as automorphic L-functions of GL(m). We are interested in studying
the value distribution of L'(p) for a given L € §. We establish a lower bound for the
negative moment of L'(p) for L € § under the stronger form of Selberg’s normality
conjecture.

Theorem 1.1 Assume L € 8 and L satisfies the Selberg normality conjecture

ZWZMOWJFO(U. (5)

p<z
If L(s) has no zeros on R(s) > 3, then
1
Z ——— > T(logT)" !,
2
<5t ()]

where the implied constant depends on L and can be computed explicitly.

In the case of L = ((s), this is a result of Gonek [2], The constant has been made
explicit by Milinovich and Ng [7]. Theorem (|1.1]) shows that L'(p) can be as small as
(log |Sp|) "+t In fact, one can prove a stronger result.

Theorem 1.2 Assume L € § and L satisfies the Selberg normality conjecture

> la)]® = (x+o(1))

p<z

(6)

logx

If L(s) has no zeros on R(s) > 1, then there are infinitely many zeros p of L(s) such
that
log T
. /
puin |L'(p)] < exp ( (VE + 0(1))10g logT> .
If L = (k(s), where K/Q is a Galois extension of degree ng, then from [8, Lemma

5.2], we have
T

> lap)]® = (no + o(1))

p<w

Thus, as a corollary of Theorem [I.2] we have

loga’
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Corollary 1.3 Let K/Q be a Galois extension of degree ng and let (x(s) be the
Dedekind zeta function of K. If all nontrivial zeros of (i (s) are on the line R(s) = 1

27
then
_ , [ no log T
TS%lfl)ISl2T|<K(p>| < exXp ( \/ log log T) ’
. | nolog T
T<Sp<oT ‘Res Ok (8>|S:p‘ > e ( loglog T) |

where p = % + iy is a zero of (i (s) and c is some positive constant.

If K is an abelian extension of Q, then all zeros of (x(s) are conjectured to be
simple, in which case (% (p) cannot be zero. If K is a cyclotomic field K = Q((,),
then (x(s) = Hx L(s, x), where x runs through all Dirichlet characters modulo ¢q. The
conjecture on simplicity of the zeros of (x(s) is a consequence of the Linear Indepen-
dence conjecture (LI), or the Grand Simplicity Hypothesis (GSH), which says that non-
negative imaginary parts of the non-trivial zeros of Dirichlet L-functions corresponding
to primitive characters are linearly independent over the rationals (see Wintner [15],
Hooley [3], Montgomery [9], Rubinstein and Sarnak [I1]). If (). (p) # 0, it is natural
to ask how small |(}(p)| can be. When K = Q, Corollary recovers a result of Ng
[10] on small values of [('(p)|-

The conditions and @ are related to Selberg’s orthonormality conjecture.

Conjecture 1.4 (Selbergs orthonormality conjecture) Let L be in the Selberg class.
Then there exits some constant k depending on L such that

Z |a(§)|2 = rloglogz + O(1). (7)

p<w

For distinct primitive functions Ly, Ly in the Selberg class,

3 M —0(1). (®)

p<z

Here F € 8\{1} is said to be primitive if F' = F\Fy with Fy, Fy € 8§ implies F; =1 or
Fy,=1.

There are examples for which the Selberg normality conjecture is known. Let 7 be
an irreducible automorphic cuspidal representation of GL(m, A). Then for m < 4,
holds true. This is clear when m = 1, and when m = 2 it follows from known bounds
towards the Ramanujan conjecture [I12]. For m = 3, it was proved by Rudnick and
Sarnak [12], and for m = 4, it was proved by Kim and Sarnak [5]. Liu and Ye [6] have
obtained further results related to .

2. OVERVIEW OF THE PROOF

We follow the approaches in [7] and [10], which involve asymptotic formulas for
mollified moments of L'(p). Let X(s) = > .y, wan™ and Y(s) = > 1 ynn~° be
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Dirichlet polynomials. Consider

So=Y_ X(pY(1-p) (9)

L(p)=0
T1<Sp<T

Si= Y L)' X(pY(1-p), (10)

L(p)=0
T <Sp<T2

S= Y 5 X(1-p) (11)

T1<Sp<Th /(p)

where T} = T 4+ O(1) and Ty, = 2T + O(1) are chosen such that they are > @

away from ordinates of zeros of L(s). Then, we further adjust 7 and T3 such that
Ty =T+0(1), T, =2T +O(1) and L(o +4T;) > T; . This is possible by Proposition
(3.1)). If Y(s) = X(s), then we have

X(p)Y(1—p) =X (p)?

since we assume that R(p) = 2. We have

1 |55
Y e 2 e (12)
narer, 1 (0)1F S0
and
So
min |L/ < —. 13
i L) < (13

T <Sp<Ts

Then, Theorem and Theorem [1.2] follow by certain choices of z,,,y,. For Theorem
uwe chose x,, to mimic L(s)_l, and for Theoremwe chose z,, to be the "resonator”
coefficients, introduced by Soundararajan [13] to study extreme values of ((s) and other
L-functions.

The paper is organized as follows. In Section [3| we list some key propositions and
lemmas, among which one of them is proved in Section [/ In Section 4, we provide
asymptotic formulae for S; and Sy in Theorem [4.1] and Theorem [4.2] respectively. The
formula for Sy can be derived from Sj. In Section [5]and Section [6], we present the proof

of Theorem [1.1] and Theorem [1.2] respectively.

3. PRELIMINARIES
Proposition 3.1 Let L € 8. Each interval [T, T + 1] contains a value of t such that

logt

1
|L(0+it)|ZeXp<—A >, 53032.

loglogt

Proof. The proof follows as in the case of the Riemann zeta function. For completeness,
we provide a proof in Section [7] O
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Lemma 3.2 Let L € 8. Denote

Z ¢ , for R(s) > 1. (14)

n=1

Then, for any €, there exists z = z(€) such that
la™(n)] < nfrte
for all (n,z) =1, where 0;, is a constant less than 1. Also, for all primes p, we have
™! ()] < MM
Proof. From , we have

L(s) =[] Lols) ™ = [[exo (— 3 bg,jj) 7

p

thus

sl Y DT b
7“1! cee ’l“k! ’
ri+2ro4-+kry=k
Since |b(p*)| < p*’r, we have
a71<pk> < ekpkHL
for all p. For any e, there exists p, such that e¥ < p*¢ for all p > p.. Therefore, for
(7, I1,<,. p) = 1, we have [a~"(n)| < nf2+¢ by multiplicativity. O
Proposition 3.3 If n is squarefree, then a='(n) = p(n)a(n).
Proof. We have L(s)1(s) = 1, a(n) is multiplicative, a~*(n) is multiplicative, a(1) = 1
and
a(p)

a'(p)=— > alp)a'(p/d) = —a(p)a~'(1) = —— 7 = o),

d|p,d>1 )
since a(1)a™*(1) = 1. O
Lemma 3.4 Let L € 8. Then,

n
n=1
. Ar(n

L(2 ) <1,
n=1 n

Proof. From Lemma[3.2] for any e > 0, there exists z such that a~!(n) < n?*< for all
(n,z) = 1. By the multiplicativity of a=!(n), we have

z; ’a_ngn Hexp <1+Z ’a 2k ‘> Z W

plz
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From Lemma , we have |a=!(p*)| < eFp*L. Tt then follows that

— o' ()] P’
R

since 22792 > e. Thus,

o0

al(n

I RS
n

n=1

Since Ap(p*) = kb(p*) log p, and b(p*) < p*’r, we have

A koL ] 1
S YN e <

n=1 p k n

g

Lemma 3.5 (Convexity Bound) For any 0 < o0 <1 and any € > 0, there is a uniform
bound

L(o + it) <, tir=o)/2 e
where dy, is the degree of L.
Proof. See Theorem 6.8 in [14]. O

Lemma 3.6 (Mean value theorem for Dirichlet polynomials) Let {x,,}>° | be a sequence
of real or complex numbers. Let s = o + it be a complex variable and let

N
= Z T °
n=1
be a Dirichlet polynomial. Then, we have
T
| @l = 3 a7+ O(V))
0 n<N
Proof. This is Theorem 9.1 in [4]. O
Lemma 3.7 (Wirsing) Suppose f is a multiplicative function such that
(1) X<y f(P¥)logp = klogz + O(1),
(2) ¥e [ F(0)] < (log ),

where k > —2x is a constant. Then

Z f(n) = ¢s(logz)" + O ((log x)|“|_1) ,

n<x

where ¢y is a constant given by

Cf:ﬁg(1_%)H(1+f(p)+f(p2)+-“)'
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4. ASYMPTOTIC FORMULAE

Theorem 4.1 Let L € §. Suppose that the Riemann Hypothesis holds for L(s) and
almost all zeros of L(s) are simple. Let M =T% 0 < 1. Then, we have

T, —T; a ' (n) Ty Ynu
5 = LTy

2m e nu
where
81 :O< = M2+€+ME 2 || )
n n
xn n
ro(r (\— 2], o +1)
n il nlh 1
/2
O Inll (1 nl?
; | (VTR (z oo )
Proof. Consider the integral
1 c+iTs
Ip = — L(s)' X (s)Y (1 — s)ds,
210 Jeqiry

where ¢ = 2. If we move the contour left to the line ®(s) = 1 — ¢, then the residue
theorem yields Ir = S; — I, + Iy, where

1 1—c+iTs .
I, = — L(s)7 X (s)Y (1 — s)ds,
i | MO XY
1 c+iTy 1 c+ils
Iy =— L(s)'X(s)Y(1 — s)ds — — L(s)7'X(s)Y (1 — s)ds,
270 Jy—eimy 270 J1_cyiy

as almost all zeros of L(s) are simple by assumption. From ((14)), we have

Ir = 12 quzklc/ (E) dt == Mg + M4,

u<M k<M

where M, corresponds to the diagonal terms k = nu and where M,,; corresponds to

the off-diagonal terms k # nu. For the diagonal terms, & = nu, we have a contribution
of

T2 - Tl a_l(n)xuynu
Ma= 2 T

2T
nuM

For x # 1 we have fTTf rdt = O(log |x|)~'. Thus for the off-diagonal terms, k # nu,
we have

o ()] §~ |2ul 5~ osl 1
Mpa| < .
[ Mad —Z ne Z uc lei=< | log(k/nu)|
u<M k<M

n>1
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Since ¢ = 2, the terms for which nu > 2M are bounded by

|a n)| N~ 2l A |a
> Z e <2 |z (15)
n>1 k<M
The remaining terms are bounded by
3 la™t ()] zu] ||Iu| Z |yx| 1
i (nu)e k1= |log(k/nu)|
< S Il s | S e (16
— n u? Hog k:/j
k#]

The contribution from terms such that k& < j/2 or &k > 25 is O(M). The terms
1/2 < k/j <2 contribute at most

j k
_— —— < Mlog M. 17
> It D Ml )
max(1,j/2)<k<j—1 j+1<k<min(M,2j5)
Combining ([15)), (16)), and (17]) with Lemma , we have
T, —T) a1 () Ty Ty
Ip=—— —r "1+ 0 (
R > L

TL

|yn||o<>-]w2+6 + M*

gl ) -

27 n? n?
Next we consider the contribution from horizontal terms. Note that
X ()Y (1~ 5)] Z Z < |2 |12 e
kl s| = nililln

where each part corresponds to a bound for 0 < R(s) < 1, =1 < R(s) < 0, and
1 < R(s) < 2 respectively. From our choice of T and Ty, we have L(o + iT;)~' < T7.
Combing these we have

xn

)

Iy < T°M (‘ In
n

Yn

Yn
& 2+ gl

n

1

Now we estimate I;. From , we write
L(s) = A(s)L(s),
where

f

A()—MQI 2sH

J=1

(N1 =s)+55)
I'(Ajs + 1)
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Using Stirling’s formula, we have for ¢t > 0

Ar(s) = (AQQtdL)%“"“ exp (@'tdL + M) (e +0 (%I)) . (19)

where =237 (1 —2p;) and A = 1. A2 When R(s) =1 — ¢, we have

Jj=1""

AL(s) = O (T‘zL (1 +0 (%))) | (20)

From Lemma [3.2] when R(s) =1 — ¢, we have
|IL(1—s)| < 1. (21)
From and , we have

IR I .
< T ¥ / IX(1 = o+ it)|dt
n 1 i
a |y T 1/2
LT = 2| T (/ IX(1—c+ z't)|2dt>
n=i i
1/2
< T~F || 22| 7172 (T Z Ina,|* + M Z |n:1:n|2)
n?lh
n<M n<M
1/2
<T H|| &l @+ vTa)M Y |2l
n? 7

n<M

where we applied the Cauchy-Schwarz inequality and Lemma [3.6, This completes the
estimation for S;. O

Theorem 4.2 Let L € 8. Suppose X(s) = > 72, Y(s) = > e, M <T.
Then, we have

1 - 2,d;, TmYm
Sy = <%/ log(AQ*t )dt) > -

T m<M

T, —T) (AL * 2) (M) + AL * y(m)zpm
— S
2 n;J m T o
where
8 = O <(10gT ( X M9L+E||yn 1|~ 1))

+0 ((logT MHeL+E (

Mynlloe

|xnr|oo)) .
Proof. From the residue theorem, we have

c+ils 1—c+iT> c+iTy 1—c+iTh L/
So = +/ ) X(s)Y (1 —s)—(s)ds
2ri ( +iT) / +iT /1—c+z'T1 1—ct+iTh L

=Jr—Jr+ Ju,
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where

1 c+iTs Ll
Jp=— X(s)Y (1 —s)—(s)d
w= g | XY=
1 1—c+iTs L/
Jp = — X(s)Y (1 —s)—(s)d

1 1—c+iT> c+iTy L/
J:—,/ +/ )XSYl—s—sds.
b= ( Y B ECICEREE

Let Ty =T + O(1) and T3 = 27 4 O(1) be such that

/ /

L L
f(o— +iTy) < (log T1)?, f(o +iTy) < (log Ty)?,

uniformly for o € [—1,2]. Note that

Lo, Yk
XY (L=s) =D =30 5
u<M = k<M
Tn n c— n = In
< || N2 el |2 gl 2] (22)
nlhllnih ni i

where each part corresponds to a bound for 0 < R(s) < 1, 1 —¢ < R(s) < 0, and
1 < R(s) < ¢ respectively. Thus,

|

Taking logarithmic derivative of the functional equation (2)), we have

Yn

Ju < (logT)? (M‘ .

i —
i Ml |
n 1

Yn
n

+ My |

Tn
n

1) . (23)
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Therefore,
1 1—c+i1> L/
Jp=— X(s)Y(1—s)=(s)d
T R CL SRR
1 TQ L/
= o /. X(l—c—l—zt)Y(l—c—it)f(l—c—i—z't)ds
1 . L .
=—5- X(l—c—zt)Y(l—c+zt)f(1—c—zt)dt
1 [ - r
=5/ X(l—c—l—zt)Y(l—c—it)f(l—c—i-it)dt
1 T2_ - r
=5 ; X(l—c—z’t)Y(l—c—i—it)f(l—c—it)dt
1 C—‘riTg_ . Zl
= — X(1=35)Y(s)=(1 — s)ds
270 J ety L
c+iTs L/ o o
X(1—-5)Y(s)d
If X(s) = Y(s), then we have
Jp =K — E?

where K = 5= CCJ:%T]:Z (- 5)Y (s)X (1 — s)ds. From Striling’s formula, we have

A, . 1
AL( s) = —log (A\Q*log|t|**) + O (\t|)

and thus by ,

Ty
K=— 1 [ log (AQ2t) |X (¢ + i) 2dt
27 Jp
Yn
+O<logT< - — 1))

The main term in K denoted by Kj is given by

Ky— - /QTlog(AQ%dL)Z TS g
0 or Jr yl—ctit Lc—it

u<M k<M

it
- Sy y"“/ log (AQ2t") (—) dt

u<M k<M

= Kd + Knd>

11

(24)

(25)
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where K, denotes the contribution from the diagonal terms with k& = u, and K, 4
denotes the contribution from the off-diagonal terms k # u. We have

1 2
Kd = —— Tulu / IOg ()\Q2tdL) dt
u i)

27
u<M
dL TulYu
=— | —=TlogT T . 2
(eriosT+00m)) 3 (20
u<M
For K,,, we have
Knd < Z 1—cl-c
Tl ke |log k/ul
u#k
o1 |Yx| lye|
u<M k<M u<M u/2<k<2u
< logT k +10gT||xn||1||ynHoologM- (27)
For Jg, we have
1 c+iTs L/
Jp = — X(8)Y(1—s)—(s)d
= | XY= T ()s
Ar(n)
/ uc+zt Z kl c—it Z nc—l—zt dt
T y<M k<M =
- Jd + Jnd; (28)

where J; denotes the contribution from the diagonal terms k& = nu, and J,4; denotes
the contribution from the off-diagonal terms k # nu.

T2 - Tl = AL(n)xuynu
Jd = o Z Z nu 5 (29)

n=1u<M

and similarly to (16| and .
|| |yx|
Jnd<<logTZ Z Z k- Clog|k/nu\

uM
A
i+ toeT 3 2E
n
n<M

Tn

AL_W’-I_

M Hynlloo M log M.
nc

nell1

< logTMe™! Z
n=1

(30)

Taking ¢ = 1 4 61, + €, and combining (23] , ., . . . , and ( . We

complete the proof.
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5. PROOF OF THEOREM [L.1]

Let z, = p(n)a(n) and y, = T,. Since z, is supported on squarefree integers and
la(p)| = |b(p)| < p%, it follows that |z,| < n and ||z,|; < M. From the
assumption of , we have

ZW:KbgM‘FO(D’
and
1 (o) (508

Thus from Lemma [3.7, we have

S~ AT (e, 4 o)) 08 MY @1
where
oo I (1) e+l (32)

We also have

A xz)(m)y,
Z( )(m)y

m
m<M

m)a(m)|? a(p)|?lo
:_ZW( )m( )| T |(p)|p gp

m<M ptM
p<M/m

-y Iu(m);b(m)P 3 ja(p)[*logp 3 |a<p>|;10gp @)

m<M p<M/m p

The second term in can be bounded by

m)a(m)|? a(p)|?lo
T | ( )m( )| 3 \(P)\p gp

m<M plm
p<M/m
21
Z la(p | ogp Z [u(m <<10gM'
p<M m<M

ptm
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For the main term in (33)), after applying and partial summation, we have
E

T |(m)a(m)

m
m<M p<M/m

2log p

Z la(p)

p
=K Z Mlog(M/m) + O(log M)

_ ke +o(1) K+l K+l
=7 (log M)*™* + O((log M)"™).

Ap*xy(m)zm

o can be calculated in a similar way. Thus, from

An estimate for > _,,

Theorem we have

di(Tylog Ty — T log T Ty —T: 1
(Tylog Ty — Ty log 1>(CL—|—0(1))(10gM)“+( y — 1) ke, + o(1)
27 ™ Kk+1
+ O(M1+29LTE)'

Applying Theorem and , we have

Sy = T22_ T Z |,U(TL>CL(7”L)‘2 +O(M2+9L+e +T5M2+29L + M2+9LT1—dTL)
s

So = (log M)+t

n
n<M
-1 K 2407 +¢ € p2+20 246, p1—2L
= = (er + o(1)(log M) +O<M Lte 4 TeNHPL 4 N2HOLT 2).
m
Choosing M = TY with § < 1/(2+ 0) — ¢, we find that
o~ 2K0
So = (cp + 0(1))% (dL + ] - o(l)) T(logT)"*,

K

0
Sy = (cp + 0(1))%T(log Tyt
Therefore, from ([12)),

5 L ISP (cr+0(1)8"T*(log T)*
ot IL'(p)] = So ~ 2m(dy + 2% + o(1))T (log T)"+!

CLHR -1
> — (1) | T(log TY Y,
_(27T(dl/+;fj-01> ()) (log T)

where M = T? and 6 < 2/5 is a valid choice.

6. PROOF OF THEOREM [1.2]

Proof of Theorem[1.2 Let y, = &, and x, = —a(p) f(p), where f(p) is a multiplicative
function supported on squarefree integers. Define

f(p) _ 10Lg1p7 if Y% c [L%, LZ]) (34)
0, otherwise ,
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where L; = \/k~1log M loglog M and Ly = exp((log L1)?).

Tn

| (1+&> < exp (Z a(p) ) (35)

n
n<M <p<M p<M

From (34), the above becomes

by B [T
L52, pl gp xlogw

Lo
_ 1, Az ) L1/ A(m)(logm—irl)dx
xlogm Lt I, z2(log x)?
36
< Vh——— _10 ” (36)

where A(z) = 37 _ la(p)], and the last inequality follows from () and the fact that
B 1/2
Ax) < 21/? <<I€ + 0(1))10";93) < = and (36), we have

> 2| < exp (ev/rIog ). (37)

n<

and thus

Z lzn| < M Z | < M exp (chlogM) < MM (38)
n

n<M n<M

2
S ot <0 3 B <ty (/R M) <)
n<M n<M

Applying the bounds in , , and in Theorem and Theorem , we have

Sl — (T22_ Tl) Z a,_l(TL)Iuynu +0 <M5/2+9L+6T6 + TldeL+EM2+e>
™ nu

Y

nu<M
d zml? Ty —T A« 2)(m)ym + (AL * ) (M),
So = (ylog Ty - Tyl S ol > (Ap* z)(m)y m( L+ y)(m)

2m m<M m<M
+0 (M3/2+20L+5T6) )
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For the second sum in Sy, we have

A x2)(m)y, Ar(p)yy Ty |?
Z( nz( )y -y )y, %;/%

m<M p<L2 p <
b(p)logp a(p)f(p) |Zm |
<y tlesr el 0) 5~
p<M m<M
b(p)1 mE
<<le (p) ?gp (p) Z T
Z plep = om
< Liklog, M Z [’
2 m
m<M
< (klog M) Y 2ml® (40)
m<M m 7

since we have b(p) = a(p) and are assuming (7). Choosing M 5/24+01+¢ « T and using
(40)), we have

So = (;l—;TlogT%—o(l)) Z M.

Since x,, is supported on squarefree integers, we have

a™ () 2y = p(n)a(n)p(u)a(u) f(u)p(nu)a(nu) f(nu)
= la(n)a(u)| f (u) f (nu),
and it follows that

I8, 5~ lame@) /i) /), <1ogT 5 |a(m)|2f(m)2>_ ()

S m
0 nuM m<M

Since f(n) is multiplicative and supported on squarefree numbers,

3 !a(n)a(u)Ll{(n)f(RU)

:;M !@<n>7\1f<n> 3 !a(U)!uf(U)
- (s
:;4 M (11 (1+|a(p>!pf(p) )_ EM:/ Ia(u)|uf(u)

(n,u)=1
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By Rankin’s trick, the contribution from w > M /n is bounded by

3 la(n)|*f(n) (ﬁ)"‘ i |a(w)]*f (u)*u
n M U

u=1
(u,n)=1

= _H +a()*f(p)?p " + lalp) P f(p)p™ ") (42)

for any o > 0. By Rankin’s trick again, the main term becomes

la(p)|*f(p)* | la(p)]*f(p) 1 la@)Pf()* | lalp)f (P)p”
H(1+ e >+O<WH(1+ P ; >>

p p (43)

Combining and , we deduce that

y el i) g o (Mi TT(+ Il PF )~ +latp >|2f<p>pa-1>) ,

nuM p

where

0, =] (1 L awPrw? Ia(p)lzf(p)> _

» p p

Note that the ratio of the error to the main term is bounded by

2
< exp | —alog M + Z la(p)P(p* — 1) ( Ll? + IL1 )
Li<p<exp((log L1)?) plog’y - plogp
log M
<K exp (—a10g2 M) .

Choosing a = 1/(log L1)? yields

nu<M

We also have the inequality

Z la(m)[*f(m)* | f(m Z la(m | )Ef(m H <1+ |a(p)|pf(p) > —. Q,.

m<M p

From the definitions of Qy and Q;, it can be seen that

Q9 la(p)*f(p)
Q 1;[ <1 " p(1+ !a(p)IQf(p)Zpl)) '
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Since
2 L 2
O i M
Ly <p<exp((log L1)?) L12<p<exp((log L1)?)
Ly
= 1
(ol o

we have

Q9 Ly klog M

— > 1 = 1 1H)—————1.

Qp — P ((H +ol >>log L%) P (\/( + ol ))loglogM
Therefore, from (41]), we have

|S1] klog M
S, >exp | (14 0(1)) loglog M |

7. PROOF OF PROPOSITION [3.1]

Lemma 7.1 (Theorem of Borel-Carathéodory) Let f(z) be a holomorphic function
on |z| < R, and let M(r) = sup,_, |f(2)| and A(r) = sup,_, R(f(2)). Then, for
0 <r < R, we have
2r R+r
AR 0)].
(R)+ 20150

Lemma 7.2 (Hadamard’s three circle theorem) Let f be analytic on a region contain-
ing the set R = {z|r; <|z| <rs}. Then, for 0 <1y <re <rs, we have

M(r) <

M;Og(m/ﬁ) < Miog(rs/rz)Méog(rg/n),
where M; = supy,_,, | f(2)| fori=1,2,3.

Lemma 7.3 Suppose f(s) is reqular, and in the circle |s — so| < r, we have

1/ (s)]
|f(s0)|

Then, for |s —so| < §, we have

<eM M > 1.

f'(s) 1 M
- — < =,
f(s) 2 s—p| T

where p runs through the zeros of f(s) such that |p — so| < 3r.

Lemma 7.4 Let L € 8§ and let N (T) denote the number of zeros of L(s) in the
rectangle 0 < R(s) < 1 with 0 < J(s) < T. Then,

lp—sol<3

d 1
N(T) = iTlogT +cpaT +cpo+arg L(% +iT)+ O <T> ,

where dy, is the degree of L(s).
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Proof.
2N (T) = %AE(S), (44)

where A denotes the variation from 2 to 2+47 and then to % +:¢T', along straight lines.
Thus

TNL(T) = Aarg Q° + ZAF)\s—l—uj)—l—AargL()

7j=1

Since we have

the lemma follows. U

Lemma 7.5 ]f%<a<a<6,T<t§T’, then we have

1 [T arg L log T log T"
logL(s):—/ “g—wdz+o(&>+o(og )

T Ja+iT §—2z t—-T T —1t

Proof. From the residue theorem,

BT’ a+iT’ a+iT B+iT 1 L
log L(s / + / + / / ©8 dz.
27” B+iT B+iT! a+iT”’ a+iT =S

Let 8 > 2. Since uniformly for % <og<o<l,
log L(s) = O ((logt)* )
holds, it follows that

2T Jog L(z) 1 2 log T
dz = — log L T)|dx ) = : 4
[ =0 (7 [ st s ) =0 (25w

AT Yog L(2) - T e
——dz = A d
/+ zZ—3S : Z 1(n)/ z—sz

2+iT o 2+4iT

- 1
=0 (Z Aml(n)m>

n=1

_0 (%) , (46)

Also,
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where A, ;(n) is the coeflicient of log L(s). The last equality follows from the fact that
Az 1(n) < /n, since

log L(s Z Z ks (47)

p k=1
and b(p*) < p*t for some 0, < 1/2. By (45) and (46), we have
P log L(= log T
/ og()d _O(og ) (48)
atiT < S -T
Similarly,
B+iT’ loo L loo T"
/ 8Lz, o ( o8 ) , (49)
T 2 — S T —t
and
B+iT’ loo L(z T —T
/ 08 L(2) . 0( > (50)
gpir 2 —S f—o
Combining , , and letting § — oo, we have
1 [T Jog L(z) log T logT"
log L — ——=dz+ 0 O . 51
og L(s) = 27rz/a+iT §—z i (t—T)jL (T’—t) (51)

Similarly, if R(s') < 1, then

1 [T Jog L(z) logT log T’
0=— ———dz+ 0 | —— @) : 52
27T7J/QHT s —z i (t—T)+ (T’—t) (52)

Taking s’ = 2a — 0 4 it, so that s’ — z = @ — iy — (0 — it), and replacing by its
conjugate, we have

1 (ot log |L(2)| — iarg L(z) logT log 7"
= — dz+ O @) . 53
27ri/a+iT Z—35 i (t—T)+ <T’—t> (53)
Combining (51)) and (53)), we have
1 [T Jog |L(2)| logT log T’
log L(s) = — ———=d — 4
og L(s) Wi/a—i—iT Joni Z+O(t—T>+O(T’—t)’ (54)
1 [T arg L(z) logT logT"
log L(s) = — ———dz+ 0 | —— O . 55
& Ls) 7T/a+iT Z=S o (t_T) i (Tl_t) (55)

Lemma 7.6 Let S(t,L) = Larg L(3 +it). If L(s) has no zeros when R(s) > 3, then
logt

S(t, L —_— 56

0 <0 it (50
logt

Si(t, L _— o7

1t 1) <o (loglogt)?’ (57)

where Sy(t, L) = £ fl log |L(o + it)|do.
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Proof. This can be derived from Theorem 1 and Theorem 2 in [I]. In [I], the L-
functions are restricted to those with polynomial products, but the argument only
requires a bound for Ay, of the shape Az (n) < dpA(n)n?. This is satisfied for L(s) € 8,
since Az(n) = b(n)logn < A(n)nfre. O

Lemma 7.7 For any o > %, 0<é< %t,
i L 2t
log L(s) = z/ Mdy +0 (M) +O(1), (58)
t—¢ ST 35— W 3
where ¢(t) = maxy<i<¢ S1(t, 7).

Proof. From (b5) with a@ — %, one has
2
L
log L(s) = 2/ Mdy + O(1), (59)

since S (y, L) = O(logy). Therefore

2t 2t 2t
t t

1 1 ; 1 ;
R B AR 7| W S

: E@; +O<¢(2t) /5 <o—%>2di <y—t>2)
o (e
o),

and similarly for the integral over (%t,t — &). Thus the result follows from ([59)). O
Lemma 7.8 For % <og< % + clog)i;t, we have
logt logt
— <log|L(s)| < A 60
log log t Og((a—%)loglogt) < log |L(s)] < loglogt’ (60)
where A is some constant depending on L.
Proof. Taking the real part in , one sees that
¢ @ ¢(2t)
log|L(s)| = — 8t —2,L)-S{t+=2,L))dr+ 0| —= | +O(1).
L) = [ o S = n D) = S s 0 (22 on)
(61)

From Lemma [7.4] we have
d 1
NL(T) = ﬁTlogT +epaT +cepa+ S(T,L) 4+ O (?) :

Therefore,

S(t+ax,L) = S(z, L) > —Azlogt + O (z/t°) (62)
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for some constant A depending on L(s). Combining , and , we obtain
x? logt logt

< e
log |L(s)| A/ +$2dx+0<§(10glogt)2>+O(1)

logt

< Allogt+0 | ———

= Aclost (E(lOglogt)Q) ’
uniformly for o > % and so by continuity, for o = % as well. Taking £ = 1/loglogt, we
have
logt
log | L
og |L(s)| < loglog i’

On the other hand, from and ,

logt logt
log L(s) = O | 1o~ igt / m ( Hog 1gogt) ) +O(1).  (63)
Also,
¢ da /=12 gy 1, if ¢ <o—3,
/0 Jo e / Vit £, otherwise,
Therefore, by taking £ = 1/loglogt in (63), we find that
log |L(s)] 2 _Aloz)i;t log <(0 — %)210g logt> '
Il
Taking o = % + m, we obtain the following corollary.
Corollary 7.9 Let s = o+ it. We have
log |L(s)| = O <1O§itgt), 0:%+loglcogt' (64)

Proof of Proposition[3.1 Let 6 = 1/loglogT. Then the bound holds for o >  + ¢
from (64). We therefore assume that 1 <o < + 0. We apply Lemma . 3 with
f(s)=L(s),s0 =%+ 2 750 + i1, and r = 4 750 From (64), we have

1 AlogT
L(so) P loglogT )

From ([60)), we have for |s — so| < r and o > %,

For |s — so| < and o < 1, the functional equation gives

A'logT )

L tira=o)| (1 — o
L < L - 9] < e (BT
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Since sp — p = \%5 + (T — ), we have [sy — p| < § if and only if [T —~| < 4. It
then follows from Lemma [7.3|that for |s — so| < %, and so in particular 3 < o < £+,
t =T, we have

L'(s)

= > —p +0 (logT). (65)

ORI

Integrating (65]), we obtain
L(s) s—p logT
log =220 — 1 _logd )
% L(s0) E:C%me>+OQ%mwﬂ (66)

[t—y|<6

Taking the real part in , and combining with , we deduce that

sS—p log T
log |L = | O ———
og|L(s) ZO%WJ+(mmﬁ

[t—y|<é
0 logT' ‘
loglog T’
Now observe that

t—~
> 1
> 3wl
T+1 min(y+6,7+1) t—
/ Z log Z / log‘ ({Hdt

[t—]<é
—~|<6 T—§<y<T+1+6 Y Max(y=6.T)

. Z /wa

T—6<y<T+1+6

= ) (—26—25log2)
T—6<y<T+1+6

> —A"0logT,

dt

as there are O(log T') such terms in the sum. Hence there is a ¢t € [T, T + 1] for which

3 log 7' > _A"§log T,
[t—|<6

which gives

n logt

log | L i) > A" —=—
og |L{o +it)| = loglogt
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