
ON DISTINCT CONSECUTIVE r-DIFFERENCES.

JUNXIAN LI AND GEORGE SHAKAN

Abstract. Let A ⊂ R be finite and Dr(A) be the number of distinct consecutive
r-differences of A. We show |A + B| �r Dr(A)|B|1/(r+1) for any finite B ⊂ R. Uti-
lizing de Bruijn sequences, we construct sets for which the above inequality is sharp.
For the set {nα (mod 1)}1≤n≤N , we improve immensely upon the above inequality
and obtain sharp bounds for the number of distinct consecutive r-differences, gener-
alizing Steinhaus’ three gap theorem. We also consider a dual problem concerning
the number of distinct consecutive r-differences of {T : {Tθ} < φ}, where θ ∈ R and
φ ∈ [0, 1], generalizing a result of Slater.
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1. Introduction

Given A,B ⊂ R finite, we define the sumset

A+B = {a+ b : a ∈ A, b ∈ B}.
Let A = {a1 < . . . < ak}. We say A is convex if for all 1 < i < k

ai − ai−1 < ai+1 − ai.
Hegyvári [4], answering a question of Erdös, proved that if A is convex then

|A+ A| � |A| log |A|/ log log |A|.
Konyagin [5] and Garaev [3] showed if A is a convex set then

|A± A| � |A|3/2,
while Schoen and Shkredov improved this to

|A− A| � |A|8/5 log−2/5 |A|, |A+ A| � |A|14/9 log−2/3 |A|.
Elekes, Nathanson, and Ruzsa [2] then showed that for any convex set A and any B,

|A+B| � |A||B|1/2.
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Finally Solymosi [8], generalized this to show that if the differences ai+1−ai are distinct
for 1 ≤ i ≤ k − 1, then

|A+B| � |A||B|1/2,
and a construction in the same paper, due to Ruzsa, shows this bound is sharp.

Our first goal is to generalize this result of Solymosi [8]. Fix r ≥ 1 an integer. We
say a set A has distinct consecutive r-differences if for 1 ≤ i ≤ k − r,

(ai+1 − ai, . . . , ai+r − ai+r−1)
are distinct.

Theorem 1.1 Let A and B be finite subsets of real numbers with |A| = k and |B| = `
and suppose A has distinct consecutive r-differences. Then

|A+B| � e−r(log 2+1)k`1/(r+1).

The implied constant is absolute.

The case r = 1 is Theorem 1.1 in [8]. Theorem 1.1 applies to more general sets than
addressed in [8] but our bound is smaller by a power of ` when r > 1. We also show
below that Theorem 1.1 is best possible, up to the constant, utilizing ideas from the
construction of de Bruijn sequences.

Here we study only the non-symmetric version of finding lower bounds for |A + B|
where A has distinct consecutive r-differences. We expect improvements to Theo-
rem 1.1 in the case B = A.

Question 1.2 What is the largest θr such that for every A ⊂ Z with distinct consecutive
r-differences, one has

|A+ A| �r |A|1+θr/(r+1).

Theorem 1.1, with B = A, asserts that θr ≥ 1, while we provide a construction
below that shows θr ≤ 2. We remind the reader that any convex set has distinct
consecutive 1-differences. So Question 1.2 generalizes the aforementioned question of
Erdös regarding convex sets.

There is a generalization of Theorem 3 in [8] for distinct consecutive r-differences,
which requires the following definition. Let A1, . . . , Ad be nonempty finite subsets of
real numbers all of cardinality k. We say that A1, . . . , Ad have distinct d-tuples of
consecutive r-differences if there exists permutations σ1, . . . , σd ∈ Sk such that the
(dr)-tuples,

(aσ1(i+1) − aσ1(i), . . . , aσ1(i+r) − aσ1(i+r−1), . . . , aσd(i+1) − aσd(i), . . . , aσd(i+r) − aσd(i+r−1))
are distinct for 1 ≤ i ≤ k − r.

Theorem 1.3 Suppose A1, . . . , Ad have distinct d-tuples of consecutive r-differences.
Let B1, . . . Bd be nonempty finite sets of real numbers of cardinality `1, . . . , `d. Then

|A1 +B1| · · · |Ad +Bd| �β,d (kdr+1`1 · · · `d)1/(d(r+1)).

The proof of Theorem (1.1) can be used to obtain an upper bound for the size of
distinct r-differences of the set A. This upper bound is not sharp when the set A
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has some additive structure. In particular, let α be a real irrational number and we
consider the set of points

Sα(N) := {{nα} : 1 ≤ n ≤ N} = {a1 < . . . < aN} ⊂ R/Z.
Here we identify R/Z with [0, 1) and then use the natural ordering on [0, 1). Since
|A + A| � |A|, the above theory suggests that A has few distinct consecutive r-
differences. In fact, in 1957 Steinhaus conjectured that there are at most 3 distinct
consecutive 1-differences in Sα(N). This was proved by Vera Sós in [9, 10] as well as

Świerczkowski in [11]. Now we consider the set of distinct consecutive r-differences in
Sα(N) defined via

Dr(Sα(N)) := {(ai+1 − ai, . . . , ai+r − ai+r−1) : ai ∈ Sα(N)},
where ai+N = ai. Since there are at most 3 distinct 1-differences in Sα(N), there are
at most 3r distinct consecutive r−differences in Sα(N). However, we prove that the
size of Dr(Sα(N)) is much smaller than 3r due to the structure of Sα(N).

Theorem 1.4 There are at most 2r + 1 distinct consecutive r-differences in Sα(N).

We also consider a dual problem studied by Slater in [7]. Given φ, θ ∈ (0, 1), let the
set of returning times be

Rθ(φ) := {T : {Tθ} < φ} = {T1 < T2 < . . .}.
In [7, 6], Slater proved there are at most 3 distinct consecutive 1-differences in Rθ(φ).
We generalize this result to consecutive r-differences.

Theorem 1.5 There are at most 2r + 1 distinct consecutive r-differences in Rθ(φ).

2. Distinct consecutive r-differences

In this section, we prove Theorem 1.1 as a corollary in a more general setting. Given
any set A of size k, we let

Dr(A) = {(ai+1 − ai, . . . , ai+r − ai+r−1) : 1 ≤ i ≤ k − r}.
Proposition 2.1 Let B be any set of size ` and A as above. Then

|A+B| � e−r(log 2+1)Dr(A)|B|1/(r+1).

We remark that Theorem 1.1 follows immediately from Proposition 2.1 by observing
that if A has the property of distinct consecutive r-differences, then |Dr(A)| = k − r.
Proof. If |Dr(A)| ≤ 2r, Proposition 2.1 is trivial, so we suppose we are not in this case.

For each d ∈ Dr(A), we choose an 1 ≤ i(d) ≤ k − r so that

d = (ai(d)+1 − ai(d), . . . , ai(d)+r − ai(d)+r−1).
Let C = A+B and partition

C = C1 ∪ . . . ∪ Ct,
such that for u < v every element of Cu is less than every element of Cv. The proof
relies on double counting the following set

X = {(i, b) : There is a 1 ≤ u ≤ t such that ai + b, . . . , ai+r + b ∈ Cu}.
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(Lower bound) Fix b ∈ B. Our assumption |Dr(A)| > 2r will imply that |Cu| ≥ r
for all 1 ≤ u ≤ t, as will be seen by our choices for these sets later. Thus, for a fixed
1 ≤ u ≤ t− 1, there are at most r of the d ∈ Dr(A) such that ai(d) + b, . . . , ai(d)+r + b
do not all lie in the same Cu. Thus at least D(A)− (t− 1)r of the d ∈ Dr(A) have the
property that ai(d) + b, . . . , ai(d)+r + b all lie in one Cu. For each such d, we have

(i(d), b) ∈ X,
so that

(Dr(A)− (t− 1)r)` ≤ |X|.
(Upper bound) For each 1 ≤ u ≤ t, we have that Cu contains at most

(|Cu|
r+1

)
subsets of

size r + 1. Thus

|X| ≤
t∑

u=1

(
|Cu|
r + 1

)
.

Putting these bounds together, we have

(Dr(A)− (t− 1)r)` ≤
t∑

u=1

(
|Cu|
r + 1

)
.

We choose t = bDr(A)/(2r)c (which by assumption is at least 1) and C1, . . . , Ct to
differ in size by at most 1, which implies ||Cu| − |C|/t| ≤ 1. Proposition 2.1 follows
from Stirling’s formula and a straightforward calculation. �

We now give an informal sketch of a proof of Theorem 1.3 below, which is similar to
Theorem 1.1. We also refer the reader to the proof of Theorem 3 in [8].

Sketch of proof of Theorem 1.3. The case k < 2d is trivial, so we assume k ≥ 2d. For
1 ≤ m ≤ d, let Am = {am1, . . . , amk}, Bm = {bm1, . . . , bm`m} and Cm = Am + Bm.
Partition Cm = Cm1 ∪ . . . ∪ Cmtm as in Proposition 2.1. Double count the number of

(a1σ1(i) + b1j, . . . , a1,σ1(i+r) + b1j, . . . , adσd(i) + bdj, . . . , ad,σd(i+r) + bdj),

such that amσ1(i) + bmj, . . . , am,σ1(i+r) + bmj all lie in a single Cmu. Similar to Theorem
3 in [8], this implies an inequality of the form

(k − r
d∑

m=1

tm) ≤
|C1|∑
u1=1

· · ·
|Cd|∑
ud=1

(
|C1,u1 |
r + 1

)
. . .

(
|Cd,ud|
r + 1

)
.

Choosing tm = bk/(2d)c and the Cmj to differ in size by at most 1 implies Theorem 1.3.
�

We now show that Theorem 1.1 is best possible up to the constant. To do this
we utilize a lemma from graph theory to generalize a construction due to Ruzsa as
presented in [8].

Lemma 2.2 Let S be any set. There exists a sequence s1, . . . , sk of elements of S (with
repeats) such that

(a) The ordered (r + 1)-tuples (sj, . . . , sj+r) are distinct for 1 ≤ j ≤ k, where
sj+k = sj,
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(b) k = |S|(|S| − 1)r,
(c) for 1 ≤ j ≤ k, sj 6= sj+1.

We remark that if the last condition were eliminated and k were replaced by |S|r+1,
then we would be in search of a de Bruijn sequence. These are known to exists and
are well-studied. Indeed we modify a construction of de Bruijn sequences in the proof
below.

Proof. We define a directed graph (V,E). We define V to be all of the |S|(|S| − 1)r−1

ordered tuples of size r with elements from S such that no two consecutive elements are
the same. To define E, we say x→ y if the last r−1 elements of x are the same (and in
the same order) as the first r−1 elements of y. Then the outdegree and indegree of any
vertex is |S| − 1, and it is easy to see that (V,E) is strongly connected. By a standard
result in graph theory, there exists an Eulerian circuit in (V,E), say v1, . . . , vk. Setting
sj to be the first coordinate of vj for 1 ≤ j ≤ k gives the claim. �

Now let S be any finite integer Sidon set and s1, . . . , sk be the sequence of elements
of S as given by Lemma 2.2. We define sets A,B ⊂ Z2 via

A := {(i, si) : 1 ≤ i ≤ k}, B := {(i, 0) : 1 ≤ i ≤ k}.

Since S is a Sidon set and by part (c) of Lemma 2.2,

((i+ 1, si+1)− (i, si), . . . , (i+ r, si+r)− (i+ r − 1, si+r−1)),

uniquely determines

(si, . . . , si+r).

By part (b) of Lemma 2.2, (si, . . . , si+r) are distinct for 1 ≤ i ≤ k − r. To achieve
subsets of Z rather than Z2, we use the standard trick to define an injection φ : Z2 → Z
via

φ(u, v) = Mu+ v,

for an M > 2(maxS−minS) chosen sufficiently large so that |φ(A)+φ(B)| = |A+B|.
Thus φ(A) has the property of distinct consecutive r-differences. But

|φ(A) + φ(B)| = |A+B| ≤ 2k|S| � |A||B|1/(r+1).

We remark the set φ(A) as defined above is an example that shows θr ≤ 2 in Question
1.2. That is, we have

|A+ A| � |A|1+2/(r+1).

This follows from the plus version of Ruzsa’s triangle inequality, which asserts

|A+ A||B| ≤ |A+B|2 � |A|2+2/(r+1).

Alternatively, one could compute |A+A| explicitly to see that |A|1+2/(r+1) is the right
order of magnitude of |A+ A|.
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3. Distinct consecutive r-differences of {nα}

Proof of Theorem 1.4. Recall from the introduction that

Sα(N) := {{nα} : 1 ≤ n ≤ N} = {a1 < . . . < aN} ⊂ R/Z,
and

Dr(Sα(N)) := {(ai+1 − ai, . . . , ai+r − ai+r−1) : ai ∈ Sα(N)}.
To obtain an upper bound for #Dr(Sα(N)). We consider the set

Dr(α,N) := {({ai+1α} − {aiα}, · · · , {ai+rα} − {ai+r−1α}) :

{(ai − 1)α}, · · · , {(ai+r − 1)α}
are not consecutive elements in Sα(N)},

which contains Dr(Sα(N)). Thus to prove Theorem 1.4, it is enough to give an upper
bound of #Dr(α,N). The case when {aiα}, · · · , {ai+rα} are consecutive elements in
Sα(N) while {(ai− 1)α}, · · · , {(ai+r− 1)α} are not consecutive elements in Sα(N) can
only happen if

(1) aj − 1 = 0 for some i ≤ j ≤ i+ r.
(2) there exists ak such that {akα} is between {(aj − 1)α} and {(aj−1 − 1)α} for

some i+ 1 ≤ j ≤ i+ r.

The first case happens if and only if aj = 1 for some i ≤ j ≤ i + r. The second case
happens if and only if ak = N for some i + 1 ≤ k ≤ i + r. Thus there are at most
2r + 1 distinct consecutive r-differences in the sequence Sα(N). �

Next we give a description of the pattern of the consecutive r-differences in Sα(N).

Lemma 3.1 Suppose {n1α}, {n2α}, · · · , {nkα} are consecutive elements in Sα(N).
Then {(N + 1 − nk)α}, · · · , {(N + 1 − n2)α}, {(N + 1 − n1)α} are consecutive ele-
ments in Sα(N).

Proof. The map {jα} 7→ {(N + 1 − j)α} is a permutation of Sα(N). Since {mα} =
1 − {−mα} and {n1α} < {n2α} < · · · < {nkα}, it follows that {(N + 1 − n1)α} <
{(N + 1− n2)α} < · · · < {(N + 1− nk)α}. There cannot be an m such that {mα} is
between {(N +1−ni)α} < {(N +1−nj)α}, since it would follow that {(N +1−m)α}
is in between {njα} and {niα}, a contradiction. �

Corollary 3.2 Suppose L1α, · · · , Ltα, α,R1α, · · · , Rkα ⊂ R/Z are the consecutive
terms around {α} in Sα(N). Then (N + 1 − Rk)α, · · · , (N + 1 − R1)α,Nα, ((N +
1− lt)α), · · · , (N + 1− L1)α ⊂ R/Z are consecutive terms around {Nα}.

Theorem 3.3 Suppose α is irrational and N is large enough so that there the 2r + 1
elements around α in R/Z are all in [0, 1)

L1α, · · · , Lrα, α,R1α, · · · , Rrα,

Let
1 = p0 < · · · < pi < pi+1 < · · · < p2r,

be a reordering of the set

{1, L1, L2, · · · , Lr, N + 2−R1, · · · , N + 2−Rr}.
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Then 2r + 1 consecutive r-differences in Sα(N) are given by

dr({piα}), i = 0, 1, · · · , 2r,

where dr(x) denote the consecutive r-difference starting from x in Sα(N) and

dr({nα}) = dr({piα}), for pi ≤ n < pi+1.

Proof. The 2r + 1 consecutive differences are determined by the sequence

L1α, · · · , Lrα, α,R1α, · · · , Rrα.

For r+ 1 of them, the consecutive r-differences are given by r+ 1 consecutive numbers
in the list. Thus L1, L2, · · · , 1 determines the r+ 1 consecutive r-differences in Sα(N),
which are given by dr({Ltα}) for t = 1, · · · , r and dr({α}). The remaining r of the
consecutive r-differences in Sα(N) are determined by r+1 consecutive numbers around
Nα. From Lemma 3.1, the r neighbours around Nα in R/Z are

(N + 1−Rr)α, · · · , (N + 1−R1)α,Nα, (N + 1− Lr)α, · · · , (N + 1− L1)α.

Thus each consecutive r-difference is given by r + 1 of the consecutive numbers in

(N + 1−Rr)α, · · · , (N + 1−R1)α, (N + 1− Lr)α, · · · , (N + 1− L1)α,

which is determined by (N + 1−Rr)α, · · · , (N + 1−R1)α. In fact, they are given by
dr({(N + 2−Rl)α}), where l = 1, · · · , r. In summary,

Dr(Sα(N)) = {dr({α}), dr({L1α}), · · · , dr({Lrα}), dr({N+2−R1α}), · · · , dr({N+2−Rrα})}

gives the 2r + 1 consecutive r-differences in Sα(N), and

dr({nα}) = dr({(n+m)α}),

as long as n+m ≤ N and n+m doesn’t belong to

{1, L1, · · · , Lr, N + 2−R1 · · · , N + 2−Rr}.

So for any pi ≤ n < pi+1, we have n− pi ≥ 0 thus dr({nα}) = dr({piα}). �

Example 3.4 Take α = log10 2, r = 3, and N = 100. The r neighbours around α are

74α, 84α, 94α, α, 11α, 21α, 31α ⊂ R/Z.

Applying Theorem 3.3,

{1, 71, 74, 81, 84, 91, 94}
determines the 7 distinct consecutive 3-differences for Slog10 2(100). And given any
1 ≤ n ≤ 100, d3({nα}) can be found by determining which of the following intervals n
belongs to

[1, 70], [71, 73], [74, 80], [81, 83], [84, 90], [91, 93], [94, 100].

Theorem 3.5 Let

Sα,λ1,··· ,λk(N1, · · · , Nk) := {{αni + λi}|1 ≤ ni ≤ Ni, i = 1, · · · , k}.

There are at most (2r+1)k distinct consecutive r-differences in Sα,λ1,··· ,λk(N1, · · · , Nk).



8 J. LI AND G. SHAKAN

Proof. We sketch the proof which is similar to the case when k = 1 as in Theorem 1.4.
Let N = N1 · · ·Nk and denote the set

Sα,λ1,··· ,λk(N1, · · · , Nk) := {a1 < . . . < aN}.
Then the distinct consecutive r-differences can be represented by the (r + 1)-tuple
(ai, ai+1, · · · , ai+r) such that

ai − α, · · · , ai+r − α
are not consecutive elements in Sα,λ1,··· ,λk(N1, · · · , Nk). This can only happen if one of
the coordinates of the tuple (ai, ai+1, · · · , ai+r+1) is of the form α + λj for some j, or
there is a point of the form Njα + λj between ai and ai+1. This gives at most 2r + 1
r-tuples (ai, ai+1, · · · , ai+r) for each j. �

Theorem 3.6 Let B be a finite subset of R/Z, then any subset A of B has at most

Cr|B|1−
1

r+1
|A+B|
|B|

+ r

distinct consecutive r-differences for some Cr > 0. One may choose Cr = 2r
1− 1

r+1

(r+1)!
1

r+1
.

We omit the proof, as it is nearly identical to that of Proposition 2.1. We remark
that Theorem 3.6 is a generalization of Theorem 1 in [1]. We now show that up to the
constant, Theorem 3.6 is best possible. Let S = {1, . . . , |S|}. By Lemma 2.2, there
exists s1, . . . , sk such that

• The ordered r-tuples (sj, . . . , sj+r−1) are distinct for 1 ≤ j ≤ k, where sj+k = sj,
• k = |S|(|S| − 1)r−1,
• for 1 ≤ j ≤ k, sj 6= sj+1.

We define a set A = {a1 < . . . < ak} where

ai :=
i∑

j=1

sj.

Then A has distinct consecutive r-differences. Note that ak ≤ |S|r+1, so we let B =
{0, . . . , N} where N = |S|r+1, so that A ⊂ B. Note that

|A| � |S|r, |B| = |S|r+1,

so that |A| � |B|1−1/(r+1). To make these subsets of R/Z, we consider the map φ :
Z→ R/Z via φ(x) = xα for a sufficiently small α.

4. Distinct consecutive r-differences of returning times

We recall that for 0 < φ, θ < 1, we have the set of returning times

Rθ(φ) = {T : {Tθ} < φ} = {T1 < T2 < . . .}.
Proof of Theorem 1.5. We prove this theorem by induction on r. Let s ∈ Rθ(φ) and
dr(s) ∈ Zr such that s is followed by

s+ dr(s)
(1), s+ dr(s)

(1) + dr(s)
(2), · · · , s+

r∑
l=1

dr(s)
(l)
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in Rθ(φ), where dr(s)
(l) denotes the lth coordinate of dr(s). When r = 1, the problem

was studied by Slater in [7]. Let a, b be the least positive integers such that

α := {aθ} < φ, β := 1− {bθ} < φ.

Then from the definition of a, b, we have φ > max(α, β) and φ ≤ α + β. There are
three types of d1(s) given as below


d1(s) = a, 0 ≤ {sθ} < φ− α

d1(s) = a+ b, φ− α ≤ {sθ} < β

d1(s) = b, β ≤ {sθ} < φ.

(1)

This means there is a partition of [0, φ) into three intervals, each of which deter-
mines uniquely d1(s) depending where {sθ} lies in the interval [0, φ). Now suppose, by
induction, there are at most (2r − 1) distinct consecutive (r − 1)-differences in Rθ(φ)
which are determined by a partition of [0, φ) into (2r − 1) intervals. That is to say
there are numbers 0 < gi < φ, i = 1, · · · , 2r − 2, such that

0 = g0 < g1 ≤ · · · ≤ g2r−2 < g2r−1 = φ

gives a partition of [0, φ) into at most (2r − 1) intervals. There is an one-to-one
correspondence between [gi, gi+1) and a consecutive (r − 1)-difference in Rθ(φ) (note
that if there are less than 2r− 1 intervals then we allow gi = gi+1). Now we consider a
consecutive r-difference in Rθ(φ). Depending on whether {sθ} lies in [0, φ−α), [φ−α, β)
or [β, φ), s is either followed by s + a, s + a + b, s + b in Rθ(φ), respectively. Thus
{(s+ d1(s))θ} is determined as below:


d1(s) = a, α ≤ {(s+ a)θ} < φ,

d1(s) = a+ b, φ− β ≤ {(s+ a+ b)θ} < α,

d1(s) = b, 0 ≤ {(s+ b)θ} < φ− β.

(2)

It follows that φ − β, α, g0, . . . , g2r−1 gives rise to a partition of [0, φ) into at most
(2r + 1) intervals, each of which corresponds uniquely to a consecutive r-difference,
depending on which one of these intervals {(s + d1(s))θ} lies. In fact, depending on
which intervals of [gi, gi+1), [0, φ−β) (repectively [φ−β, α), [α, φ)) intersect, the possible
r − 1 returning times following (s, s+ b) (respectively (s, s+ a+ b), (s, s+ a)) will be
uniquely determined.
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To illustrate, we give the example of d2(s). For d2(s), there are three possibilities
depending on α, β and φ.

0 ≤ φ− α < φ− β < β < α < φ :

d2(s) = (a, b), {sθ} ∈ [0, φ− α)

d2(s) = (a+ b, a+ b), {sθ} ∈ [φ− α, 2β − α)

d2(s) = (a+ b, b), {sθ} ∈ [2β − α, β)

d2(s) = (b, a), {sθ} ∈ [β, φ− α + β)

d2(s) = (b, a+ b), {sθ} ∈ [φ− α + β, φ)

(3)

0 ≤ φ− β < φ− α < α < β < φ :

d2(s) = (a, a+ b), {sθ} ∈ [0, β − α)

d2(s) = (a, b), {sθ} ∈ [β − α, φ− α)

d2(s) = (a+ b, a), {sθ} ∈ [φ− α, φ− 2α + β)

d2(s) = (a+ b, a+ b), {sθ} ∈ [φ− 2α + β, β)

d2(s) = (b, a), {sθ} ∈ [β, φ)

(4)

0 ≤ φ− β < α < φ− α < β < φ :

d2(s) = (a, a), {sθ} ∈ [0, φ− 2α)

d2(s) = (a, a+ b), {sθ} ∈ [φ− 2α, β − α)

d2(s) = (a, b), {sθ} ∈ [β − α, φ− α)

d2(s) = (a+ b, a), {sθ} ∈ [φ− α, β)

d2(s) = (b, a), {sθ} ∈ [β, φ)

(5)

�

For rational θ there is a relation between the consecutive r-differences in Rθ(φ) and

Sθ(N), which can be found in [7]. Suppose θ = p
q
. Let α = p′

q
, where pp′ ≡ 1 (mod q).

Then we have

{1 ≤ s ≤ q : {sθ} < N

q
} = q · {{s′α} : 1 ≤ s′ ≤ N},

by mapping s to s ≡ sp′ (mod q). Thus the consecutive r-differences of the set

{n ≤ q| {sθ} < N

q
}

are q times the consecutive r-differences of the set

{{sα}, 1 ≤ s ≤ N}.
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For general θ and φ, more complications will appear depending on representation of φ
in terms of convergents of continued fraction expansion of θ.
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Math., 1:127–134, 1958.
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