ON DISTINCT CONSECUTIVE r-DIFFERENCES.
JUNXIAN LI AND GEORGE SHAKAN

ABSTRACT. Let A C R be finite and D, (A) be the number of distinct consecutive
r-differences of A. We show |A + B| >, D,.(A)|B|"/"+1 for any finite B C R. Uti-
lizing de Bruijn sequences, we construct sets for which the above inequality is sharp.
For the set {na (mod 1)};<,<n, we improve immensely upon the above inequality
and obtain sharp bounds for the number of distinct consecutive r-differences, gener-
alizing Steinhaus’ three gap theorem. We also consider a dual problem concerning
the number of distinct consecutive r-differences of {T": {T8} < ¢}, where § € R and
¢ € [0, 1], generalizing a result of Slater.
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1. INTRODUCTION
Given A, B C R finite, we define the sumset
A+B={a+b:ac Abec B}
Let A={a; <...<ag}. Wesay Ais converif forall 1 <i <k
a; — Qi1 < Qj+1 — Q4.
Hegyvéri [4], answering a question of Erdds, proved that if A is convex then
|A+ A| > |A|log|A|/loglog | Al.
Konyagin [5] and Garaev [3] showed if A is a convex set then
A A > |AP2,
while Schoen and Shkredov improved this to
|A— Al > AP log 2 |A],  |A+ Al > A" log™ 3 |A|.
Elekes, Nathanson, and Ruzsa [2] then showed that for any convex set A and any B,
|A+ B| > |A||B|'
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2 J. LI AND G. SHAKAN

Finally Solymosi [§], generalized this to show that if the differences a;,1 —a; are distinct
for 1 <i<k-—1, then

|A+ B| > |Al|B|'?,
and a construction in the same paper, due to Ruzsa, shows this bound is sharp.

Our first goal is to generalize this result of Solymosi [§]. Fix r > 1 an integer. We
say a set A has distinct consecutive r-differences if for 1 <i < k —r,

(@ip1 — Qo ooy Qi — Qigr—1)
are distinct.

Theorem 1.1 Let A and B be finite subsets of real numbers with |A| =k and |B| = ¢
and suppose A has distinct consecutive r-differences. Then

|A+ B| > G_T(10g2+1)k€1/(r+1).
The tmplied constant is absolute.

The case r = 1 is Theorem in [8]. Theorem applies to more general sets than
addressed in [8] but our bound is smaller by a power of ¢ when r > 1. We also show
below that Theorem is best possible, up to the constant, utilizing ideas from the
construction of de Bruijn sequences.

Here we study only the non-symmetric version of finding lower bounds for |A + B|

where A has distinct consecutive r-differences. We expect improvements to Theo-
rem [LL1] in the case B = A.

Question 1.2 What is the largest 0, such that for every A C Z with distinct consecutive
r-differences, one has

|A—|— A| >, ’A‘1+9r/(r+l).

Theorem [1.1], with B = A, asserts that 6, > 1, while we provide a construction
below that shows 6, < 2. We remind the reader that any convex set has distinct
consecutive 1-differences. So Question [1.2| generalizes the aforementioned question of
Erdos regarding convex sets.

There is a generalization of Theorem 3 in [8] for distinct consecutive r-differences,
which requires the following definition. Let Aq,..., A5 be nonempty finite subsets of
real numbers all of cardinality k. We say that Aq,..., Ay have distinct d-tuples of
consecutive r-differences if there exists permutations oy,...,04 € Si such that the
(dr)-tuples,

(a(n(i—i—l) = Qoy(i)y -+ + 5 Qoy(itr) — Qoy(itr—1)y -+ -y Qog(i+1) — Qog(i)y -+ +» Qog(i+r) — aad(i-l—r—l))
are distinct for 1 < i<k —r.

Theorem 1.3 Suppose Ay, ..., Aq have distinct d-tuples of consecutive r-differences.
Let By, ... By be nonempty finite sets of real numbers of cardinality 1, ...,0q. Then

|A1 +31| .. IAd +Bd| >4 (kdrﬂgl .. .gd)l/(d(rﬂ)).

The proof of Theorem ({1.1)) can be used to obtain an upper bound for the size of
distinct r-differences of the set A. This upper bound is not sharp when the set A



ON DISTINCT CONSECUTIVE r-DIFFERENCES. 3

has some additive structure. In particular, let o be a real irrational number and we
consider the set of points

Sa(N):={{na}:1<n<N}={a; <...<an} CR/Z.
Here we identify R/Z with [0,1) and then use the natural ordering on [0,1). Since
|A + A] < |A|, the above theory suggests that A has few distinct consecutive r-
differences. In fact, in 1957 Steinhaus conjectured that there are at most 3 distinct
consecutive 1-differences in S, (V). This was proved by Vera Sés in [9, [10] as well as
Swierczkowski in [11]. Now we consider the set of distinct consecutive r-differences in

So(N) defined via
Dr<Sa<N)) = {(ai+1 = Qjy o ey Qg — ai+r71) tap € Sa(N)}a
where a;;ny = a;. Since there are at most 3 distinct 1-differences in S, (), there are

at most 3" distinct consecutive r—differences in S,(/N). However, we prove that the
size of D, (S4(N)) is much smaller than 3" due to the structure of S, (N).

Theorem 1.4 There are at most 2r + 1 distinct consecutive r-differences in Su(N).

We also consider a dual problem studied by Slater in [7]. Given ¢,6 € (0, 1), let the
set of returning times be

Ro(p) :={T:{T0} <o} ={Th <Tr <...}.

In [7, 6], Slater proved there are at most 3 distinct consecutive 1-differences in Ry(¢).
We generalize this result to consecutive r-differences.

Theorem 1.5 There are at most 2r + 1 distinct consecutive r-differences in Rg(¢).

2. DISTINCT CONSECUTIVE 7r-DIFFERENCES

In this section, we prove Theorem as a corollary in a more general setting. Given
any set A of size k, we let

Dy (A) = {(aix1 — @i, - -, Qigp — Qigp—1) 1 1 <P <K =1}
Proposition 2.1 Let B be any set of size £ and A as above. Then
|A+B| > G_T(10g2+1)Dr(A)|B|1/(T+1).

We remark that Theorem [T.1] follows immediately from Proposition [2.1] by observing
that if A has the property of distinct consecutive r-differences, then |D,.(A)| =k — r.

Proof. 1f |D,(A)| < 2r, Proposition [2.1]is trivial, so we suppose we are not in this case.
For each d € D,(A), we choose an 1 <i(d) < k — r so that

d = (@i(a)+1 = Qid)s - - - » Ai(d)4r — Di(d)4r—1)-
Let C'= A 4+ B and partition
0201U...U0t,

such that for u < v every element of C, is less than every element of C,. The proof
relies on double counting the following set

X ={(4,b) : There is a 1 < u < t such that a; +b,...,a;.. +b € C,}.
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(Lower bound) Fix b € B. Our assumption |D,(A)| > 2r will imply that |C,| > r
for all 1 < u < t, as will be seen by our choices for these sets later. Thus, for a fixed
1 <u <t—1, there are at most r of the d € D, (A) such that a;iq) + b, ..., aja)1r + b
do not all lie in the same C,,. Thus at least D(A) — (¢t — 1)r of the d € D, (A) have the
property that a;q) +0, ..., aiq+r + 0 all lie in one C,. For each such d, we have

(i(d),b) € X,
so that
(Dr(A) = (t = 1))t < [X].
(Upper bound) For each 1 < u < t, we have that C, contains at most ('C"') subsets of

r+1
size r + 1. Thus
e
X <§ .
‘ ’_ (7’—1-1)

u=1

Putting these bounds together, we have

t
le
D.(A)—(t—1)r)t < .
N R S
We choose t = |D,.(A)/(2r)] (which by assumption is at least 1) and Ci,...,C; to
differ in size by at most 1, which implies ||C,| — |C|/t| < 1. Proposition follows
from Stirling’s formula and a straightforward calculation. O

We now give an informal sketch of a proof of Theorem [1.3| below, which is similar to
Theorem We also refer the reader to the proof of Theorem 3 in [§].

Sketch of proof of Theorem[1.3. The case k < 2d is trivial, so we assume k > 2d. For
1 <m<d let A, = {am1,---,amr}t, Bm = {bm1,.-,bme, } and C,, = A,y + B,.
Partition C,, = Cpy U ... U Cyy,, as in Proposition [2.1] Double count the number of

(@10,3) + 015y - -5 QLo (i) F+ D1js - -5 Qdoy(i) T bajs - - 5 Qdoy(ivr) + baj)

such that ame, iy + bmj, - - - 5 Qo (i4r) + by all lie in a single Cy,,,. Similar to Theorem
3 in [§], this implies an inequality of the form
d |C1] |Cal
|C | |Cotgual
k— )<y .. wly) wal )

Choosing t,, = |k/(2d)] and the C,,; to differ in size by at most 1 implies Theorem 1.3
U

We now show that Theorem is best possible up to the constant. To do this
we utilize a lemma from graph theory to generalize a construction due to Ruzsa as
presented in [§].

Lemma 2.2 Let S be any set. There exists a sequence 1, . .., sy of elements of S (with
repeats) such that

(a) The ordered (r + 1)-tuples (sj,...,sjir) are distinct for 1 < j < k, where
Sj+k = Sj»
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(b) k=1S|(|S|—1),
(c) for 1 <j <k, s;+#sji1.

We remark that if the last condition were eliminated and k were replaced by |S|"!,
then we would be in search of a de Bruijn sequence. These are known to exists and
are well-studied. Indeed we modify a construction of de Bruijn sequences in the proof
below.

Proof. We define a directed graph (V, E). We define V' to be all of the |S|(]S] —1)"!
ordered tuples of size r with elements from .S such that no two consecutive elements are
the same. To define F, we say x — y if the last r — 1 elements of = are the same (and in
the same order) as the first 7 — 1 elements of y. Then the outdegree and indegree of any
vertex is |[S| — 1, and it is easy to see that (V| E) is strongly connected. By a standard

result in graph theory, there exists an Eulerian circuit in (V, E), say vy, ..., v,. Setting
s;j to be the first coordinate of v; for 1 < j <k gives the claim. OJ
Now let S be any finite integer Sidon set and s1, ..., s; be the sequence of elements

of S as given by Lemma . We define sets A, B C Z? via
A={(,s):1<i<k}, B:={(40):1<i<k}.
Since S is a Sidon set and by part (c) of Lemma ,
(G4 1,841) — (4,8), .-, (0 + 7, 8i4p) — (P + 17— 1, Si40-1)),
uniquely determines

(Siy- vy Sitr)-

By part (b) of Lemma (Siy -y Sivr) are distinet for 1 < ¢ < k — r. To achieve
subsets of Z rather than Z?, we use the standard trick to define an injection ¢ : Z? — Z
via

o(u,v) = Mu+ v,

for an M > 2(max S —min S) chosen sufficiently large so that |¢p(A)+ ¢(B)| = |A+ B].
Thus ¢(A) has the property of distinct consecutive r-differences. But

|p(A) + ¢(B)| = |A + B| < 2k|S| < |A||B|V+Y.

We remark the set ¢(A) as defined above is an example that shows 6, < 2 in Question
That is, we have

|A—|—A| < ‘A|1+2/(T+1).
This follows from the plus version of Ruzsa’s triangle inequality, which asserts
|A+ A||B| < |A+ B> < |APFY/ 0D,

Alternatively, one could compute |A + A| explicitly to see that |A[*2/("+1) is the right
order of magnitude of |A + A].
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3. DISTINCT CONSECUTIVE r-DIFFERENCES OF {na}

Proof of Theorem[1.4 Recall from the introduction that
So(N):={{na}:1<n<N}={a; <...<an} CR/Z,
and
Dy (Sa(N)) :={(ait1 — @iy -, Gy — Qiir—1) = a; € So(N)}.
To obtain an upper bound for #D,.(S,(N)). We consider the set

Dy, N) == {({ai10} = {aia}, -+ {0} —{ai1a}) -
{<ai - 1)0(}, T {(aiJrr - 1)04}

are not consecutive elements in S,(N)},

which contains D, (S,(N)). Thus to prove Theorem [I.4] it is enough to give an upper
bound of #D,(a, N). The case when {a;a}, - ,{a;1,a} are consecutive elements in
Sa(N) while {(a; —1)a},- -+, {(aisr — 1)a} are not consecutive elements in S, (NN) can
only happen if

(1) aj —1=0for some i < j <i+r.

(2) there exists aj, such that {aya} is between {(a; — 1)a} and {(a;_; — 1)a} for

somei+1<7< i+

The first case happens if and only if a; = 1 for some ¢ < j < ¢+ r. The second case
happens if and only if a, = N for some i + 1 < k < ¢ 4 r. Thus there are at most
2r + 1 distinct consecutive r-differences in the sequence S, (N). O

Next we give a description of the pattern of the consecutive r-differences in S, (V).

Lemma 3.1 Suppose {nia},{nsa}, -, {nga} are consecutive elements in S,(N).
Then {(N + 1 — ng)a}, - {(N + 1 —ny)a},{(N +1—ny)a} are consecutive ele-
ments in Sy (N).

Proof. The map {ja} — {(N + 1 — j)a} is a permutation of S,(N). Since {ma} =
1 — {—ma} and {ma} < {nsa} < --- < {nga}, it follows that {(N + 1 —n;)a} <
{(N+1—n9)a} <--- <{(N+1—mng)a}. There cannot be an m such that {ma} is
between {(N +1—n;)a} < {(N+1—n;)a}, since it would follow that {(N+1—m)a}
is in between {n;a} and {n;a}, a contradiction. O

Corollary 3.2 Suppose Lic,--- , Lia,a, Ry, -+, Rpae C R/Z are the consecutive
terms around {a} in So(N). Then (N + 1 — Rp)a, -+ ,(N +1 — Ry)a, No, (N +
1—l)a), -+ ,(N+1—Ly)a CR/Z are consecutive terms around { Na}.

Theorem 3.3 Suppose « is irrational and N s large enough so that there the 2r + 1
elements around o in R/Z are all in [0,1)
L1a7 ) LTOé7 Q, R1a7 ) RTa7
Let
L=po<---<pi <pit1 <--- < Dpa,
be a reordering of the set

{1,Ly,Lo,+-+ , L., N+2—Ry,--- ,N+2—R.}.
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Then 2r + 1 consecutive r-differences in So(N) are given by
d({pia}), i =0,1,---,2r,
where d,.(x) denote the consecutive r-difference starting from x in S,(N) and
d,({na}) = d.({pia}), for pi <n < piy1.
Proof. The 2r + 1 consecutive differences are determined by the sequence
Lia, -+, L.a,a, R, - -+, R

For r 4+ 1 of them, the consecutive r-differences are given by r + 1 consecutive numbers
in the list. Thus Ly, Lg, - - - , 1 determines the r 4+ 1 consecutive r-differences in S, (N),
which are given by d,({L;a}) for t = 1,--- ,r and d,.({a}). The remaining r of the
consecutive r-differences in S, (V) are determined by r+1 consecutive numbers around
Na. From Lemma the r neighbours around N« in R/Z are

(N+1—-R))a, - ,(N+1—-Ry)a,Na,(N+1—L)a, - ,(N+1— L)
Thus each consecutive r-difference is given by r + 1 of the consecutive numbers in
(N+1—-R)a, -+ ,(N+1—-R))a,(N+1—L)a, -, (N+1—Ly)a,

which is determined by (N +1— R,)a, -+, (N + 1 — Ry)a. In fact, they are given by
d.({(N +2— R)a}), where [ = 1,--- ,r. In summary,

D, (S.(N)) ={d,({a}),d.-({Lr1a}), - ,d.({Lra}),d.({N+2—Rya}), -+ ,d.({N+2—R.a})}
gives the 2r 4+ 1 consecutive r-differences in S, (N), and
d,({na}) = d.({(n +m)a}),
as long as n +m < N and n + m doesn’t belong to
{1,Ly,- , L,y N+2—Ry--- ,N+2—R,}.
So for any p; < n < piy1, we have n — p; > 0 thus d,.({na}) = d,({p:a}). O
Example 3.4 Toke o =logy2, r =3, and N = 100. The r neighbours around o are
T4a, 84, 94a, o, 11y, 21, 3lav C R/ Z.

Applying Theorem
{1,71,74,81,84,91, 94}

determines the 7 distinct consecutive 3-differences for Sy, 2(100). And given any
1 <n <100, ds({na}) can be found by determining which of the following intervals n
belongs to

[1,70], [71, 73], [74, 80], [81, 83], [84, 90], [91, 93], [94, 100].
Theorem 3.5 Let
S e (N1, Ng) o= {{an; + N1 <n; < Njyi=1,--- Kk}

There are at most (2r+1)k distinct consecutive r-differences in So xy . o (N1, -+, Ni).
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Proof. We sketch the proof which is similar to the case when k =1 as in Theorem [1.4]
Let N = Nj--- N, and denote the set

Sorte g (N1, oy Ng) i={ar < ... <an}

Then the distinct consecutive r-differences can be represented by the (r + 1)-tuple
(@i, @it1,- -+ ,a;4-) such that

A — Ay Qi —
are not consecutive elements in S, z, ... A, (N1, -+, Ng). This can only happen if one of
the coordinates of the tuple (a;, @;+1, - ,@i+r41) is of the form a + A; for some j, or
there is a point of the form N;a + A; between a; and a,4,. This gives at most 2r 4 1
r-tuples (a;, a;y1,- -+, a;,) for each j. O
Theorem 3.6 Let B be a finite subset of R/Z, then any subset A of B has at most
__1 |A+ B|
C|B|'m T 4
|B|
1
distinct consecutive r-differences for some C,. > 0. One may choose C, = (27"1%
r41)!7+1

We omit the proof, as it is nearly identical to that of Proposition 2.1 We remark
that Theorem is a generalization of Theorem 1 in [I]. We now show that up to the
constant, Theorem is best possible. Let S = {1,...,|S|}. By Lemma there
exists si,..., s, such that

e The ordered r-tuples (s;, ..., sj4,—1) are distinct for 1 < j < k, where 5,4 = s;,
o k=1S|(|S] - 1),
o for 1 <j <k, s;#5j41.

We define a set A = {a; < ... < ay} where

%
a; = E Sj.
Jj=1

Then A has distinct consecutive r-differences. Note that a; < |S]"™!, so we let B =
{0,..., N} where N = |S|"*!, so that A C B. Note that
Al = [8[",  |B]=[8]"",

so that |A| < |B|'*"Y+D To make these subsets of R/Z, we consider the map ¢ :
7Z — R/Z via ¢(x) = za for a sufficiently small «.

4. DISTINCT CONSECUTIVE r-DIFFERENCES OF RETURNING TIMES
We recall that for 0 < ¢, 60 < 1, we have the set of returning times
Ry(p) ={T : {T0} < ¢} ={Th < Tr < ...}.

Proof of Theorem[1.5. We prove this theorem by induction on r. Let s € Ry(¢) and
d.(s) € Z" such that s is followed by

s+d.(s)V s+ do(s)V +d. ()P, s+ Z d,(s)®
I=1
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in Ry(¢), where d,(s)) denotes the I"™ coordinate of d,(s). When r = 1, the problem
was studied by Slater in [7]. Let a, b be the least positive integers such that

a:={ab} < ¢, f:=1—{b0} < ¢.

Then from the definition of a,b, we have ¢ > max(«, ) and ¢ < a + . There are
three types of d;(s) given as below

di(s) = a, 0<{sb} <op—a
a+b, ¢—a<{sf}<p (1)
(s) = b, B <A{st} <o

This means there is a partition of [0,¢) into three intervals, each of which deter-
mines uniquely d;(s) depending where {sf} lies in the interval [0, ¢). Now suppose, by
induction, there are at most (2r — 1) distinct consecutive (r — 1)-differences in Ry(¢)
which are determined by a partition of [0,¢) into (2r — 1) intervals. That is to say
there are numbers 0 < g; < ¢, 1 = 1,--- ,2r — 2, such that

O=go<q < < gor2<go1=0¢

gives a partition of [0,¢) into at most (2r — 1) intervals. There is an one-to-one
correspondence between [g;, ¢;+1) and a consecutive (r — 1)-difference in Ry(¢) (note
that if there are less than 2r — 1 intervals then we allow g; = g;11). Now we consider a
consecutive r-difference in Ry(¢). Depending on whether {s0} lies in [0, p—«), [p—a, )
or [B,¢), s is either followed by s + a,s + a + b,s + b in Ry(¢), respectively. Thus
{(s+ di(s))0} is determined as below:

di(s) = a, a <{(s+a)f} <o,
+0, ¢—B<A{(s+a+b)l} <a, (2)

dy(s) = b, 0< {(s+b)0} <o—B.

It follows that ¢ — 3, a,go,-..,g2r—1 gives rise to a partition of [0,¢) into at most
(2r + 1) intervals, each of which corresponds uniquely to a consecutive r-difference,
depending on which one of these intervals {(s + di(s))8} lies. In fact, depending on
which intervals of [g;, gi11), [0, —f) (repectively [p— [, @), [a, ¢)) intersect, the possible
r — 1 returning times following (s, s + b) (respectively (s, s+ a+b), (s, s + a)) will be
uniquely determined.
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To illustrate, we give the example of dy(s). For ds(s), there are three possibilities
depending on «, # and ¢.

0<p—a<op—f<pf<a<o:

;

da(s) = (a,b), {s0} €10,0—q)
dy(s) = (a+b,a+b), {sO} €p—a,20—a)
ds(s) = (a + b,b), {s0} € 26 — «, B) (3)
dy(s) = (b, a), {s0} € 8,90 —a+5)
| da(s) = (b,a+D), {sO} elp—a+p,0)
0<¢p—-f<p—a<a<f<o¢:
[ do(s) = (a,a+0),  {s8}€[0,8—a)
dy(s) = (a,b), {s0t €8 —a,¢— )
do(s) = (a + b, a), {s0} € [¢p — a,p — 2a + ) (4)
da(s) = (a+b,a+b), {sO}€[p—2a+p,05)
[ da(s) = (b, a), {s0} € 18,9)

ds(s) = (a,a), {s0} € [0, ¢ — 2a)
do(s) = (a,a+b), {s0} € [p—2a,5— «)

 da(s) = (a,b), {s0} € [B—a,¢— ) (5)
dy(s) = (a+b,a), {s0}€lp—a,p)

[ da(s) = (b, a), {s0} € 18,9)

g

For rational # there is a relation between the consecutive r-differences in Ry(¢) and
Sg(N), which can be found in [7]. Suppose 6§ = }—;. Let a = %/, where pp’ =1 (mod q).
Then we have

N
{1<s<q:{sb}<—}=q-{{sa}:1 < <N},
q
by mapping s to s = sp’ (mod ¢). Thus the consecutive r-differences of the set
N
{n <ql {s0} < E}

are ¢ times the consecutive r-differences of the set

{{sa},1 < s < N}
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For general 6 and ¢, more complications will appear depending on representation of ¢
in terms of convergents of continued fraction expansion of 6.
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