ON DISTINCT CONSECUTIVE r-DIFFERENCES.

JUNXIAN LI AND GEORGE SHAKAN

Abstract

Let $A \subset \mathbb{R}$ be finite and $D_{r}(A)$ be the number of distinct consecutive r-differences of A. We show $|A+B| \gg_{r} D_{r}(A)|B|^{1 /(r+1)}$ for any finite $B \subset \mathbb{R}$. Utilizing de Bruijn sequences, we construct sets for which the above inequality is sharp. For the set $\{n \alpha(\bmod 1)\}_{1 \leq n \leq N}$, we improve immensely upon the above inequality and obtain sharp bounds for the number of distinct consecutive r-differences, generalizing Steinhaus' three gap theorem. We also consider a dual problem concerning the number of distinct consecutive r-differences of $\{T:\{T \theta\}<\phi\}$, where $\theta \in \mathbb{R}$ and $\phi \in[0,1]$, generalizing a result of Slater.

Contents

1. Introduction 1
2. Distinct consecutive r-differences 3
3. Distinct consecutive r-differences of $\{n \alpha\}$ 6
4. Distinct consecutive r-differences of returning times 8
Acknowledgments 11
References 11

1. Introduction

Given $A, B \subset \mathbb{R}$ finite, we define the sumset

$$
A+B=\{a+b: a \in A, b \in B\} .
$$

Let $A=\left\{a_{1}<\ldots<a_{k}\right\}$. We say A is convex if for all $1<i<k$

$$
a_{i}-a_{i-1}<a_{i+1}-a_{i} .
$$

Hegyvári [4], answering a question of Erdös, proved that if A is convex then

$$
|A+A| \gg|A| \log |A| / \log \log |A| .
$$

Konyagin [5] and Garaev [3] showed if A is a convex set then

$$
|A \pm A| \gg|A|^{3 / 2}
$$

while Schoen and Shkredov improved this to

$$
|A-A| \gg|A|^{8 / 5} \log ^{-2 / 5}|A|, \quad|A+A| \gg|A|^{14 / 9} \log ^{-2 / 3}|A| .
$$

Elekes, Nathanson, and Ruzsa [2] then showed that for any convex set A and any B,

$$
|A+B| \gg|A||B|^{1 / 2}
$$

2010 Mathematics Subject Classification. Primary: 11B13, 05B10, Secondary: 11B30.
Key words and phrases. additive combinatorics, sumset estimates, convex sets .

Finally Solymosi [8], generalized this to show that if the differences $a_{i+1}-a_{i}$ are distinct for $1 \leq i \leq k-1$, then

$$
|A+B| \gg|A||B|^{1 / 2}
$$

and a construction in the same paper, due to Ruzsa, shows this bound is sharp.
Our first goal is to generalize this result of Solymosi [8]. Fix $r \geq 1$ an integer. We say a set A has distinct consecutive r-differences if for $1 \leq i \leq k-r$,

$$
\left(a_{i+1}-a_{i}, \ldots, a_{i+r}-a_{i+r-1}\right)
$$

are distinct.
Theorem 1.1 Let A and B be finite subsets of real numbers with $|A|=k$ and $|B|=\ell$ and suppose A has distinct consecutive r-differences. Then

$$
|A+B| \gg e^{-r(\log 2+1)} k \ell^{1 /(r+1)}
$$

The implied constant is absolute.
The case $r=1$ is Theorem 1.1] in [8]. Theorem 1.1] applies to more general sets than addressed in [8] but our bound is smaller by a power of ℓ when $r>1$. We also show below that Theorem 1.1 is best possible, up to the constant, utilizing ideas from the construction of de Bruijn sequences.

Here we study only the non-symmetric version of finding lower bounds for $|A+B|$ where A has distinct consecutive r-differences. We expect improvements to Theorem 1.1 in the case $B=A$.

Question 1.2 What is the largest θ_{r} such that for every $A \subset \mathbb{Z}$ with distinct consecutive r-differences, one has

$$
|A+A| \gg_{r}|A|^{1+\theta_{r} /(r+1)}
$$

Theorem 1.1, with $B=A$, asserts that $\theta_{r} \geq 1$, while we provide a construction below that shows $\theta_{r} \leq 2$. We remind the reader that any convex set has distinct consecutive 1-differences. So Question 1.2 generalizes the aforementioned question of Erdös regarding convex sets.

There is a generalization of Theorem 3 in [8] for distinct consecutive r-differences, which requires the following definition. Let A_{1}, \ldots, A_{d} be nonempty finite subsets of real numbers all of cardinality k. We say that A_{1}, \ldots, A_{d} have distinct d-tuples of consecutive r-differences if there exists permutations $\sigma_{1}, \ldots, \sigma_{d} \in S_{k}$ such that the ($d r$)-tuples,

$$
\left(a_{\sigma_{1}(i+1)}-a_{\sigma_{1}(i)}, \ldots, a_{\sigma_{1}(i+r)}-a_{\sigma_{1}(i+r-1)}, \ldots, a_{\sigma_{d}(i+1)}-a_{\sigma_{d}(i)}, \ldots, a_{\sigma_{d}(i+r)}-a_{\sigma_{d}(i+r-1)}\right)
$$

are distinct for $1 \leq i \leq k-r$.
Theorem 1.3 Suppose A_{1}, \ldots, A_{d} have distinct d-tuples of consecutive r-differences. Let $B_{1}, \ldots B_{d}$ be nonempty finite sets of real numbers of cardinality $\ell_{1}, \ldots, \ell_{d}$. Then

$$
\left|A_{1}+B_{1}\right| \cdots\left|A_{d}+B_{d}\right| \gg_{\beta, d}\left(k^{d r+1} \ell_{1} \cdots \ell_{d}\right)^{1 /(d(r+1))} .
$$

The proof of Theorem (1.1) can be used to obtain an upper bound for the size of distinct r-differences of the set A. This upper bound is not sharp when the set A
has some additive structure. In particular, let α be a real irrational number and we consider the set of points

$$
S_{\alpha}(N):=\{\{n \alpha\}: 1 \leq n \leq N\}=\left\{a_{1}<\ldots<a_{N}\right\} \subset \mathbb{R} / \mathbb{Z}
$$

Here we identify \mathbb{R} / \mathbb{Z} with $[0,1)$ and then use the natural ordering on $[0,1)$. Since $|A+A| \ll|A|$, the above theory suggests that A has few distinct consecutive r differences. In fact, in 1957 Steinhaus conjectured that there are at most 3 distinct consecutive 1-differences in $S_{\alpha}(N)$. This was proved by Vera Sós in [9, 10] as well as Świerczkowski in [11]. Now we consider the set of distinct consecutive r-differences in $S_{\alpha}(N)$ defined via

$$
D_{r}\left(S_{\alpha}(N)\right):=\left\{\left(a_{i+1}-a_{i}, \ldots, a_{i+r}-a_{i+r-1}\right): a_{i} \in S_{\alpha}(N)\right\}
$$

where $a_{i+N}=a_{i}$. Since there are at most 3 distinct 1-differences in $S_{\alpha}(N)$, there are at most 3^{r} distinct consecutive r-differences in $S_{\alpha}(N)$. However, we prove that the size of $D_{r}\left(S_{\alpha}(N)\right)$ is much smaller than 3^{r} due to the structure of $S_{\alpha}(N)$.
Theorem 1.4 There are at most $2 r+1$ distinct consecutive r-differences in $S_{\alpha}(N)$.
We also consider a dual problem studied by Slater in [7]. Given $\phi, \theta \in(0,1)$, let the set of returning times be

$$
R_{\theta}(\phi):=\{T:\{T \theta\}<\phi\}=\left\{T_{1}<T_{2}<\ldots\right\}
$$

In [7, 6], Slater proved there are at most 3 distinct consecutive 1-differences in $R_{\theta}(\phi)$. We generalize this result to consecutive r-differences.
Theorem 1.5 There are at most $2 r+1$ distinct consecutive r-differences in $R_{\theta}(\phi)$.

2. Distinct consecutive r-Differences

In this section, we prove Theorem 1.1 as a corollary in a more general setting. Given any set A of size k, we let

$$
D_{r}(A)=\left\{\left(a_{i+1}-a_{i}, \ldots, a_{i+r}-a_{i+r-1}\right): 1 \leq i \leq k-r\right\} .
$$

Proposition 2.1 Let B be any set of size ℓ and A as above. Then

$$
|A+B| \gg e^{-r(\log 2+1)} D_{r}(A)|B|^{1 /(r+1)}
$$

We remark that Theorem 1.1 follows immediately from Proposition 2.1 by observing that if A has the property of distinct consecutive r-differences, then $\left|\overline{D_{r}}(A)\right|=k-r$.
Proof. If $\left|D_{r}(A)\right| \leq 2 r$, Proposition 2.1 is trivial, so we suppose we are not in this case.
For each $d \in D_{r}(A)$, we choose an $1 \leq i(d) \leq k-r$ so that

$$
d=\left(a_{i(d)+1}-a_{i(d)}, \ldots, a_{i(d)+r}-a_{i(d)+r-1}\right) .
$$

Let $C=A+B$ and partition

$$
C=C_{1} \cup \ldots \cup C_{t}
$$

such that for $u<v$ every element of C_{u} is less than every element of C_{v}. The proof relies on double counting the following set

$$
X=\left\{(i, b): \text { There is a } 1 \leq u \leq t \text { such that } a_{i}+b, \ldots, a_{i+r}+b \in C_{u}\right\}
$$

(Lower bound) Fix $b \in B$. Our assumption $\left|D_{r}(A)\right|>2 r$ will imply that $\left|C_{u}\right| \geq r$ for all $1 \leq u \leq t$, as will be seen by our choices for these sets later. Thus, for a fixed $1 \leq u \leq t-1$, there are at most r of the $d \in D_{r}(A)$ such that $a_{i(d)}+b, \ldots, a_{i(d)+r}+b$ do not all lie in the same C_{u}. Thus at least $D(A)-(t-1) r$ of the $d \in D_{r}(A)$ have the property that $a_{i(d)}+b, \ldots, a_{i(d)+r}+b$ all lie in one C_{u}. For each such d, we have

$$
(i(d), b) \in X
$$

so that

$$
\left(D_{r}(A)-(t-1) r\right) \ell \leq|X| .
$$

(Upper bound) For each $1 \leq u \leq t$, we have that C_{u} contains at most $\binom{\left|C_{u}\right|}{r+1}$ subsets of size $r+1$. Thus

$$
|X| \leq \sum_{u=1}^{t}\binom{\left|C_{u}\right|}{r+1}
$$

Putting these bounds together, we have

$$
\left(D_{r}(A)-(t-1) r\right) \ell \leq \sum_{u=1}^{t}\binom{\left|C_{u}\right|}{r+1}
$$

We choose $t=\left\lfloor D_{r}(A) /(2 r)\right\rfloor$ (which by assumption is at least 1) and C_{1}, \ldots, C_{t} to differ in size by at most 1 , which implies $\left|\left|C_{u}\right|-|C| / t\right| \leq 1$. Proposition 2.1 follows from Stirling's formula and a straightforward calculation.

We now give an informal sketch of a proof of Theorem 1.3 below, which is similar to Theorem 1.1. We also refer the reader to the proof of Theorem 3 in 8 .

Sketch of proof of Theorem 1.3. The case $k<2 d$ is trivial, so we assume $k \geq 2 d$. For $1 \leq m \leq d$, let $A_{m}=\left\{a_{m 1}, \ldots, a_{m k}\right\}, B_{m}=\left\{b_{m 1}, \ldots, b_{m \ell_{m}}\right\}$ and $C_{m}=A_{m}+B_{m}$. Partition $C_{m}=C_{m 1} \cup \ldots \cup C_{m t_{m}}$ as in Proposition 2.1. Double count the number of

$$
\left(a_{1 \sigma_{1}(i)}+b_{1 j}, \ldots, a_{1, \sigma_{1}(i+r)}+b_{1 j}, \ldots, a_{d \sigma_{d}(i)}+b_{d j}, \ldots, a_{d, \sigma_{d}(i+r)}+b_{d j}\right)
$$

such that $a_{m \sigma_{1}(i)}+b_{m j}, \ldots, a_{m, \sigma_{1}(i+r)}+b_{m j}$ all lie in a single $C_{m u}$. Similar to Theorem 3 in [8], this implies an inequality of the form

$$
\left(k-r \sum_{m=1}^{d} t_{m}\right) \leq \sum_{u_{1}=1}^{\left|C_{1}\right|} \cdots \sum_{u_{d}=1}^{\left|C_{d}\right|}\binom{\left|C_{1, u_{1}}\right|}{r+1} \ldots\binom{\left|C_{d, u_{d}}\right|}{r+1}
$$

Choosing $t_{m}=\lfloor k /(2 d)\rfloor$ and the $C_{m j}$ to differ in size by at most 1 implies Theorem 1.3 .

We now show that Theorem 1.1 is best possible up to the constant. To do this we utilize a lemma from graph theory to generalize a construction due to Ruzsa as presented in [8].

Lemma 2.2 Let S be any set. There exists a sequence s_{1}, \ldots, s_{k} of elements of S (with repeats) such that
(a) The ordered $(r+1)$-tuples $\left(s_{j}, \ldots, s_{j+r}\right)$ are distinct for $1 \leq j \leq k$, where $s_{j+k}=s_{j}$,
(b) $k=|S|(|S|-1)^{r}$,
(c) for $1 \leq j \leq k, s_{j} \neq s_{j+1}$.

We remark that if the last condition were eliminated and k were replaced by $|S|^{r+1}$, then we would be in search of a de Bruijn sequence. These are known to exists and are well-studied. Indeed we modify a construction of de Bruijn sequences in the proof below.

Proof. We define a directed graph (V, E). We define V to be all of the $|S|(|S|-1)^{r-1}$ ordered tuples of size r with elements from S such that no two consecutive elements are the same. To define E, we say $x \rightarrow y$ if the last $r-1$ elements of x are the same (and in the same order) as the first $r-1$ elements of y. Then the outdegree and indegree of any vertex is $|S|-1$, and it is easy to see that (V, E) is strongly connected. By a standard result in graph theory, there exists an Eulerian circuit in (V, E), say v_{1}, \ldots, v_{k}. Setting s_{j} to be the first coordinate of v_{j} for $1 \leq j \leq k$ gives the claim.

Now let S be any finite integer Sidon set and s_{1}, \ldots, s_{k} be the sequence of elements of S as given by Lemma 2.2. We define sets $A, B \subset \mathbb{Z}^{2}$ via

$$
A:=\left\{\left(i, s_{i}\right): 1 \leq i \leq k\right\}, \quad B:=\{(i, 0): 1 \leq i \leq k\} .
$$

Since S is a Sidon set and by part (c) of Lemma 2.2 ,

$$
\left(\left(i+1, s_{i+1}\right)-\left(i, s_{i}\right), \ldots,\left(i+r, s_{i+r}\right)-\left(i+r-1, s_{i+r-1}\right)\right)
$$

uniquely determines

$$
\left(s_{i}, \ldots, s_{i+r}\right)
$$

By part (b) of Lemma $2.2,\left(s_{i}, \ldots, s_{i+r}\right)$ are distinct for $1 \leq i \leq k-r$. To achieve subsets of \mathbb{Z} rather than \mathbb{Z}^{2}, we use the standard trick to define an injection $\phi: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ via

$$
\phi(u, v)=M u+v,
$$

for an $M>2(\max S-\min S)$ chosen sufficiently large so that $|\phi(A)+\phi(B)|=|A+B|$.
Thus $\phi(A)$ has the property of distinct consecutive r-differences. But

$$
|\phi(A)+\phi(B)|=|A+B| \leq 2 k|S| \ll|A||B|^{1 /(r+1)} .
$$

We remark the set $\phi(A)$ as defined above is an example that shows $\theta_{r} \leq 2$ in Question 1.2. That is, we have

$$
|A+A| \ll|A|^{1+2 /(r+1)}
$$

This follows from the plus version of Ruzsa's triangle inequality, which asserts

$$
|A+A||B| \leq|A+B|^{2} \ll|A|^{2+2 /(r+1)}
$$

Alternatively, one could compute $|A+A|$ explicitly to see that $|A|^{1+2 /(r+1)}$ is the right order of magnitude of $|A+A|$.

3. Distinct consecutive r-Differences of $\{n \alpha\}$

Proof of Theorem 1.4. Recall from the introduction that

$$
S_{\alpha}(N):=\{\{n \alpha\}: 1 \leq n \leq N\}=\left\{a_{1}<\ldots<a_{N}\right\} \subset \mathbb{R} / \mathbb{Z}
$$

and

$$
D_{r}\left(S_{\alpha}(N)\right):=\left\{\left(a_{i+1}-a_{i}, \ldots, a_{i+r}-a_{i+r-1}\right): a_{i} \in S_{\alpha}(N)\right\} .
$$

To obtain an upper bound for $\# D_{r}\left(S_{\alpha}(N)\right)$. We consider the set

$$
\begin{array}{r}
D_{r}(\alpha, N):=\left\{\left(\left\{a_{i+1} \alpha\right\}-\left\{a_{i} \alpha\right\}, \cdots,\left\{a_{i+r} \alpha\right\}-\left\{a_{i+r-1} \alpha\right\}\right):\right. \\
\left\{\left(a_{i}-1\right) \alpha\right\}, \cdots,\left\{\left(a_{i+r}-1\right) \alpha\right\}
\end{array}
$$

are not consecutive elements in $\left.S_{\alpha}(N)\right\}$,
which contains $D_{r}\left(S_{\alpha}(N)\right)$. Thus to prove Theorem 1.4, it is enough to give an upper bound of $\# D_{r}(\alpha, N)$. The case when $\left\{a_{i} \alpha\right\}, \cdots,\left\{a_{i+r} \alpha\right\}$ are consecutive elements in $S_{\alpha}(N)$ while $\left\{\left(a_{i}-1\right) \alpha\right\}, \cdots,\left\{\left(a_{i+r}-1\right) \alpha\right\}$ are not consecutive elements in $S_{\alpha}(N)$ can only happen if
(1) $a_{j}-1=0$ for some $i \leq j \leq i+r$.
(2) there exists a_{k} such that $\left\{a_{k} \alpha\right\}$ is between $\left\{\left(a_{j}-1\right) \alpha\right\}$ and $\left\{\left(a_{j-1}-1\right) \alpha\right\}$ for some $i+1 \leq j \leq i+r$.
The first case happens if and only if $a_{j}=1$ for some $i \leq j \leq i+r$. The second case happens if and only if $a_{k}=N$ for some $i+1 \leq k \leq i+r$. Thus there are at most $2 r+1$ distinct consecutive r-differences in the sequence $S_{\alpha}(N)$.
Next we give a description of the pattern of the consecutive r-differences in $S_{\alpha}(N)$.
Lemma 3.1 Suppose $\left\{n_{1} \alpha\right\},\left\{n_{2} \alpha\right\}, \cdots,\left\{n_{k} \alpha\right\}$ are consecutive elements in $S_{\alpha}(N)$. Then $\left\{\left(N+1-n_{k}\right) \alpha\right\}, \cdots,\left\{\left(N+1-n_{2}\right) \alpha\right\},\left\{\left(N+1-n_{1}\right) \alpha\right\}$ are consecutive elements in $S_{\alpha}(N)$.

Proof. The map $\{j \alpha\} \mapsto\{(N+1-j) \alpha\}$ is a permutation of $S_{\alpha}(N)$. Since $\{m \alpha\}=$ $1-\{-m \alpha\}$ and $\left\{n_{1} \alpha\right\}<\left\{n_{2} \alpha\right\}<\cdots<\left\{n_{k} \alpha\right\}$, it follows that $\left\{\left(N+1-n_{1}\right) \alpha\right\}<$ $\left\{\left(N+1-n_{2}\right) \alpha\right\}<\cdots<\left\{\left(N+1-n_{k}\right) \alpha\right\}$. There cannot be an m such that $\{m \alpha\}$ is between $\left\{\left(N+1-n_{i}\right) \alpha\right\}<\left\{\left(N+1-n_{j}\right) \alpha\right\}$, since it would follow that $\{(N+1-m) \alpha\}$ is in between $\left\{n_{j} \alpha\right\}$ and $\left\{n_{i} \alpha\right\}$, a contradiction.
Corollary 3.2 Suppose $L_{1} \alpha, \cdots, L_{t} \alpha, \alpha, R_{1} \alpha, \cdots, R_{k} \alpha \subset \mathbb{R} / \mathbb{Z}$ are the consecutive terms around $\{\alpha\}$ in $S_{\alpha}(N)$. Then $\left(N+1-R_{k}\right) \alpha, \cdots,\left(N+1-R_{1}\right) \alpha, N \alpha,((N+$ $\left.\left.1-l_{t}\right) \alpha\right), \cdots,\left(N+1-L_{1}\right) \alpha \subset \mathbb{R} / \mathbb{Z}$ are consecutive terms around $\{N \alpha\}$.

Theorem 3.3 Suppose α is irrational and N is large enough so that there the $2 r+1$ elements around α in \mathbb{R} / \mathbb{Z} are all in $[0,1)$

$$
L_{1} \alpha, \cdots, L_{r} \alpha, \alpha, R_{1} \alpha, \cdots, R_{r} \alpha
$$

Let

$$
1=p_{0}<\cdots<p_{i}<p_{i+1}<\cdots<p_{2 r}
$$

be a reordering of the set

$$
\left\{1, L_{1}, L_{2}, \cdots, L_{r}, N+2-R_{1}, \cdots, N+2-R_{r}\right\} .
$$

Then $2 r+1$ consecutive r-differences in $S_{\alpha}(N)$ are given by

$$
d_{r}\left(\left\{p_{i} \alpha\right\}\right), i=0,1, \cdots, 2 r,
$$

where $d_{r}(x)$ denote the consecutive r-difference starting from x in $S_{\alpha}(N)$ and

$$
d_{r}(\{n \alpha\})=d_{r}\left(\left\{p_{i} \alpha\right\}\right), \text { for } p_{i} \leq n<p_{i+1} .
$$

Proof. The $2 r+1$ consecutive differences are determined by the sequence

$$
L_{1} \alpha, \cdots, L_{r} \alpha, \alpha, R_{1} \alpha, \cdots, R_{r} \alpha
$$

For $r+1$ of them, the consecutive r-differences are given by $r+1$ consecutive numbers in the list. Thus $L_{1}, L_{2}, \cdots, 1$ determines the $r+1$ consecutive r-differences in $S_{\alpha}(N)$, which are given by $d_{r}\left(\left\{L_{t} \alpha\right\}\right)$ for $t=1, \cdots, r$ and $d_{r}(\{\alpha\})$. The remaining r of the consecutive r-differences in $S_{\alpha}(N)$ are determined by $r+1$ consecutive numbers around $N \alpha$. From Lemma 3.1, the r neighbours around $N \alpha$ in \mathbb{R} / \mathbb{Z} are

$$
\left(N+1-R_{r}\right) \alpha, \cdots,\left(N+1-R_{1}\right) \alpha, N \alpha,\left(N+1-L_{r}\right) \alpha, \cdots,\left(N+1-L_{1}\right) \alpha
$$

Thus each consecutive r-difference is given by $r+1$ of the consecutive numbers in

$$
\left(N+1-R_{r}\right) \alpha, \cdots,\left(N+1-R_{1}\right) \alpha,\left(N+1-L_{r}\right) \alpha, \cdots,\left(N+1-L_{1}\right) \alpha
$$

which is determined by $\left(N+1-R_{r}\right) \alpha, \cdots,\left(N+1-R_{1}\right) \alpha$. In fact, they are given by $d_{r}\left(\left\{\left(N+2-R_{l}\right) \alpha\right\}\right)$, where $l=1, \cdots, r$. In summary,
$D_{r}\left(S_{\alpha}(N)\right)=\left\{d_{r}(\{\alpha\}), d_{r}\left(\left\{L_{1} \alpha\right\}\right), \cdots, d_{r}\left(\left\{L_{r} \alpha\right\}\right), d_{r}\left(\left\{N+2-R_{1} \alpha\right\}\right), \cdots, d_{r}\left(\left\{N+2-R_{r} \alpha\right\}\right)\right\}$ gives the $2 r+1$ consecutive r-differences in $S_{\alpha}(N)$, and

$$
d_{r}(\{n \alpha\})=d_{r}(\{(n+m) \alpha\}),
$$

as long as $n+m \leq N$ and $n+m$ doesn't belong to

$$
\left\{1, L_{1}, \cdots, L_{r}, N+2-R_{1} \cdots, N+2-R_{r}\right\}
$$

So for any $p_{i} \leq n<p_{i+1}$, we have $n-p_{i} \geq 0$ thus $d_{r}(\{n \alpha\})=d_{r}\left(\left\{p_{i} \alpha\right\}\right)$.
Example 3.4 Take $\alpha=\log _{10} 2$, $r=3$, and $N=100$. The r neighbours around α are

$$
74 \alpha, 84 \alpha, 94 \alpha, \alpha, 11 \alpha, 21 \alpha, 31 \alpha \subset \mathbb{R} / \mathbb{Z}
$$

Applying Theorem 3.3,

$$
\{1,71,74,81,84,91,94\}
$$

determines the 7 distinct consecutive 3-differences for $S_{\log _{10} 2}$ (100). And given any $1 \leq n \leq 100, d_{3}(\{n \alpha\})$ can be found by determining which of the following intervals n belongs to

$$
[1,70],[71,73],[74,80],[81,83],[84,90],[91,93],[94,100] .
$$

Theorem 3.5 Let

$$
S_{\alpha, \lambda_{1}, \cdots, \lambda_{k}}\left(N_{1}, \cdots, N_{k}\right):=\left\{\left\{\alpha n_{i}+\lambda_{i}\right\} \mid 1 \leq n_{i} \leq N_{i}, i=1, \cdots, k\right\} .
$$

There are at most $(2 r+1) k$ distinct consecutive r-differences in $S_{\alpha, \lambda_{1}, \cdots, \lambda_{k}}\left(N_{1}, \cdots, N_{k}\right)$.

Proof. We sketch the proof which is similar to the case when $k=1$ as in Theorem 1.4 . Let $N=N_{1} \cdots N_{k}$ and denote the set

$$
S_{\alpha, \lambda_{1}, \cdots, \lambda_{k}}\left(N_{1}, \cdots, N_{k}\right):=\left\{a_{1}<\ldots<a_{N}\right\} .
$$

Then the distinct consecutive r-differences can be represented by the $(r+1)$-tuple $\left(a_{i}, a_{i+1}, \cdots, a_{i+r}\right)$ such that

$$
a_{i}-\alpha, \cdots, a_{i+r}-\alpha
$$

are not consecutive elements in $S_{\alpha, \lambda_{1}, \cdots, \lambda_{k}}\left(N_{1}, \cdots, N_{k}\right)$. This can only happen if one of the coordinates of the tuple $\left(a_{i}, a_{i+1}, \cdots, a_{i+r+1}\right)$ is of the form $\alpha+\lambda_{j}$ for some j, or there is a point of the form $N_{j} \alpha+\lambda_{j}$ between a_{i} and a_{i+1}. This gives at most $2 r+1$ r-tuples ($a_{i}, a_{i+1}, \cdots, a_{i+r}$) for each j.
Theorem 3.6 Let B be a finite subset of \mathbb{R} / \mathbb{Z}, then any subset A of B has at most

$$
C_{r}|B|^{1-\frac{1}{r+1}} \frac{|A+B|}{|B|}+r
$$

distinct consecutive r-differences for some $C_{r}>0$. One may choose $C_{r}=\frac{2 r^{1-\frac{1}{r+1}}}{(r+1)!\frac{1}{r+1}}$.
We omit the proof, as it is nearly identical to that of Proposition 2.1. We remark that Theorem 3.6 is a generalization of Theorem 1 in [1]. We now show that up to the constant, Theorem 3.6 is best possible. Let $S=\{1, \ldots,|S|\}$. By Lemma 2.2, there exists s_{1}, \ldots, s_{k} such that

- The ordered r-tuples $\left(s_{j}, \ldots, s_{j+r-1}\right)$ are distinct for $1 \leq j \leq k$, where $s_{j+k}=s_{j}$,
- $k=|S|(|S|-1)^{r-1}$,
- for $1 \leq j \leq k, s_{j} \neq s_{j+1}$.

We define a set $A=\left\{a_{1}<\ldots<a_{k}\right\}$ where

$$
a_{i}:=\sum_{j=1}^{i} s_{j} .
$$

Then A has distinct consecutive r-differences. Note that $a_{k} \leq|S|^{r+1}$, so we let $B=$ $\{0, \ldots, N\}$ where $N=|S|^{r+1}$, so that $A \subset B$. Note that

$$
|A| \asymp|S|^{r}, \quad|B|=|S|^{r+1}
$$

so that $|A| \asymp|B|^{1-1 /(r+1)}$. To make these subsets of \mathbb{R} / \mathbb{Z}, we consider the map ϕ : $\mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ via $\phi(x)=x \alpha$ for a sufficiently small α.

4. Distinct consecutive r-Differences of Returning times

We recall that for $0<\phi, \theta<1$, we have the set of returning times

$$
R_{\theta}(\phi)=\{T:\{T \theta\}<\phi\}=\left\{T_{1}<T_{2}<\ldots\right\} .
$$

Proof of Theorem 1.5. We prove this theorem by induction on r. Let $s \in R_{\theta}(\phi)$ and $d_{r}(s) \in \mathbb{Z}^{r}$ such that s is followed by

$$
s+d_{r}(s)^{(1)}, s+d_{r}(s)^{(1)}+d_{r}(s)^{(2)}, \cdots, s+\sum_{l=1}^{r} d_{r}(s)^{(l)}
$$

in $R_{\theta}(\phi)$, where $d_{r}(s)^{(l)}$ denotes the $l^{t h}$ coordinate of $d_{r}(s)$. When $r=1$, the problem was studied by Slater in [7]. Let a, b be the least positive integers such that

$$
\alpha:=\{a \theta\}<\phi, \beta:=1-\{b \theta\}<\phi .
$$

Then from the definition of a, b, we have $\phi>\max (\alpha, \beta)$ and $\phi \leq \alpha+\beta$. There are three types of $d_{1}(s)$ given as below

$$
\begin{cases}d_{1}(s)=a, & 0 \leq\{s \theta\}<\phi-\alpha \tag{1}\\ d_{1}(s)=a+b, & \phi-\alpha \leq\{s \theta\}<\beta \\ d_{1}(s)=b, & \beta \leq\{s \theta\}<\phi .\end{cases}
$$

This means there is a partition of $[0, \phi)$ into three intervals, each of which determines uniquely $d_{1}(s)$ depending where $\{s \theta\}$ lies in the interval $[0, \phi)$. Now suppose, by induction, there are at most $(2 r-1)$ distinct consecutive $(r-1)$-differences in $R_{\theta}(\phi)$ which are determined by a partition of $[0, \phi)$ into $(2 r-1)$ intervals. That is to say there are numbers $0<g_{i}<\phi, i=1, \cdots, 2 r-2$, such that

$$
0=g_{0}<g_{1} \leq \cdots \leq g_{2 r-2}<g_{2 r-1}=\phi
$$

gives a partition of $[0, \phi)$ into at most $(2 r-1)$ intervals. There is an one-to-one correspondence between $\left[g_{i}, g_{i+1}\right)$ and a consecutive $(r-1)$-difference in $R_{\theta}(\phi)$ (note that if there are less than $2 r-1$ intervals then we allow $g_{i}=g_{i+1}$). Now we consider a consecutive r-difference in $R_{\theta}(\phi)$. Depending on whether $\{s \theta\}$ lies in $[0, \phi-\alpha)$, $[\phi-\alpha, \beta)$ or $[\beta, \phi), s$ is either followed by $s+a, s+a+b, s+b$ in $R_{\theta}(\phi)$, respectively. Thus $\left\{\left(s+d_{1}(s)\right) \theta\right\}$ is determined as below:

$$
\begin{cases}d_{1}(s)=a, & \alpha \leq\{(s+a) \theta\}<\phi \tag{2}\\ d_{1}(s)=a+b, & \phi-\beta \leq\{(s+a+b) \theta\}<\alpha \\ d_{1}(s)=b, & 0 \leq\{(s+b) \theta\}<\phi-\beta\end{cases}
$$

It follows that $\phi-\beta, \alpha, g_{0}, \ldots, g_{2 r-1}$ gives rise to a partition of $[0, \phi)$ into at most $(2 r+1)$ intervals, each of which corresponds uniquely to a consecutive r-difference, depending on which one of these intervals $\left\{\left(s+d_{1}(s)\right) \theta\right\}$ lies. In fact, depending on which intervals of $\left[g_{i}, g_{i+1}\right),[0, \phi-\beta)$ (repectively $[\phi-\beta, \alpha),[\alpha, \phi)$) intersect, the possible $r-1$ returning times following $(s, s+b)$ (respectively $(s, s+a+b),(s, s+a)$) will be uniquely determined.

To illustrate, we give the example of $d_{2}(s)$. For $d_{2}(s)$, there are three possibilities depending on α, β and ϕ.

$$
\begin{align*}
& 0 \leq \phi-\alpha<\phi-\beta<\beta<\alpha<\phi: \\
& \left\{\begin{array}{llrl}
d_{2}(s) & =(a, b), & & \{s \theta] \in[0, \phi-\alpha) \\
d_{2}(s) & =(a+b, a+b), & & \{s \theta\} \in[\phi-\alpha, 2 \beta-\alpha) \\
d_{2}(s) & =(a+b, b), & & \{s \theta\} \in[2 \beta-\alpha, \beta) \\
d_{2}(s)=(b, a), & & \{s \theta\} \in[\beta, \phi-\alpha+\beta) \\
d_{2}(s)=(b, a+b), & & \{s \theta\} \in[\phi-\alpha+\beta, \phi)
\end{array}\right. \tag{3}\\
& 0 \leq \phi-\beta<\phi-\alpha<\alpha<\beta<\phi \text { : } \\
& \begin{cases}d_{2}(s)=(a, a+b), & \{s \theta\} \in[0, \beta-\alpha) \\
d_{2}(s)=(a, b), & \{s \theta\} \in[\beta-\alpha, \phi-\alpha) \\
d_{2}(s)=(a+b, a), & \{s \theta\} \in[\phi-\alpha, \phi-2 \alpha+\beta) \\
d_{2}(s)=(a+b, a+b), & \{s \theta\} \in[\phi-2 \alpha+\beta, \beta) \\
d_{2}(s)=(b, a), & \{s \theta\} \in[\beta, \phi)\end{cases} \tag{4}\\
& 0 \leq \phi-\beta<\alpha<\phi-\alpha<\beta<\phi: \\
& \left\{\begin{array}{lll}
d_{2}(s)=(a, a), & & \{s \theta\} \in[0, \phi-2 \alpha) \\
d_{2}(s)=(a, a+b), & & \{s \theta\} \in[\phi-2 \alpha, \beta-\alpha) \\
d_{2}(s)=(a, b), & & \{s \theta] \in[\beta-\alpha, \phi-\alpha) \\
d_{2}(s)=(a+b, a), & & \{s \theta\} \in[\phi-\alpha, \beta) \\
d_{2}(s)=(b, a), & & \{s \theta\} \in[\beta, \phi)
\end{array}\right. \tag{5}
\end{align*}
$$

For rational θ there is a relation between the consecutive r-differences in $R_{\theta}(\phi)$ and $S_{\theta}(N)$, which can be found in [7]. Suppose $\theta=\frac{p}{q}$. Let $\alpha=\frac{p^{\prime}}{q}$, where $p p^{\prime} \equiv 1(\bmod q)$. Then we have

$$
\left\{1 \leq s \leq q:\{s \theta\}<\frac{N}{q}\right\}=q \cdot\left\{\left\{s^{\prime} \alpha\right\}: 1 \leq s^{\prime} \leq N\right\}
$$

by mapping s to $s \equiv s p^{\prime}(\bmod q)$. Thus the consecutive r-differences of the set

$$
\left\{n \leq q \left\lvert\,\{s \theta\}<\frac{N}{q}\right.\right\}
$$

are q times the consecutive r-differences of the set

$$
\{\{s \alpha\}, 1 \leq s \leq N\}
$$

For general θ and ϕ, more complications will appear depending on representation of ϕ in terms of convergents of continued fraction expansion of θ.

Acknowledgments

The authors would like to thank Antal Balog, Oliver Roche-Newton and Alexandru Zaharescu for useful discussions. We also thank Boris Bukh for useful suggestions to an earlier draft.

References

[1] Antal Balog, Andrew Granville, and Jozsef Solymosi. Gaps between fractional parts, and additive combinatorics. Q. J. Math., 68(1):1-11, 2017.
[2] György Elekes, Melvyn B. Nathanson, and Imre Z. Ruzsa. Convexity and sumsets. J. Number Theory, 83(2):194-201, 2000.
[3] M. Z. Garaev. On lower bounds for the L_{1}-norm of some exponential sums. Mat. Zametki, 68(6):842-850, 2000.
[4] N. Hegyvári. On consecutive sums in sequences. Acta Math. Hungar., 48(1-2):193-200, 1986.
[5] SV Konyagin. An estimate of the l1-norm of an exponential sum. In The Theory of Approximations of Functions and Operators. Abstracts of Papers of the International Conference, Dedicated to Stechkins 80th Anniversary, Ekaterinbourg, pages 88-89, 2000.
[6] N. B. Slater. The distribution of the integers N for which $\theta N<\phi$. Proc. Cambridge Philos. Soc., 46:525-534, 1950.
[7] Noel B. Slater. Gaps and steps for the sequence $n \theta$ mod 1. Proc. Cambridge Philos. Soc., 63:11151123, 1967.
[8] József Solymosi. On distinct consecutive differences. arXiv preprint math/0503069, 2005.
[9] V. T. Sós. On the theory of diophantine approximations. I. Acta Math. Acad. Sci. Hungar, 8:461472, 1957.
[10] V. T. Sós. On the distribution mod 1 of the sequence na. Ann. Univ. Sci. Budapest Eötvös Sect. Math., 1:127-134, 1958.
[11] S Świerczkowski. On successive settings of an arc on the circumference of a circle. Fundamenta Mathematicae, 46(2):187-189, 1958.

University of Illinois Urbana-Champaign, Urbana, Illinois 61801
E-mail address: jli135@illinois.edu
University of Illinois Urbana-Champaign, Urbana, Illinois 61801
E-mail address: george.shakan@gmail.com

