LARGE VALUES OF DIRICHLET L-FUNCTIONS AT ZEROS OF A CLASS OF
L-FUNCTIONS

JUNXIAN LI

ABSTRACT. In this paper, we are interested in obtaining large values of Dirichlet L-functions evalu-

ated at zeros of a class of L-functions, that is, max p(,)—=o L(p, x), where x is a primitive Dirichlet
T<Sp<2T

character and F' belongs to a class of L-functions. The class we consider includes L-functions asso-

ciated to automorphic representations of GL(n) over Q.

1. INTRODUCTION

The study of the value distribution of the Riemann zeta function dates back to the work of H.
Bohr. Using the theory of almost periodic functions, he showed that ((s) takes any nonzero complex
value z infinitely often in any strip 1 < R(s) < 1+ €. Later in [6], together with B. Jessen, he showed
that log (o + it) has a continuous limiting distribution on the complex plane for any o > % On the
critical line, A. Selberg [42, 41] showed that log |C(% + it)| is approximately Gaussian distributed in
the sense that

log |¢(5 +it)|

1 > 2
> /\} — —/ e " 2dx, as T — . (1.1)
\/ 3 loglog T V21 JA

This implies that the typical size of [((4 +it)| is exp (\ /1 loglog T). Regarding the exceptional large
values of [((3 +it)|, the Lindeldf Hypothesis asserts that [((3 + it)| = o(t¢) for any € > 0. Assuming
the Riemann Hypothesis, one can show ([34, 14]) that

|C(é—|—it)|=0(exp (c log ¢ )), as t — oo,

loglogt

1
7 meas {t eT,2T]:

for some absolute constant ¢. D. Farmer, S. Gonek, and C. Hughes [20] conjectured that the maximum
value of ((3 +it) for ¢ in the interval [0, T] is of order exp ((% + 0(1)) Vlog T'loglog T). For omega
results, E. C. Titchmarsh [46, Theorem 8.12] first showed that there exist arbitrarily large ¢ with

[((5 + it)| > exp(log™t) for any a < 1/2. Under the Riemann Hypothesis, H. Montgomery [37],
proved that there exist arbitrarily large values of ¢ such that

logt
1, 1
IC(5 +it)| > exp (20 loglogt>'

R. Balasubramanian and K. Ramachandra [2] showed unconditionally that there are arbitrarily large
t such that

(3 +it)] > exp ( log! ) , (1.2)

2010 Mathematics Subject Classification. 11M06, 11C26.
Key words and phrases. L-functions, large values, zeros.

1



2 JUNXIAN LI

for some positive constant c¢. Later, K. Soundararajan [43] introduced the resonance method and
obtained (1.2) for ¢ = 1+ o(1). More recently, A. Bondarenko and K. Seip in a series of papers
[9, 10, 11] proved that for any 0 < 8 < 1 and 0 < ¢ < /1 —f, if T is sufficiently large, then

. log T'log loglog T'
1
5+t . 1.3
TheeT (5 + )] > exp (C\/ loglog T (13)

The constant ¢ has been further improved by R. de la Bretéche and G. Tenenbaum [19] by a factor
of /2. Fewer results have been investigated on large values of degree ¢(s) at discrete points on the
critical line. X. Li and M. Radziwill[33] considered the large values of ((3 + it) in vertical arithmetic
progressions on the critical line. J. Kalpokas and P. Sarka [31] considered large values at generalized
Gram points. In this paper, we consider the large values of the Riemann zeta function and Dirichlet
L-functions at the zeros of a class of L-functions.

Theorem 1.1. Let x be a primitive Dirichlet L-functions with conductor ¢ > 1. If all non-trivial
zeros of L(s,x) are on the critical line R(s) = %, then for T' sufficiently large,

logT
max > ex | ——— ,
L(p,x)=0 <o)l P ( \/ ¢(g)(loglog T)2>
T<Sp<2T

where ¢ is some absolute positive constant.
This can be improved if we assume the Riemann Hypothesis holds for all Dirichlet L-functions.

Theorem 1.2. Let x and ¥ be two different primitive Dirichlet characters. Under the assumption
that the Riemann Hypothesis is true for all Dirichlet L-functions,

logT
max |L(p, >exp|cey) ———
L(p,1)=0 (.| P ( @(d) log logT>
T<Sp<2T

for some ¢ > 0, where d is the least common multiple of the conductors of x and 1. !

It is believed that the values of distinct primitive L-functions are uncorrelated. For example, it
is conjectured that different primitive Dirichlet L-functions have no common non-trivial zeros ([23,
Conjecture 3]). A. Fujii [22] proved this is true for a positive proportion of distinct primitive Dirichlet
characters. Under the Riemann Hypothesis, B. Conrey, A. Ghosh, and S. Gonek [15, 16] showed that
at most two-thirds of the zeros of ((s) are also zeros of L(s,x), where x is a non-principal Dirichlet
character. They remarked in [16] that similar results hold for Dirichlet L-functions with inequivalent
characters under the Generalized Riemann Hypothesis. R. Garunkstis and J. Kalpokas [24] gave a
lower bound for the proportion uniformly in the size of the conductors of the characters. Our result
shows that under GRH, the values of {(s) at the zeros of another primitive L-function can be almost
as large as the extreme large values of {(s) on the critical line without constraints.

Even though we were not able to obtain a bound as good as in (1.3) for individual L-functions,
we can show a bound of the same shape as in (1.3) for the value |k (s)|, the Dedekind zeta function
associated to a number field K, on the critical line. When K = Q((,), we know that (x(s) =
I1, (mod ny L(s, x). For a general number field, (x (s) can be factored into Artin L-functions associated
to irreducible representations of Gal(K/Q). The Langlands reciprocity conjecture implies that each
factor is an L-function for an irreducible cuspidal automorphic representation m of GL(m) over Q.
Thus it make sense to study the values of ((s) at the zeros of automoprhic L-functions. We give a
result in this direction.

1Under a weaker larger zero free region assumption, it was claimed [38, Theorem 1.2] that there exists of large value
of ¢'(p) of size exp (c, / %). However, the argument is problematic as it based on an upper bound for H(z),

whose derivation missed a factor of maxy< |yq|, which too big for the application.
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Theorem 1.3. Let m > 2 and 7 be an irreducible automorphic representation of GL(m) over Q.
Assuming that L(s,m) has all its non-trivial zeros on the line R(s) = %, then for sufficiently large T

logT

4

pax [¢(p)| > exp <01 \/ (loglog T)? T)2> ;
T<T<2T

for some positive constant ¢; depending on the conductor of w. Let x (mod q) be a Dirichlet character
such that L(s, ™ ® x) has no pole at s = 1. Then under the Grand Riemann Hypothesis, we have for

sufficiently large T
max |L(p,x)| > e c log T
X X —
L{p,7)=0 Py X P e loglogT |’

T<$p<2T
where co > 0 is some positive constant depending on m and x.

As a corollary, we have

Theorem 1.4. Let f be a holomorphic primitive cusp form of weight k > 1, level ¢ and let x be a
primitive Dirichlet character. If L(f,s) has all non-trivial zeros on the critical line R(s) = %, then

for T large enough,
logT
4 e —
e, 010 (o s )

T<Sp<2T

where c3 > 0 is some positive constant depending on f and x.

Automorphic L-functions are conjectured to belong to the Selberg class. The Riemann zeta func-
tion and Dirichlet L-functions are examples of degree 1 L-functions from the Selberg class. Many
results mentioned above have been generalized to L-functions in the Selberg class with additional
conditions. For example, E. Bombieri and D. Hejhal [7] proved that {log(L;(3 + it))};Z, behave like
independent Gaussian distributed random variables for certain L;’s in the Selberg class. A short inter-
val analogue was proved by E. Bombieri and A. Perelli [8]. In the same paper [8], they also considered
the simultaneous non-vanishing in the setting of the Selberg class under certain additional hypothe-
ses. Some unconditional results for cuspidal automorphic representations have been established by R.
Raghunathan [40]. In terms of large values of L-functions in the Selberg class, C. Aistleitner and L.
Pairikowaski [1] have some results for L-functions in the Selberg class with polynomial Euler products.
Our result could apply to L-functions in the Selberg class with some additional conditions (see Section
3).

2. OUTLINE

We prove a general theorem for a class of functions S*. Theorem 1.1- Theorem 1.4 will then follow.
The idea is to use the resonance method to compute

Si= Y. Lp)X(YQ1-p), (2.1)
F(p)=0
T, <Sp<T>
So= Y. X(pY(-p), (2:2)
F(p)=0
T1<Sp<T>
where F'(s) is an L-function in S, L(s, x) is a Dirichlet L-function, Ty = T+ O(1) and To = 2T+ O(1)
are chosen to be > 1/logT away from the zeros of F', X(s) = >, o), 7% and Y(s) = > -, 2. If
Rp = % and y,, = Tp,, then X(p)Y (1 — p) = |X(p)|* and thus
S
max [L(p)] > D1

F(p)=0 So
T<Sp<2T
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To compute the values of L(p,x) at zeros of F, we use the method of Conrey, Ghosh and Gonek
[17] in the study of simple zeros of ((s). To this end, we need some additional conditions on F'
and thus we restrict ourselves to a subclass 8*. This was also used by Ng [39] in studying extreme
values of ¢’(p). The size of the resonator requires a large zero free region so that the error terms
are negligible. When taking F' to be a Dirichlet L-function, the classical zero free region allows one
to take M = exp (c\/log T) for some positive constant c if there are no Siegel zeros. Even though
non-existence of Siegel zeros is still an open problem, we do know that Siegel zeros are very rare
if they exist. If we assume the non-trivial zeros of all L-functions S are on the line R(s) = %, we
can take the length of the resonator M to be T for some positive constant ¢ under the Ramanujan
Conjecture. This will give a bound of the form as in (1.2). An essential part is related to the study
of the coefficients of ‘%’(s) in arithmetic progressions. We employ a variant of Perron’s formula by J.
Liu and Y. Ye [35] to avoid assuming the Generalized Ramanujan Conjecture on the coefficients of
F(s).

The organization of the rest of the paper is as follows. In Section 3, we define a class of L-functions
S and its subclass §* and give their properties. In Section 4, we show that L-functions associated to
irreducible cuspidal representations of GL(n) belong to S*. In Section 5, we give an estimate of Sy
as defined in (2.2). In Section 6, we give the asymptotic for S; as defined in (2.1) for F' € S§*. In
Section 7, we define the resonator coefficients and give some properties of the resonator. In Section
8, we complete the proof of Theorem 1.1-Theorem 1.4. Throughout the paper c¢, 3, ¢ denotes positive
numbers whose value may change from one line to the next.

3. DEFINITION OF THE CLASS OF L-FUNCTIONS &

We define a class of functions S as follows. A function F' is in S if

1) Dirichlet Series representation: For R(s) > 1, F'(s) can be represented as an absolutely convergent
Dirichlet series F(s) = 52, 22

n=1 ns
2) Analytic continuation: There exists a non-negative integer m such that (s — 1)™F(s) is an entire
function of finite order.

3) Functional equation: F(s) satisfies the functional equation

EF(S) = wFEF(l 7§),

where

7
Er(s) = F(s)Q° H L(Ajs + p5) (3.1)

with positive real numbers @, A; and complex numbers wp, p1; with |wp| =1, %’;—; > —%.

4) Euler product: For R(s) sufficiently large, F(s) has the Euler product representation

o k
F(s) = [[ Fols), Fpls) = exp (Z brp )> ,

ks
k=1 p

where br(p*) are some coefficients satisfying by (p*) < p*?F | for some constant 0 < 1/2.

For F € S, we define the degree dp, weight A, and conductor ¢ as

f f f
dr =232, A=A, ar = CoF QT A (3.2)

j=1 j=1 j=1

Define the analytic conductor of F'(s) as

!
qr(s) = Q* [T (1Nss + il +3)*%, Qr = qr(0). (3.3)
j=1
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Let 9 be a Dirichlet character. The twisted L-function Fy, is defined as

o~ ar(n)p(n)
F
Fy(s) = Z — for R(s) > 1.
n=1

We define a subclass of S, denoted by &*, which consists of L-functions that satisfy the following
additional conditions.

(i) Fy € S for any primitive character ¢ (mod g) and dr, = dp,QFr, < Qrg’r.

(ii) Fy is entire for all primitive characters ¢ with the exception of at most one primitive character

4 (mod g°).
(iii) For any @ > 1, there exists Bg which is either 1 or a prime > log, @, such that

1
log(Q([3(s)[ +2))
whenever Fy (o 4 it) = 0 and ¢ (mod g) is a Dirichlet character with square-free conductor

7= Qand (3, Bg) = 1.
(iv) For R(s) > 1, denote

l—0c>p

(3.4)

Then we have

and as r — oo, we have

> AM)Ar(n)? = z(1+o(1)). (3.6)

n<zx
(v) For z >4, (Qpv)® with ¢ = ¢(dF) is some constant depending only on dp, we have
x
Yo Ar) < (3.7)
r<n<zel/v

From the definition of S, we have the following properties.

Lemma 3.1 (Convexity Bound). Let F' € S be as above. Define

. log |F (o + it)]
o) =limsup —————.
nr (o) |t]—o0 log [t]

Then pp(o) is a convex function, and
0
NF(U)S ldF(l_U)a ZfOSUSl,

2
(3 —0)dp, ifo<0.

ifo > 1,

Proof. This is follows from the general theory of L-functions that can be found in Theorem 6.8 in
[45]. O

Lemma 3.2. Let ¥ be a primitive character. Let F' € §*, then we have

(1) For R(s) > 1, ?18 has no poles except for the character 1*, where it has a simple pole at s = 1.
(2) For any k > 1, we have

— [(Ar * ) (n)] 1
nzz:l Fnﬂ <o
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(3) Let Bq be defined in condition (iii). Let ¢ be any primitive character with square-free conductor
g < @ such that (9,Bg) = 1. There exists some constant ¢ = c¢(F) > 0 such that for R(s) >

1 —c/log(Q(|Ss] +2))
FJ(s) e
% <5 log?(Q(|Ss] +2)).

If Fy(2) has no zeros for R(s) > 1 — a for some a > 0, then the above bound hold for R(s) >
1—a+1/log(Q(|Ss| + 2)).

Proof. For (1), it follows from the definition of S*. For (2), we have

DoA™ <Y [Ar(n)ln=7 Y 0. (3-8)

n=1

From (3.6) and partial summation, we have

ne
n=1 n=1

3.9
ne <<c7717 ( )

S AR 55 AW AW 1

which together with (3.8) yields the desired conclusion. To prove part (3), we can choose ¢ = ¢(F)

such that R(pp,) <1-— log(Q(\éW for all non-trivial zeros pr, of Fy by assumption (iii). Similar
]

to [28, Proposition 5.7 (2)], we have

Fi(s) m m 1
Fw(s)+§+g_1_ 2o srmmc X o Slogan(®)
v [s+py,;1<1 Mpi |s—pr, |<1 p
for some absolute constant. Since R(s) > 1 — m, %(ﬁl”j) > f%, and dp, = dr we have
m m 1
ST o1 > @@P drlogqr, (s).
|5+Nw,j‘<1 P, j

Since Qp, < Qrg®r, we have
log qr, (s) < log Qrg™ (|Ss| +2)* <p log Q(|Ss| + 2).

We also have from [28, Proposition 5.7, (1)] that the number of zeros pr, such that [Spp, —Ss| < 1
is bounded by log g, (s). Therefore,

Fj(s)
m < dp log(qu (s)) + S§<1

<p log? Q(|Ss| +2),

1

S_pFw

for all ¢ with square-free conductor g < @ and (g, Bg) = 1. A similar argument can be applied when
F;, has no zero in the region £(s) > 1 —a. O

4. PROPERTIES OF AUTOMORPHIC L-FUNCTIONS

In this section, we will show that L-functions associated to irreducible cuspidal representations of
GL(n) belong to the class S*.

Let 7 be an irreducible cuspidal automorphic representation of GL(d,) over Q, with unitary central
character. For R(s) > 1, let

RS 1 (B

n=1 p prime j=1
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be the global L-function attached to = (cf. R. Godement and H. Jacquet [25], H. Jacquet and J.
Shalika[29, 30]). Denote by A, (p*),

dr
Ax(pF) =D an(p, i)k (4.1)
j=1

Then for R(s) > 1, we have

n=1 n=1

where A(n) is the von Mangoldt function. It is known that L(s,7) can be analytically continued to
an entire function

O(s,m) = g/ *y(s,m) L(s,7), (4.2)
which satisfies the functional equation
O(s,7) = e ®(1 — s,7),

where ®(s) = ®(3) and (s, 7) = H?;l Tr(s + p;), Tr(s) = 775/2T(s/2), u; € C,lex| = 1. We also
have the bound

Ar(n)] < dan, —R(p;) < 0 (4.3)

for some 6, < i. The Generalized Ramanujan Conjecture asserts that 6, = 0. It is known from

2
Z1 +1 When K = Q and d, = 2, Kim and

W. Luo, Z. Rudnick and P. Sarnark [36] that 9 < 1 —

Sarnak [32] improved the bound to |a;(p)| < & based on the work of Kim on the symmetric fourth
L-functions. V. Blomer and F. Brumley [4] extended this bound to general number fields and obtained
better bounds for GL(3) (¢ < &) and GL(4) (¢ < &) L-functions over general number field.

Given a Dirichlet character ¥ mod g, where (g,¢-) = 1, let

L(s,m® ) : Z = 11 H(l—w>1,for%(s)>l

n=1 p prime j=1

We have

r _ - Ar(m)y(n)
_f(g,ﬂ-@q/;)_z , R(s) > 1.

n=1

It is known that L(s,7 ® ¢) can be analytically continued to an entire function, and furthermore
®(s, 7 @) = (9" ax)" >y (5,m) L(s, 7 @ )
is an entire function of order 1 satisfying the functional equation

¢(8aﬂ- ®¢) = 6w,¢6(1 — 5,7 ® 1/))7

where ®(s,7 @ ¢) = ®(5, 7 @), 1y (s,7) = H?;l Tr(s + pjp), Rutj.p > —3,|€x,y| = 1. This shows
that GL(n) L-functions belong to S and it remains to prove conditions (i)-(v).

Condition (i) can be verified by properties of Rankin-Selberg L-functions (see [28, Section 5, p. 97,

eq (5.11)]). Condition (ii) is satisfied for GL(1) L-functions and when d,, > 2, we know that L(s, 7T®1/))
is entire and thus condition (ii) is also satisfied. The zero free region of L(s, 7 ®1) can be found in [5,
Proposition 2.11]. In particular, there is only possible one real zero in the region o > 1 — m
for any irreducible cuspidal automorphic representation w of GL(d,), where ¢ is an absolute positive
constant depending only on d,. The exceptional zero is called a Siegel zero. It is believed that the
only possibility of a Siegel zero is from a Dirichlet L-function associated to a quadratic character. In
fact, J. Hoffstein and D. Ramakrishnan proved that there is no Siegel zero for cups forms on GL(n)
for n > 1 if the functoriality of Langlands holds. This implies that cusp forms on GL(2) admit no
Siegel zeros. W. Banks [3] proved the non-existence of Siegel zeros for cups forms on GL(3). Thus
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condition (iii) in the definition of S* is satisfied for dr = 2 or 3. For GL(1) L-functions, we know (iii)
is true from Theorem 4.1 below. For GL(n) L-functions, we prove an analogue in Theorem 4.2.

Theorem 4.1 (Landau-Page,[21, Corollary 6]). For @ > 100, there exists Bg which is either 1 or a
prime > logs Q) such that 1 —o > m whenever L(o +it,x) = 0 and x is a Dirichlet character

modulo ¢ with ¢ < Q, (¢, Bg) = 1.

Theorem 4.2. Let w be an irreducible cuspidal representation of GL(n), and let Q be a sufficiently
large integer. Then, there exists a quantity Bg which is either 1 or a prime of size > log, Q) such
that L(s, ™ ® 1) has no zero in the region

1

L= < Qe+ 1

whenever the conductor of ¢ is squarefree and coprime to Bg. All implied constants only depend on
.

Lemma 4.3 (J. Hoffstein and D. Ramakrishnan, [27, Theorem A]; [5, Remark 2.12]). Let 7 be an
irreducible cuspidal automorphic representation of GL(n) with Qr < Q. Then there is an absolute
constant ¢ > 0 such that L(s,m) has no zeros in the interval 1 — logcQ < o < 1 with the exception of

at most one of such 7.

Lemma 4.4 (F. Brumley, [13, Corollary 6]). Let m and 7’ be cuspidal automorphic representations
of GL,(A) with analytic conductor < @ and t € R. There exist constants ¢ = c(n,n’) > 0 and
A= A(n,n’) > 0 such that L(o,7m x ©') has no zeros in the interval

c
— @ <o<1.
Proof. [Proof of Theorem 4.2] Let ¢ be a Dirichlet character of squarefree conductor g and 7 be a cusp
form on GL(n) with conductor Q. Then 7 ® 9 is a cusp form on GL(n) with conductor < Qrg".
From [5, Proposition 2.11], we have L(s, 7 ® ©) has no zeros for R(s) >, 1 — m for all g < Q,
with exception of at most one real zero. From Lemma 4.3, we see that for all primitive characters
with conductor at most ), there is at most one exceptional character ¢g (mod gg) such that it has
a real zero (3 satisfying

1

1
1— JR——
P log @

From Lemma 4.4, we see that

1
1->, —.
(Qng)”

Thus, go >, (log Q)Y A" Since 9o is squarefree, by prime number theorem, there exists Bg >
log gg > log, @ such that L(s, 7 ® v) has no zero in the region

c
R(s) > 1—@7

for all Dirichlet characters 1 with squarefree conductor at most ) and coprime to Bg. U

Condition (iv) follows from Rankin-Selberg theory. A proof can be found in [28, Theorem 5.13] (see
also [35, Lemma 5.2]). Condition (v) is also satisfied for automorphic L-functions of GL(n) (See [44,
eq (1.10)]). Therefore, we see that L-functions associated to irreducible automorphic representations
of GL(n) belong to S*.
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5. MOMENT OF THE RESONATOR

Theorem 5.1. Let F € S. Suppose X(s) =3 1, 52,V (s) = >, oy L2 with xp =Yp, and M < T.
Then we have - -

1 Ty 2,dp TmYm
Sy = (277 /T log(AQ%t )dt) > -

m<M

-1 (Ar * 2)(M)ym + Ap *x y(m)zm
o Z m +&,
m<M
where
= 0 (o (a2, 22, et 2 2]
go O<(Og ) ( 1 n 1+ ||§C ||1 n ||1 n 1))
Tn
+0 (g 722 0+ (|22 Jyaloo + [ 22| lwalec) ) - (5.1)
1 1

Proof. From the residue theorem, we have for any ¢ > 1,

1 c+iTs 1—c+iTs c+iTy 1—c+iTy F/
So= 5= / / +/ X(s)Y (1 —s)—=(s)ds
2mi c+iTy +iT, 1—c+iTy 1—c+iTs F

=Jr—Jp+ Ju, (5.2)
where
1 c+iTs F/
Jrp = — X()Y(1—5s)—(s)d 5.3
=5 L, XEYO -9 (53)
1 1—c+iTy F
= — X(8)Y(1—-5)—(s)d 4
=g | XEYO -9 s (5.4)
1 1—c+iTs c+iTy (¥ )F’( ) (55)
Jg = — / Jr/ X(8)Y (1 —s)—(s)ds. 5.5
2mi c+iTs 1—c+iTy F

For Jp, we first note that

XY (L=s)= |3 T3 S

u<M k<M

Tn ‘
1hn

where each part corresponds to a bound for 0 < R(s) < 1, 1 —¢ < R(s) < 0, and 1 < R(s) < ¢
respectively. Since T3 =T + O(1) and T» = 2T + O(1) are chosen such that

Yn

+ Moo |2
1 n

_ €T
+ M g | 2
1 n

; (5.6)
1

/ /

F
F(a +4T1) < (log T)?, F(a +iTy) < (log T)?, (5.7)

uniformly for o € [—1,2], it follows that

. ’
1

Taking logarithmic derivative of the functional equation (3.1), we have

Yn

n

Jg < (logT)? (

+ Mo |

X,
N
n

1 nlh 1) ' (58)
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where Ap(s) = wQ" > [T/_, LA A=) F10)  Therefore,

D(Xjs+u;)
1 1—c+iTs F/
Jp = — X(8)Y(1—3s)—(s)d
=g L, XOYO= )
I Rl ViNA F' = -
= — —+(8) — — X(1—-98)Y(s)d
278 Jopim {AF ) F(S)} (L= 8)¥ (s)ds
We write
J, =K —Ig,
where
1 c+iTs A/ - -
K=— Y(s)X(1—s)d
5wt ) ALV EX( = s)ds
and

1 c+iTs Fl o
Ip=— L (97
R 2mi c+iTy F (8)

—~
VA
~—
=
—~
—_
|
NP
QU
VA

If X(s) =Y(s), then we have
Ir = Jg.
From Stirling’s formula, we have

Aln 21,1dp
RE ) = —tog (@?1r) 0 (1)

and thus by (5.6),

I
K=o / log (AQ?[¢1%%) Y (c — it) X (1 — ¢ + it)dt
Y8 Ty

1 ‘

The main term in K, denoted by Ky, is given by

n

—i—O(logT( +Mc_1||scn||1‘y—
1 n

Yn
n

1 T2 T
K= —— log(AQ%t4r) Y~ dt
—c+1t c—it
2m Jr wan & k<M k
1 NG
- log (AQ*t") (=) at
27 u1 c / og (AQ )<u>
u<M k<M
= Kq+ Kna,

. xz
M gl |22
1 n

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

where K denotes the contribution from the diagonal terms with £ = u, and K,,4 denotes the contri-

bution from the off-diagonal terms with k£ # u. We have

- Z xuyu/ log ( )\QgtdF)

u<M

dp Ty Yu

u<M

(5.15)
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For K, 4, we have

|Tuyk| logT
K,
@< Z ut=cke |log k/u|

u, k<M
u#k
1 ka\ ly|
< log TM*™ Z [l Z Z ke |k — ul
u<M k<M u<M u/2<k<2u
< log TM* a1 HZ—’“ A log Tz |1lyn| oo log . (5.16)
For Jr, we have
1 c+iTy F/
Jrp= — X(8)Y(1—3s)—(s)d
R L XOYO =) s
Ap(n)
= /Tl uc—Ht k;/[ kl c—1it nz_: nc—i—zt dt
= Jg+ Jnd, (5.17)

where J; denotes the contribution from the diagonal terms with k = nu, and J,,4 denotes the contri-
bution from the off diagonal terms with & # nu.

_ -1 - Ap (n)xuynu
Ji=—— SN e, (5.18)

n=1uM

and for J,q we have

|AF )| \$u| el 1
Jna < logTZ Z Z k=< log |k /nu]

u<M

k;énu
< logTZ |AF )l Z \$u| Z |Z/k|
h;ﬁk |log k/h)]|
u<M
c—1 |AF | QI}n
< logTM Z (lynlls + llynloc M log M) (5.19)
n=

Taking ¢ = 1 + 0r + ¢, and combining (5.8), (5.13), (5.15), (5.16), (5.17), (5.18), and (5.19), we
complete the proof. O

6. FIRST MOMENT

In this section, we obtain asymptotic formulas for S; defined in (2.1) for F € §* in Theorem 6.1.
We will see that Theorem 6.1 is a consequence of (6.11), Theorem 6.3 and Theorem 6.4. We first
prove (6.11), then we prove Theorem 6.3 and Theorem 6.4.

Theorem 6.1. Let F € 8*, ¢* (mod g*) be as in (ii). Let x be a primitive character modulo q.
If ©,,y, are multiplicative and supported on squarefree integers up to M whose prime factors are
coprime to By ( defined in (iii)) and are congruent to 1 modulo lem(q, g*). Then there exists some
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constant ¢ = ¢(F) > 0 such that uniformly for M < exp(y/logT),

_1 TulYnu . TslYsv
51 o7 ( Z nu ro(n) Z SV Tl(v))

nuM sv<M
Z Z -Tuy'u'r3 Z YsTs
u<M v<M s<M
(v,u)=1
Ln
+0( 2 Ualloed + )

+0 (q1/2T1/2£3

A S TS TN

+E+E,

where

ro(n) = dpP, (1og( 1/dFT) (Ap *1)(
rat0) = tog (20 75+ T e ) s o = )

Gem) =3 M S fe -

G(Z,LZJ*) :ZAF(d)dJ*(d) _ Zf:ll +f0+f~;1(2’* 1)+...,

ra(w) = 3 k) (X1<h, o)+ 11 >)
hk=u
— AF
Xl(hvk) = AF Z Z — ,
al|(h,k) plh,ptk r=1
5 logp
Xalk) = fo = (kg )+ (v+ 3 20 ) o,
p\kq
w1k = Y0 30 A,
plk m=1 p
£ < MEHIHGUI T |y, o | A ) TN ) e /iog T,
n 1 n 1 mn 1
g/ <<q9F+€MOF+6T |‘r8y8| (7—3* |l'|)(n) ‘yl eXp(_C /logT)
s n ol

If there exist some positive constant a = a(x, F') such that both Fy and L(s, x) have no zeros in the
region N(s) > 1 — a for all ¥, then the term exp(—c\/logT) in the error terms £,E' can be replaced
by T=9%€ for some small enough 6 = §(F,a) > 0 uniformly for M < \/T.
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6.1. Set up. First we recall the functional equations and definitions of F'(s) and L(s, x),

F(s) = Ap(s)F(1 — ), Fi(s) = F(3), (6.1)
1o P TG = ) +755)
Ap(s) = wQ' 2 jl;[l TOys 1) (6.2)
L(s,x) = B(s)L(1 — s,X), (6.3)
_7(x) q 5(1-25) T (%(1 — s+ u))
po= 1 G T o0
where
a= 0, fx(=)=1, ,B(s)B(1—3s) =1,
1, if x(—1) = -1,
and

From the definition of S; in (2.1), the functional equation (6.3) and the residue theorem, we have

Si= Y. Lp,)X(pY(1-p)
F(p)=0
T <Sp<Ts
= > B(p)L1-p,0)X(p)Y (1 - p) (6.5)
TSl
_ _% %(1 ~ 9B(s)L(L - 5, 0)X(5)Y (1 — s)ds (6.6)
T C
= —-Sr+ S5 — Su,

where C is the positively oriented rectangle with vertices at 1 — k + 11,k +i11,1 — kK + i1, k + 75,
with k =14+ O(L71), £ = log (A\Q*T"), Ty =T + O(1) and T> = 2T + O(1) are chosen so that the
nearest zeros of F'(s) are > @ distance away, and Sg, Sy, and Sy are defined as

k41T F’ B
Sp = /mn — (1= 9)BE)L( - 5, )X (5)Y (1 = 5)ds, (6.7)
1—r+iT> T/
Sy = /1_ o 2(1 —$)B(s)L(1 — s, X)X (s)Y (1 — s)ds, (6.8)
k41T -/
Sy = / ‘ 2(1 —8)B(s)L(1 — s, %)X (s)Y (1 — s)ds
1—k+1iTy
k41T F/
— / _ =1 —38)B(s)L(1 —s,X)X(s)Y(1 — s)ds. (6.9)
1—k+1Ts

By Stirling’s formula, for ¢ > 0, equation (6.2) becomes

Ap(s) = (A\Q*r) 3o exp <itdp + M) (w +0 (1)) , (6.10)

where

! 7
p=23"(1-2%y), r=[] .
=1 j=1
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6.2. Horizontal Integral. From Lemma 3.1, Lemma 3.2 and (6.10), we have the bounds
/

F )
F(J +it) < p logt,

B(o +it) < t277,

l—0o

t e A

L(o +it 2 12<o<1 -

(o +it,x) < ;—1/2<0< og T’
, A
Lo +it,x) <logt,oc >1— —,
logt

A

L(o +it,x) = B(o)L(1 — o —it, x) < t*/?logt, a7 <0 <0,
og

X(s) < Mo |2

,1_/€SO'S/€,
1

Y(1-s)< M

Yn
n

11—k <0<k
1

It follows that the horizontal integral Sy (6.9) is bounded by
[
1

n
6.3. Right integral. By taking the logarithmic derivative of the functional equation of F(s), we find
that

1

MT?

Tn

log® T. (6.11)

n 1

F’ A’
=350 -
and so the right integral Si defined in (6.7) becomes

Kk+iTs l ’
L {2;’: (s) — ?(5)} L(s,x) X (s)Y (1 — s)ds. (6.12)

Next, we use the following lemma to evaluate Sg.

(1 75)3

Sl

SR = 5.
211 Ty

Lemma 6.2. Set D(s) :=> >~ a,n" 5. Suppose that there exists o > 0 such that Y.~ | |a,|n"7 <
(0 —1)= as 0 — 1. Suppose that |a,| < nP2re. Then for M < T, we have

k+iTo / s k
Jk(T)::% o (ii&) D(s)X(s)Y (1 — s)ds

1
_ (71)kd];‘TPk(log((>‘Q2)dF T)) Z AnTyuYnu
N 2m nuM nu

T o
1

+ O3 (T4 |z |

Yn
n

2| lynllocM +llyall))

Proof. From (6.10), we have
AL, |
=2F =1 2,dp -
AF(s) og (\Q°t )+O<t>’
for1/2<o<2andt>1,k=1+1/L and £ = log(AQ*TF). Thus,

1 k41T

J(T) = — / ((—1log(AQ*t™™))* + Ok (L¥1¢71)) D(s) X (s)Y (1 — s)ds.
27TZ k+iTy

The error terms contribute at most
1 = o
7£k71 / n
T s Z nr

n=1

T

9] |$u| 9] ik
> > lyoldt < L ’

u n
u=1 v=1

1Ynll1-
1
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Changing the order of summation and integration gives

k

o Oénzuyv(*l)
Jk(T) - Z ’I’L'/”u”’l}l_"i27r

= Jg + Jnag + Oy (T6

/T T (log(AQ2t4r )Y (%)t dt + Oy, (Tf

lynlly)
1

where s = k + it, Jy4 consists of the diagonal terms with v = nu, and J,4 consists of the off-diagonal
terms with v # nu. Note that

T
21| ynln)
n 1

Tn

T>
/ log" (AQ?#47 )dt = dT Py (log((AQ®) /4 T)) + O4(T°),
T

where P, is a monic polynomial of degree k. Since |a,| < T/P1¢, we see that

_ (_1)k ATy Ynu 2T k 2.d
Ja = > Rl A log® (AQ*t9)dt

27
nuM

1
(_1)kdk TPk(log(()\Qz)ET)) ATy Ynu € Yn
= rF Z - + Ok (T0D+ ||x”||oo ‘ ;

2m
nuM

)

For the off-diagonal terms,

(*Ukan%uyv T k 2.d
Jnd = ) OnTul [ ok (\Q2dr (
d B u;¢nu neEurvl—r2r T 0g ( Q )

—) dt
nu

Ln |yo]
eyt [N R 1
1-k
n 1 o< ot vl=*#|log(v/nu)|
Thus it is enough to consider
max Z Wl (6.13)

h vl=s]log(v/h)|

v<M,v#h

For h > 2M, we see that (6.13) can be bounded by ||y, || since k = 1+ O(L™1). For h < 2M, we have

|yv| |yv|
L Mol € 2 Wl 2 iy

v<M,v#h v<M v<M
|lv/h|>3/2 1/2<|v/h|<3/2
or |v/h|<1/2

1 1
< lynllr + llyalloe > <log(h/(h— T |]0g(h/(h+s))>

s<h/2

h
< lnllr + llmlloo D2
s<v/2

< Mynlly + [lynlloo M log M.

This gives

Ty
Jpa < LETe (lynllt + [lynlloc M log M),

1

which completes the proof. O
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Theorem 6.3. Let F € §*. If x,, and y,, are coefficients supported on integers n < M < T, then the
right integral Sg defined in (6.7) becomes

= 3 2008 (L (i (00 7)) -

nu<M
+0(

Tn

n

(IlgnllocM + Hynlll))-
1

Proof. Apply Lemma 6.2 with k =1, = x and k = 0, = Ap * x. The assumptions in Lemma 6.2
can be verified from Lemma 3.2. O

6.4. Left integral. In this section, we prove the following Theorem.

Theorem 6.4. Let F,v* (mod ¢g*) and x (mod q) be as before. If x,y are multiplicative functions
supported on squarefree integers up to M whose prime factors are coprime to Bp; and are congruent
to 1 modulo lem(q, g*). Then uniformly for M < exp(1/logT),

T su sv T\ -— F
S, =— o 3;7 Z yv (6(u) log (frqve> fo1— A(”)f—l)

su<M sv<M
(v,uq)=1
T Tsy Ysv
r Z (Xl (h,k) + f-1 Xa(k ))
suSM sv<M hk=u
(v,uq):l
TOO)T(W* )T ——— q/t q/t Ts sv
2m ¢(q) s<M sv<M
(v,ug)=1

T

+0 (q1/2T1/2£3|xn||1

I q1/2+0F+5T1/2+¢9F+6M0F+6Hyn||OO ||£Cn||1>
1

+E+E,

where

by = ged(q,9%), g* = Logo,

1, ifu=1,

o(u) =
0, ifu>1,

) =3 MDD | Res.y @R, fo=lim O T) - 2L
d=1

OOA I+m m
U(Z;p;lﬂff)ZF(ppmzw(p), (z:k,0) =Y n(2:p,0,9),

m=0 plk

]?71 = Res.—1 G(z, W)
= Y Ar(@x(@+ > XE)n(p L)1 -p ),
al(h,k) p*[h,ptk
=~ lo p
Xo(k) = fo—n(l;kq,X) + 7+Z : Df,
plkq
E < M%+9F+eq1+0F+eT”xn”1”ynHOO T3 * |y|(n) (T * ‘y|)(n) ’ Yn exp(fc /IOgT),
n 1 n Pl
g/ < q9p+eM0F+eT Ixsys| (T3 * |x|)(n) ‘ yl exp(—c\/loﬁ).
S 1 n LRIt
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If there exist some positive constant a = a(x, F') such that both Fy, and L(s, x) have no zeros in the
region N(s) > 1 — a for all ¢, then the term exp(—c/logT) in the error terms £,E' can be replaced
by T=9F€ for some small enough 6 = §(F,a) > 0 uniformly for M < V/T.
6.4.1. Initial Manipulations. The integral on the left (6.8) is

1 1—k+1Ts F’

Sr = o e ?(1 —$)B(s)L(1 —s,x)X(s)Y (1 — s)ds
1 (F
=5 —(k—1t)B(1 — k +it)L(k —it,X) X (1 — k + 1t)Y (k — it)dt
Y8 Ty
1 [ — - -
= — —(k+it)B(l1 — k —it)L(k +it, X)X (1 — k — it)Y (k + it)dt
2 T F

1 k+iTo F . — —
T omi )i 7 (5)B(1 = 8)L(s, )X (1 = 5)Y (s)ds
k41T

= Ea
where B(s) = B(5), X(s) = X(3) and Y(s) = Y(5). Let
LT = 3 atmm
where
a(m)=— > Ap(w)x(v)7, (6.14)
Then,

Lemma 6.5. Let x,,y, be supported onn < M < T. Then,
Yn
n

I =M+0 (q1/2T1/2£3xn1

4 q1/2+0F+5T1/2+9F+€M9F+€Hyn||Oo ||Z‘n||1> ’
1

where
M T(X), % a(m)e<—]z;>. (6.15)

To prove Lemma 6.5, we need the following lemmas.

Lemma 6.6. For large A and A < B < 2A,

B t £\ 2
/ exp (itlog <>) () dt
A re 27

(27‘(’)1_a’/‘a€_ir+ﬂ-i/4—|—Ea(T,A,B), ZfA <r<B< 2A7

E.(r,A,B), ifr<Aorr>B,
where a is a fived real number and
1 1
l Aa+§ Ba+§
Ea(r,A,B)O<Aa_2)+O — | +t0 T
|[A—r|+ A2 |B—r|+ B2

Proof. This is Lemma 2 in [26]. O
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Lemma 6.7. Let r,50 > 0,7y =T+ O(1) and T = 2T + O(1). Then,

1 riTs 5) —s _ T(Y) -k, k—1/2
— B(1 —s)r fds = —==d4(r)eq(—r) + O(E(r,k, T)r "q ), (6.16)
27T7/ k41T q

uniformly for ko < k < 2, where 04(r) =1 if T1 /27 < r/q < Ts/27 and 0 otherwise, and E(r,r,T) =
1 1

1 Kt Kkt+5
2nr K—5 T2 T2
E“( q T 2) < [T—Z== [T/ T T— LTI/

Proof. From (6.4) and (6.10),

o0 = ()" s+ s 020 (10 g (1),

1%q2

Applying Lemma 6.6, for T1 < 27r/q < Ty, we have

1 k41T o
i B(1—s)r—*ds
270 J iy
im(1—2a) N T, k=g +it
_ir(1—2a) 1 ¢ 2 .
:eXP( — ) ( T(X)l ) <T>> / (q) Rt exp(—it)dt
1792 T T
im(1—2a) 2y T> k=
_wm(1—-2a) 1 t 2 t
:exp( 5 ! ) T(X)l +0 () / (q) exp (z’t log (q))
mr i—ag2 ) ) I \2m o

a 1 2mr\ " 2
L (2m)r (7”") exp(—2mir/g) ) 4 B, (W,Tl,Tg) rg
q i—9q2 q

-1 2
:7X( )7() exp (—27T’L'T> + E, (W,Tl,T2> g2,
q q q

where . )
TH+§ Tﬁ+§
|T — 2%\ +T1/2 * |T — %H—Tl/27
since Th =T + O(1) and Ty = 2T + O(1). O

Proof. [Proof of Lemma 6.5]
Applying Lemma 6.7, we write

2 1
E. (”,Tl,f&) <TF 2 +
q

It =M+&E+E +E+Es,

where
kqT
M = by Z—k a(m)e (—Z) ) (6.17)
q k<M nz:(%] 4
— 1‘7 € € €
£ < a7 3 T kg(hgmyrt oo < O QT s (618)
k<M
X la(m)|
& < ¢/?11/? Z || Z oyt (6.19)
k<M m=1
00 —1
2
&< a9 Y fo Y A (| 2 o) (6.20)
k<M m=1 m q
00 —1
1/23/2 — la(m)] T_ mm T1/2 21
& <yq > || s el : (6.21)

k<M m=1
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For &, we have

A
& < g Ty )ly Y Ty v 2 ReWl () < 27207, )y | L
m§M

(6.22)

1

The estimate for & and &3 is similar and we focus on &. We write £ = E21 + E22 + E23 corresponding
to the following cases

a) ’T 2’”"'>T/2
(b) VT < |7 - 22| < T/2;
o) |T - 2| < VT.

In case (a), we have

en <02 S IZ' | <& < P03 ay | || 20
k<M

1

In case (b), without loss of generality we can assume V7T < 2;"” T < T/2. We can divide

this range into < logT intervals of the form T + P < 2rm/kq < T + 2P with VT < P <« T.
Thus, m lies in intervals of the form I := [qk (T'+P), & gk ~(T + 2P)]. From (6.14), we have |a(m)| =
‘Zu’uw:m AF( ) ( )yw| < dFT3( ) or 10gm||yn||oo7 and this glVeb

<1 Y i Y 'S,EZZ}E

k<M P mel
< q1/2T3/2Z Z |95k| Z la(
P k<M mel
Ty
<Pl Y TS i togn
P k<M mEI
<Py S Y S gy
P k<M

At e T PANEA Y

For case (c), we have |T — Q;T—km\ < /T, thus m lies in intervals of the form

J = [;’j(T f) (T+f)]

which gives

a3 < ¢V2T3/? Z || Z |qkT \/»

k<M meJ
73(m)mor logm
< q1/2Hyn||oo Z |Z%] Z
k<M me.J
1/2

<q HynllooIIxnllququﬁ(qMT)eF“

< q1/2+9F+eT1/2+0F+eM9F+e”ynHOO Hxnul

Combining all three cases, we have

Ey < q1/2T1/2ﬁ3H36n||1 ”:’j:; +q1/2+9F+ET1/2+9F+6M9F+€Hyn||oo||$n||1- (6.23)

Lemma 6.5 thus follows from (6.17), (6.22), and (6.23). O
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6.4.2. Main Term Set up. We want to evaluate the main term M, which is given in (6.15) by

kqT

7(X) Tr ( m)
M= ——= — a(m)e | —— 6.24
¢ 2k 2 (m) ke (6.24)

= m=[3=]
Write 77 = 7]?—,/, where (m’, k") = 1. Then
m 1 _
e <_qk> = 50 Z 7(p)(—m'). (6.25)
¥ (mod k')

Next, we write the sum over 7 in terms of primitive characters. If ¢ mod k' is induced by the
primitive character ¢y mod g, then (cf. [18, p. 67])

)= (2) 5 (5) . (6.26)

Thus,

7 mod k’
K\ ~ -,
e ()7 () @t (6.27)
T(x)u(%')x(%/)i(—m’)
- o(k') Law (6.28)
T (L )™ (£ Yy (—m!
o );p(/f/i L )1g*|k' (6.29)
1 * k/ k/ — ,
o) gzlk;ﬁ (%d g)“ (g> ¥ (g ) 7)Y (—m'), (6.30)
PEX Y

where >°* denotes the sum is over primitive characters. Using the Mobius inversion formula for an
arbitrary function f (cf. [17, eq. (5.10) ]), we have

fm' k) = f ((m k) ( m]ﬁcq )

> (@)

d|(m,kq) e|ld
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and we obtain

m\ | TOOREIXCEIRCm) T () (<)
(-5)- o) talk o) aa
- kq\ — [k — m
z§¢ for? P %dg”<e§)¢(e§>“w’w<e)
d|kq Y#EX
p#EY”
* _ k m k
Sy x5 (o) ()0(F)
PAX
Y#EP®

Y Y @ (D) ok d,

glkgy (mod g)

~

dlkq elkq/g

V#EX d|kq
YAP*
where
— kq d kq
(g, kg, d,v) = Z 5 kq/e (_eg) v (e) 8 (eg) |
elkq/g
We write M as
M =My + My + &
where
X) < T% CORCE)X(E)x(—m')
My = ) -k a(m)T Y ™
* b y<m k qu/zﬂgzr;Squ/w ¢(k)
(%) <« T& (%) p(E2) 7 (£2) g (—m')
qu* — T ? a(m) ¢(l§/) 1g*|k’

e="W T s Yy Y @Y v (D) et ke, d).

k<M kqT /27 <m<kqT/w llg glk ¥ (mod g¥¢) d|m
h#EX

d|kq
pFEp”

21

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

Here we have used the fact that (k,q) = 1 to rewrite ¢ (mod g) with g | kg as ¢ (mod g¢) with ¢ | ¢

and g | k in €. To evaluate (6.33), (6.34) and (6.35), we need the following lemma.

Lemma 6.8. Let F € §*, x be a non-real primitive character modulo q > 1 and ¥ a primitive
character modulo g. If g is squarefree, g < @Q and (g,Bg) = 1, then for positive integers h, k and

Q < exp(2y/logz), we have

S° Apx(hup(u) =R(a, bk, ) + O (W' 7(R)j(h)j (k) log k(log )*a exp(~cy/log 2))

ulzx
(u,k)=1

where

R(x, h, k, )
YD 20) (1 x(h) log(x/e) + X1 (h, k) + X(W) Xa(k)),  if =X,
x(h)z®(1; k, xy) L(L, x¥) f-1, if b # X,
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and

G(z,) ziAF

d=1

for=Resy G), o= lim G(z) — 2L
0 +m m
n(z;p,lw):ZW, n(zk,9) =Y n(zp,0,9),
m=1 plk
= Y Ar(a)x(h/a)+ Y x(h/p)Ar(p)
al(h;k) p'lh,plg
(pok)=1
+x(h) Y xX@Hn(Lp, L)1 —ph,
(pf/)fq‘;l*
Xalk) = fo = n(tikow) + v+ 3 ER) £,
plkq
jn) =]+ 10p712), (6.36)
pln

Here c¢ is some positive absolute constant depending only on F and x. If there exists some absolute
constant a > 0 such that L(s, xy) and Fy have no zeros in the region R(s) > 1 —a for all ¢, then the
error term can be replaced by

O (h77(h)j(h)j(k)log k(log h)3z ~0F¢) ,
for some small enough 6 = §(F,a) > 0 uniformly for Q < x.
To prove Lemma 6.8, we need the following lemmas.

Lemma 6.9 (Decomposition of convolutions, [38, Lemma 6.1]). Let j,D € N and let fi,...,f;
be arithmetic functions. Given a decomposition of integers D = [[I_, d;, define the integers D; =
7 dy for1 <i<j—1and D; =1. Then we have the following identities:

S (frxeoxfi)mD) = N > filmady) fa(mad; ) -+ fi(mydy), (6.37)

m<X dy--dj=D my--m;<X
(m$k):1 (’I’I’L“ICDL):l
ok f;)(mD ! i(midj—;
3 (f1x *;fy)(m ) _ SIS fi(m i +1) (6.38)
(m,k)=1 m didg--d;=D i=1 (my,kD;)=1 i

Lemma 6.10 (A variant of Perron’s Formula, [35, Theorem 2.1]). Let f(s) = Y., a,n"* be a
Dirichlet series with abscissa of absolute convergence o,. Let

Blo) =Y %' (6.39)
n=1

foro > o0,. Then forb>o,, x>2,U > 2, and H > 2, we have

b+iU s
Sa=g [ CreZasrol Y jel]ro(PHEY). e
n<x

2w ; s
b—U z—z/H<n<z+z/H
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Lemma 6.11 (Dirichlet’s Hyperbola Principle in short intervals, [12, Lemma 4.1]). Letz,y,z € R
such that 1 < max(y, %) < z < x. Then for any arithmetic function f and g

Yo Ufrgn) =) fd) > + > ) g@

z<n<z+y d<z Z<p<E dy k<z/z 2 <q< iy

+O0 | max |g(k)] Z |f(d)]

k<2a/z 2<d<z(14y/x)
Now we are ready to prove Lemma 6.8.
Proof. [Proof of Lemma 6.8] Let
A(z; h, ) = ZAF*Xhu Y(uw)u~

(u,k):l

From Lemma 3.2, we have for k =1+ O((logz)~!) and h < x

|AF*X (hu)y (|Ap|* 1)(hu) [Ap(uzhi)| uzh1)|
> oy (el g s Al

hiha=h (ui,h1)=1 )

< ey (e 100

< 7(h)h(logz)*.

Therefore, taking b = x and H = +/U in Lemma 6.10, we have
Z Ap * x(hu)(u)

u<lx
(u,k)=1
1 et dz 7(h)hz(log x)?
=5 ARz +o0 3 IAp * x(hu)yp(w)| | +0 (U\(Ff)) .
Rt z—2/VU<u<lz+a/VU
Note that
> |Ar * x(hu) ()
zfm/\/ﬁgu§1+x/\/ﬁ
< Z Z |Ar(d)
xfm/\/ﬁgngx+z/\/ﬁd‘hn
« ¥ S IAr (@) + 3 [Ar(@)
z—z/VU<n<z+z/VU \ dlh dln
< %r(h)h‘# log b + 3 (1% Ap)(n)].
z—z/VU<n<z+z/VU
Using property (iv) of S* and partial summation,
1/2 1/2
[Ar(n)| A(n) A(n)[Ar(n)[?
<
Z S Z " Z - < logx. (6.41)
n<x n<lx n<x

We also have, from property (v) of §*, that for z >p U®

Yoo e < > IAp(n)] < —=. (6.42)

zSnSer% z<n<zel/VU VU
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We apply Lemma 6.11 with f = |[Ap|,g = 1, y = z = 22/v/U. Then for n = n(F) > 0 small enough,
we have uniformly for U < z",

x> U 2> (Zj) , (6.43)

and thus

> |(Ap *1)(n)]
x—w/\/ﬁgngx—km/\/ﬁ

=3 [Ar(d)] 3 1+ Y 3 |Ar(d)| +O > [Ar(d)l

d<z w—w/\/ﬁ<k< 'J~'+l‘/\/U k<z/z w—w/\/ﬁ<d< ata/VU ngﬁz(l-i-z_yi)
; Sax %k VU
e (=)
<yy — o > 7+0
d<z k<z/z r— .I‘/\/>
<L ylogz+ylogx + 2
< S
Vo e
Therefore, for h < z and U < z",
1 et dz z(log z)?
A h A F— 40 h)h——— ] . 6.44
> de st = 5 [ 4o E o (rn ) (6.44)
(e

Applying Lemma 6.9, we write

=> > M > W:: > Ai(zia,b)As(z;a) (6.45)

ab=h (c,ak)=1 (d,k)=1 ab=h
where
_ xw .
Ai(z;a,b) ) > X(0)L(s,x¢) [T (1 = xv(pp~),
(¢,ak)=1 plak
and

Z(d -1 AF(Z)Zw(d)7 ifa=1,

o Ar@tE) i — ol otk
As(z;a) = k=0 pF* » ifa=pLpfh
AF(G;), ifa:pl7p|k7
0, else.
Using the following notation
e A I+k k
n(zip, L) = iaiili) kz)w(p ) (6.46)
k=0 p
®(z;k,x) = [[(1 = x(p)p™), (6.47)
plk
> Ap(d)y(d
(25%) al dl @) _ S n(zip,0,9), (6.48)
d=1 P
SN AF(

plk m=1 plk
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we can represent the A(z) in (6.45) as
A(z) = x(h)L(s, x0)®(2; k, x) (G(z;9) — m(z; k. )
+ > x(h/P)L(s, x) (2 Pk, x)n(z5 p, 1, 1))
p'lh.ptk
+ > x(h/p")L(s, x¥) (2 p'k, x) Ar (p)
p!|(h;k)
:= Bi1(z) + Ba(z) + Bs(z).

From F' € §* and Lemma 3.2, we deduce that G(z;1) has at most a simple pole at z = 1. This shows
that A(z) has a pole at z =1 of order at most 2. Hence,

1 K+iU dz 1 oo(U)+iU d
— A(2)x* = = Res,—1 A(2)z"z7 ' + —/ A(z)xz—z (6.50)
2mi J. v z 271 oo(U)—iU z
Kk+iU oo(U)—iU dz
+ / +/ A(z)x*—, (6.51)
oo (U)+iU k—iU z
where o0o(U) =1 — Toa(a(orayy for some positive constant ¢ = ¢(F). From Lemma 3.2 and [18, Ch 14,

eq (13) ], we have
|G (z,9)] < 10g*(Q(l2] +2)), for R(z) > 1 —c/log(Q(]
1L(z, x9)| <1og(Q([z] +2)), for R(z) =1 —c¢/log(Q(]

From (6.36) we have j(n) < exp (o (vIogn)) and ®(z;k, x) < j(k), for R(z) > 1 —¢/log(Q(U + 2)).
Moreover, since |Ap(p?)| <p jpioF 1ogp, we see that

e A l+r r l (r+1)0F 1
0(zp, 1, 0) = F< ) < Z ) %P < (1+ 1)p" logp, (6.52)
r=0
and it follows that
n(zk, ) <Y nzip,0,9) < Y logp < logk,
plk plk
By(2) < > j(hk) (1 + 1)p"" log plog(Q(|Sz| + 2)) < ji(hk)h’" (log h)* log(Q(|S2| +2)),
p'lh
Bs(z) < Y j(hk)log(Q(|S2] + 2))h log h < j(hk)(h)h’F log hlog(Q(|Sz + 2)).
P (k)

This shows that for R(z) > o¢(U) and |Sz| < U,
A(2) = Bi(2) + Ba(2) + Ba(2)
< j(k)log(QU) (log*(QU) + log k) + h?" j(hk)log(QU)(log h)* + 7(h)h?" j(hk) log hlog(QU)
< (M)A j(h);i(k) log k(log h)* (log(QU))?.
Thus, the horizontal integrals in (6.51) are bounded by

S Al ki) o wr(h)i(h)hOF (k) log k(log h)? (1og(QU))?
/UO(U) o 24U z%do < U .

The left vertical integral in (6.50) is bounded by

U Ao + u . .
270 U) / Wdu < 27 WRIr 1 (h)j(h)j(k) log k(log k)3 (log(QU))*

< oh? 7(h)j(h)j(K) log k(log h)* (log(QU))* exp (—lg(Qg'M) .
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If we choose U = exp(c’v/log ), then we have uniformly for @ < exp(2+y/logz) all integrals in (6.50)
and (6.51) bounded by

0 (h‘)FT(h)j (h)j (k) log k(log h)x exp(—¢” \/@)) '

If L(s, xy) and F, have no zeros in the region R(s) > 1 — a, then we can choose 0o(U) =1 —a +e.
We have by Lemma 3.2 0q(U) < 0 < Kk,

G(z,9) < (log QU). (6.53)
We also have for o > o¢(U), L(o + it, x¢) < (QU)¢, if L(s, x) has no zeros for R(s) > 1 — a. Thus,
A(z) < 7(h)h?" j(k) log k(log h)?(log(QU))*(QU)*". (6.54)

Therefore, we have

| G < T (A 30 o Ko (1o QUITQUY” (6.55)
O'o(U)

U .
pon®) [ ETER e 1)) ) og Klog ) log QU) QU (6.56)

Combining these with (6.44), we see that taking U = z™*(2¢1) yields an error term of size
O (h77(h)j(h)j(k)log k(log h)®z ~0F¢) ,
uniformly for @ < x. Next we compute the residue at z = 1. Suppose we have the Laurent series

s
B =D

L) = o
D(z;k, x) = O(1; k, x¥b) + ®' (1, xb) (2 — 1) + 1<I><2>(1~ keyx¥)(z —1)2 4+,
(= k) = n(Lik, ) + 0/ Lk 9)(z = 1) + 0P Lk ) (2 = D + -+

I.Z

— =z <1 +log(z/e)(z — 1) + (2 log? 2 — log(x/e)) (z— 1) +- ) .

+fo+filz=1)+ falz =1+,

+eotei(z—1)+ea(z =124,

z

From the fact that

(L k, xvp), plk,

(1;p'k, xv) =
k) {@(nk,xm(l—xmp)p-l), pik.

we see that,
Res,—1 A(z)z%z7!

= x(h)z®(1; k, x¥) (c-1(fo — n(1; k,¢)) + cof-1)
+ x(h)z(log(x/e)®(1; k, xb) + ®'(1; k, x¥)) f-1c—1

+a®(1; k, xb)e ( > Ar(a)x(h/a)+ Y x(h/pm(1;p,1 )1 —xw(p)p‘1)> :

al|(h,k) p!|h,ptk
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If x4 is principal, then L(s, x¢) = ][, ,(1=p~*)((s) and thus c_; = ¢( and ¢o = M(’H-qu o)
From (6.47), we have

e L s)(kg)
(1, x9) = ®(1;k,x0) Y ;qu
plk,plq

Since 1(p) = 0 for p | ¢, we see that for p | g,
n(zip Lv) = Ap(p), (6.57)
and thus the residue of A(z) at z =1 can be written as

Res,— A(z)z"z*

o(k)(k,q) ¢(q) fo— n(1s k) + (+Zlgp)

e 200 6(0)
ko) >

) 9@ | g a
ko) q ”(1g/+§“§ >f1+a|(§h:k)AF x(h/a)

piq

¢ ¢ o
+xk;&((§;? pl%qX(h/pl)AF(pl)‘i’ Z|: X(h/p)n(Lip L)1 —p )

p
(p,k)=1 (p.ka)=

If x4 is non-principal, the only possible pole of A(z) arises from G(z;1), in which case it is a simple
pole at z =1, and

Res.—1 A(z)x"z" = ax(h)®(1; k, x¥) L(1, x¥) f1
0

6.5. Proof of Theorem 6.4. To evaluate (6.33), (6.34) and (6.35), we apply Lemma 6.8 with = =
qui First we note that qu > T2 since d < M < V/T. By the support of x,, we have G(z,v)
have zero free region of the form -0k W for all ¥ with conductor < M. Therefore, we all
terms with exp(—cy/Iogz) (or 2727¢) can be adjusted to some absolute constant ¢ (or §) depending
on F and L(s, x) uniformly for M < exp(y/logz) (or M < /T ).

6.5.1. Error Terms. We change the order of summation and expand the definition of a(m) (6.14) to
obtain

Zx’“ZZ S @)Y 8t ke d, ) S a(md) (m)

k<M Tl gl v (mod o) dlka kqT/2md<m<kqT /md
111751!1
Ik —
Z XYY Y setked )
k<M llg glk ¥ (mod gf) d|kq
h#X
Y#EP®
Y g S (A (hu)b(w), (6.58)
sh=d sv<M kqT /2ndv<u<kqT/mdv

(v,h)=1
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Since R(z, h,k,v) = 0 for all ¢ # X, ¢*, we can bound & by

R 5 30 S SR H 1) B A

k<M lig glk ¥ (mod g¢) dlkq
_ . qkT . )
x>y |ysv|%h9‘v7’(h)](h)logk(logh)3exp(—c«/logT).
sh:d(s’uhg)yl

To estimate the error £, we need the following lemmas on arithmetic functions.

Lemma 6.12. For d,k,q,¢ € N, ¢ a primitive character modulo gf and kq < T with (k,q) =1, we
have the inequality

(d, kq/gl)

8(gl,kq,d, ) < o0kq)

Proof. From equation (6.31), we have

ple) _ (d,kq/gl)
(kq)  ¢(kq)

8(gl, kq,d, ) < Z 5

elkq/gé

since 1% ¢ = id. U
Lemma 6.13. Let h be a positive multiplicative function and let 1 < k,q < M and (k,q) = 1. Then,

> M < a2

d|kq

1

Proof. Let g = (d, k), and write d = gdy and k = gk;. Then,

Z(qu <<ZZ In(gdr)| <> |h(g IH

d|kq glk d1\kq/g glk

«Iipee) |

n

1

Now we are ready to estimate £. From Lemma 6.12 and (k,q) = 1,

(d,kq/gt) < (d, kq/gt)
o(kq) d(k)o(q)

6(967 kq’ d’ /l/}) <<

We also have

Yn
n

> 3 hm < s

sh=d sv<M
(v,h)=1

1
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Therefore, using h, k < gM < T, we have

<O B S S @)Y btot ke v)

k<M llg glk v (mod gf) d|kq
x>y |ysv|%h9F7(h)j(h) log k(log h)? exp(—cy/log T))
sh=d sv<M
(v,h)=1
qgM)?7 q(log M)?(log q)3T
(DT ACos MRS DT 57 1y 5757 Valolot)
\/(j k<M Llg glk
(d,kq/gt) (7 *|y])(d)j(d) ‘ Yn
XZ okq) yi . 1exp( c/logT)
dlkq
« MOrtegbtorter S SN ST g0y (73 * |y (kq)j (k)5 (q) ‘ (T * ly))(n) }yin exp(—cy/log T)
tlq g<M ¢(gkq) n hnilh
q gSM k<M/g
< M9F+Eq1+9F+ET Z |xg|\/§ Z ‘xk|(7—3 * |y|)(k)]<k) (T* |y|)(n) ‘yl exp(—c\/@)
o (k) n  nllhy
g<M k<M/g
(k,q)=1
1 . . T3 % |y|(n T % n n
< M3tort "7y lso |2 |11 3 |:LJ|( ) ( |ry1|)( ) ‘% 1exp(_cm). (6.59)
1 1

6.5.2. Main Term Evaluation. From (6.33), we have

— — KN (KN (!
My )~ T 5 a(m)T(x)u( ngzl(glq)ﬂ( m)qu’
k<M kqT /2n<m<kqT/m

(mk‘,iq) ﬁ and ¢ | k’. Since z,y are supported on integers that are coprime

to ¢, we have (k,q) = 1 and it follows that (m,kq) = (m,k)(m,q). Thus if ¢ | k', we must have
(m,q) = 1, so that ¥’ = ¢k/(m, k) and thus m’ = m/(m,k). We write | = (m, k), k = Ik, and
= lmy, and then replace k1 by k and my by m. Using that 7(x)7(X)x(—1) = ¢, we have

M kg Zkk qu/QFSzm:quT/Tra(m) ( (mk,: yola)" ((mlf k’)) X ((mlf k)) X ((mn’lk))

(m,q)=1

where k' = and m’ =

T (k) x(k _
=y TR E J,;” > atmyxom)
k<M kqT /27 <m<qkT/m

(ka)*l

- ””k“ A # x(hu)¥ 6.60
o DY S pxw) Y Arsx(uwx  (6.60)

lkSM sh=l sv<M qu/QTrSuUSqu/‘n'

(v,hkq)=1 (u,kq)=1

After an application of Lemma 6.8 to (6.60) we obtain

1 Tk M
MY = Z Z yst
¢(a) k<M Uk sh= l( sv<1;4
v,hkq)=1

y @{ciﬁf)’;g (x(h) log (27’:;1T> Fo1+ Xi(h, k) + x(h)Xa(kq)>

+0 (hoFT(h)j(h)(log h)3j(kq) log(kq)quT exp(—cy/log T)) } (6.61)
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Let & denote the contribution of the O-terms in (6.61). After replacing [ by sh and using h < gM,
we have

- Op+e OF+€ |T5hk| k |ysv|
Eg K¢ TTEMETTET Z Tk ¢( Z exp(—cy/logT)
shk<M sv<M
<g?rrepOrter |33ssys| (7'3*\;|)(”) ‘ %v 1exp(—c\/@).
1 1

Since xj are supported on integers k with (k,q) = 1, thus [ { ¢ and h t ¢. Upon writing [ = sh and
hk = u, we find that

T xqu yst quT
My == > Z <10g< — ) /1 + X1 (h k) + Xa() ) + &
suM sv<M hk u
(v ug)=1
T $qu yevx
=— — 1 _ R
27TZ Z o8 Tve Jort Jorlogh
su<M sv<M hk u
(v ug)=1
T -73qu yst
_%Z Z (thk + f- 1X2( ))—&-Ey
su<M sv<M hk u
(v,uq)=1
T Tsy, Y
Sy T g Bl ( o (220) 11— )11 )
& su<M su sv<M v
(v,uq)_l
T x@uX yevX
-3 S (k) (X (k) + f1 X (R)) + E, (6.62)
suM sv<M hk u
(v,uq)=1
where
1, ifu=1,
o(u) =
0, ifu>1,
> Ar@x(@+ Y x@)n(p L) —ph,
al(h,k) p'|h.ptk
= log p
Xa(k) = fo—n(1; kg, X (7+Z )f 1
p\kq

For My, we write the modulus of ¢* as g* = golo, where £y = (g%, ¢) and (go,q) = 1.

My =TT 2T st ()T () T e,

Y4 Y4
k<M " kqT/27<m<kqT/x goto goto

where k' = (kgfm),m’ = (k;’?m) and golo | k'. We further choose x,y supported on integers that are

coprime to ggo. If golo | k' | kq, we must have go | k since (k,q) = 1,(go,q) = 1. From the support of
xx we have (k, go) = 1 and thus we must have go = 1. Therefore, we only need to consider the case
when ¢* is a character modulo £y with ¢y | g. Since (k,q) = 1, we see that ¢y | k" implies that £y | (q—‘in).

If we write [ = (m, k), £ = (¢,m), k = lk1, m = €lmq,q = llyqq, then (mq, k1) =1, (m1,q14p) = 1 and
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¢y | q/¢. Thus,

Z > :;Zzlm 11(k1g1)y* (k1g1) (%)

€q/lo I<M ky <M/l

X > a(llmy)* (—my)
nglqlT/2ﬂ<m1 SZOqulT/ﬂ'
(mlaéokIQI)_l

TS S S T L )5 (g () (<)

diareo i<nt kcnip o Slokrqn ia

X Z Z Tt (v) Z (Ap * x)(hu)™ (u)

sh=/£1 sv<M k19T /27l <uv<kiqT/ml
(U htokigi)=1 (u,lok1q1)=1

Z oy l;j;(bqu/@( %W( MO) )

£q/lo 1S M ki <M/I

sh=¢l sv<M
(v,hk1q/€)=1

0 (1) 1)l 1)) o) 21

el exp(_cm>) L (6.63)

where f_; = Res,—1 G(2,9*). Let & denote the contribution of O-terms in (6.63). Since (sl,q) =
1,4 g, sh = ¢, we must have £ | h. After replacing sh by ¢l and h by ¢h, we obtain a bound for &y-
as

e gt Y 3 Bl o S g B (e T)

lk (¢ k:
Cla/to I<M ky<Myi 1 Sllokrar) sh=tl  sv<M
(v, h@gk:lql)

<q0F+€M9F+eT Z Z Z |§S5hk1‘ Z |ysv|7_(h)](h)exp(7c\/@)

hk’l [

L)q/lo sh<M k1<M/sh v<M/s
< q0F+€M9F+ET |xsys| (T3 * ‘(ED(TL) yfv exp (-C\/@) ) (664)
S h n 1 1

Now we further require that x,y be supported on squarefree integers whose prime factors are = 1
mod ggo. It follows that if xx, # 0, then x(k1) = ¢*(k1) = 1 and (k1,qg0) = 1, thus

O(zbokrgr ™) = [ G=xe ) =]J0-p" = ¢§f1)-
pllok1q1 leflﬁ !
Pp190

Using this in (6.63) we simplify M- as

TS s et ()7 () T

g/l I<M ky <M/l

kg ¢(k i
. Z;qﬁv qb(;ﬁﬁL(wa*)x(h)ﬁ1 + &y,

where &+ is estimated by (6.64). Now we replace ¢l by sh, since (k1,¢) = 1, the main term in M-
becomes

—_— T, k1i P* k‘1i U -
DD IEDY sk /e PRz )P (R i) )3 &¢*(U)QLML(1,X¢*)X(}1)JC—1~

L)q/lo sh<M k1<MZ/sh Shkl/g ¢<Q/£) sv<M v
(v,hk1q/€)=1

DD DD DR M C)

sh=/1l sv<M
(v,hkiq/0)=1
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Since (sk1,q) = 1, we must have ¢ | h. After replacing h by ¢h, the above becomes

75 1 k 7t E k 7t 7sv T 3

VY Yy DmlBd TG s Ty D etwnor
0)q/ o sh<M /€ ki <ME/sh L q ( a};ukgl\;l X
v,hk1q)=

Since £ | ¢, the non zero contribution comes only from ¢ = 1. By the assumption on the support of z,,,
we have x(h) = 1if xj, # 0. After writing hk, = u, we see that the main term in M- is simplified to

Tk, 11(k19/Lo)0* (krg/lo) Yso spy L “ 7
Ysv e () — L1, 3
sh<Mk1<M/eh shky (q) svzg:M v v (0)277 e
(v,hk1q)=1
— - TTWOT s~ S T S k)l )T ()T (a/t) Y Lo )DL ) o
s<M u<M/s kilu sv<M
(v,uq)=1
:ﬂg)f& W@/ Y Y B k) Y g @)L )
7T¢( ) s<M u<M/s kilu sv<M v
(o,1g)=1
T(Y)T( *) Ts ysv r
- 14 £y) L1
27T¢ q) (q/ 0 Q/ ’ 9<ZJ\4'U.<ZM/S S;M )f
(v,9)=1
Therefore,
_ T()TW)T plg/bo)v* (g/%) 7 Ts Yso
My === o W 2 S 2 S e 00
B (v,9)=1

If there exist some positive constant a = a(x, F') such that both Fiy, and L(s, x) have no zeros in the
region R(s) > 1 — a for all ¢, then we can replace the term exp(—cy/logT) in the error terms &,&’
can be replaced by T~°%¢ for some small enough § = §(F, a), since ¢ has conductor < M < VT.

7. RESONATOR COEFFICIENTS

In this section, we define the resonator coefficients and give their properties.

Let x be a Dirichlet character and denote 1* (mod ¢g*) as the Dirichlet character # X such that
Fy-(s) has a pole at s = 1. If no such character exists, set ¢g* = 1. Let f(n) be multiplicative and
supported on squarefree integers n < M. Let d = lem(q,g*), K = \/q&(d) log M log, M, and By be
as in (iii) in the definition of S*. Define

K .
f(p) = Togp’ if K* <p<exp((logK)®),p# By, p=1 (mod d), (7.1)

and 0 otherwise. Then, we have the following estimates of norms involving f.
Lemma 7.1. Let f(n) be defined by (7.1). Then for M sufficiently large, we have
(1) \f( )| <n'/?,
<< exp ( (d)(l + (1))105(2) ,
@) Il < Mexp (55 (14 0(1) 2z )

f(n)? K2
(1) |22, < exp (ke (1 + o(1) i )

2
(5) 1F ()2 < M exp (55 (1 + (1)) sz )
)

(6) 130) (7 5 1) () f () /s < exp (kg (14 (1) e )
where j(n) is defined in (6.36).
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Proof. (1) Since K? < p, we see that f(p) < \/ﬁﬁ < /p- Thus f(n) < /n by multiplicativity.
(2) Using the multiplicativity of f(n), we have an upper bound

£}/l Zf <H<1+ )gxp<zf;p>>

From the prime number theorem in an arithmetic progression,

K 1 exp((log K)?) K
S T g0t [ s
P K?<p<exp((log K)?) " e
p=1 (mod d)
1 K
= 1 1 N1 19"
(o) S tog 2

(3) Using n < M, Rankin’s trick and part (2), we have

1 Hl—zf <sz <MHf

as M — oo.
(4) Similarly to (2), we have

M 2 2 2
5 SH<1+f(p)>§eXp<Zf(p)>_
n=1 P p p p
Using the prime number theorem in an arithmetic progression again, we derive that

2 K2
> fo)” > K

(140(1) K
e ()

K<p<exp((log K)2) F KzSPSeXP((logK)2)plog b
p=1 (mod d)
1 exp((log K)?) K2
=——(14+0(1 / dx
d)(d)( (1) K2 zlog® x

1 K?
= (1 y1) ) P
o) 55 tog 77
as M — oo. )
(5) Similarly to part (3), we have ||f?||; < M Hw
ote that since n is squarefree and j(n) and 73 (n) are multiplicative,
6) N hat si i f d] d ltiplicati

ZJ Tk*f <H<1+ p) (7 * [)(p )f(p)>.

n<M p

Since j(p) =1+ O(/p), f(p) = &7 and (73 * f)(p) =

J(@)(re * f)(p) f(p)
2 )

logp + k, we obtain

K?<p<exp((log K)?)

p=1 mod d
K2 K K2
= 2 ( log? o (plogp * p3/“>)

K2<p<exp((log K)?) P 08 P

p=1 mod d

1 K2
e 1
29@) O gz Mo
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Lemma 7.2. Let f(p) be defined in (7.1). Set

S ) D)

» p
Then, as M — oo,

m ¥ T g 0oy,

nu<M
n 2
2 Y f(n) <0
n<M
Ql _ L K ..

(4) Z |AF )| (n)l < Klogy, M

)
(5) Zi [Ar {())<<Klog2M
u)

n<M m= 1 (

(6) Z M<<Q K log, M.

nu<M

Proof. (1) Since f is multiplicative and supported on squarefree numbers,

OIEARIUDE S I iU

nu<M n<M u<M/n

(u,n)=1
f(n) f
-y L (1) -
n<M (p,n)=1 z;,n>3)1/'r{

By Rankin’s trick, the contribution from v > M/n is bounded by

Z@(%)a Z f() H1+f 2a1+f(p)pa71)
n<M u=1 p
- (u,n)=1

for any a > 0. By Rankin’s trick again, the main term becomes
2 1 2 (e
H<1+f(p) +f()>+0 QH<1+f(p) +f(p)p> .
. p p Me = P P

Combining (7.4) and (7.3), we deduce that

> fitm) _ o +o< ! 11+ 1+f(p>p“‘1)>-

nu<M P
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Taking o = 1/(log K)3, we see that the ratio of the error to the main term is bounded by

N K? K
< exp | —alogM + Z P*=1)(—=+
plog®p  plogp
K?<p<exp((log K)?)
p=1 (mod d)
K? K?
—al M _
<<8Xp< et @ log K %(d)(logm?)
< log M
exp alogQM .

35

(7.5)

Note that we used the fact that W;m < log M in the last step to ensure (7.5) is o(1).

Therefore,

5 W = Q1(1 + o(1)).

nuM

(2) We have the inequality

S0P 0P (1 S0 g,

n<M P

(3) From the definitions of Qp and Q; defined in (7.2), it can be seen that

Q1 . f(p)
Q 1;[ <1 o f(p)2p‘1)) '

From (iii), we have Bjy; > logy M > log K. Since log K < log, T', we have

K < K . K
BylogBy logKlog, K \log K2 )~
It follows that

f(p) K K
Y T = > (14 0(1)) + o)
2,,—1 2
K<pomtog ) PAH TP s k2 P1OBP log &
p=1 mod d
1 K
—(1+0(1)——— .

(4) Since f is supported on squarefree integers, and Ar(n) is supported on prime powers,

_ArM)f(n) el
ZM (Lt S 2 1+ f(p)2p~Y)

p<m P
1/2 1/2
1 A 2
< K Z L Z Ar (D)
pm P p<m P

< Klogy M,

where the last inequality follows from (3.6) and partial summation.
(5) Since we have Ap(n) < n'/2, we see that

Z i |AF(pn;)|f(p) <<szi - 1 < K.

p m=4 p p
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This shows that

> 3 B0 o 5 5 ML)

p<M m=1 p<M m<4

A
<K > |Fnﬂ+K<<Klog2M

n<M*
, 1/2 1/2
|Ar(n)] 1
<K| ) 22
n<prd » mea

< Klogy, M.

(6) From the identity logn = 3, A(d),

lognf(u)f(nu
) gnf(u)f(nu)

nu<M nu k<M nu<M/k e
(nu,k)=1
oy A(k) f(k) > f(n) (1+ f(p)Q)
k<M n<M/k " (p,nk)=1 p
(n,k)=1
-1
<o Y A(k)f (k) 3 f(n) <1+ f(p)2>
k<M n<M " plnk p
(n,k)=1
1 —1
co, " KO (14 LYy A (SR
n<M pln k<M plk

< Q1K log, M.

8. PROOF OF THEOREM 1.1-1.4

Now we are ready to prove Theorem 1.1-Theorem 1.4. Let F' € §* and * (mod g*) be the Dirichlet
character # X such that Fy-(s) has a pole at s = 1. Let x # ¢* be a Dirichlet character. Define
Tn = Yn = f(n), where f(n),n =1,..., M are the resonator coefficients defined in Section 7. Using
Theorem 6.1 and Lemma 7.1, we see that the error term becomes o(T') upon taking M = exp(c’/logT)
for some ¢’ > 0. If there exist positive constants a depending on F, and x such that all three of
L(s,x¥), F, and F, have no zeros in the region R(s) > 1 — a for all ¢, then we can take M = T
for some small positive constant ¢’ = ¢'(F,x). Thus it remains to compute the main terms. Let

2
g be the multiplicative function supported on squarefree integers with g(p) = 1 + %. From the
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multiplicativity of f and g, we have

nuM nulM

<Oy, Ar®)I ) Q. K log, M, (8.1)

where we used (2) and (4) from Lemma 7.2. Next, we give an upper bound for the terms involving
r3(u). From the assumption that F5 has no pole at z = 1, we see that f_; = 0, and thus

St [fo- 3 M S e 3 S

ra(u) = rq(u)

hk=u plk m=1 pl(hk) plh,ptk m=1
A m
=\ fo— Z Z r(p Z,u(
plu m=1 klu hk=u p|hm 1
= Z Z m 1 Z (k)v
plu m=1 k%

which is non zero only when v = 1 or w is a prime. Thus,

xquTB(U) Lsls xuyvr?)( )
Z Z wv Z <QOZ Z uvg(uv)

u<M v<M s<M u<M v<M
(v,u)=1 (s,uv)=1 (v,u)=1
SQ Y S Y ot
S vav) S ug(w)
(uv)—l
Q D)Ar(p
< 1 Z Z m 1
pSM m=
< Q1K logy, M. (8.2)

where the last inequality follows from (5) of Lemma 7.2. Therefore, from Theorem 6.1, (8.1) and
(8.2), we have

T
S1 = 5-drPy(logA\QA) I T) (1 4 0(1)) Qs + O (TQ1 K log, M)
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Next we consider Sy (cf. (2.2)). Using Lemma 7.2, we have that

Z Ap(n)f(n)f(nu) Z Ar(n)f(n) Z fu)?

nu
nu<M n<M u<M/n

(u,n)=1

2 Ar(n)f(n
(14122 3 st

= )
< QoK log, M. (8.3)

Combing (8.3) with Theorem 5, as T' — oo, we have

S0 = &dp P, 108N 1 T Qo1 +0(1)) — = 3 ArWTut

T nuM u
dpT
=5 log TQu(1+ 0(1)) + O (T'QoK log, M) .
Therefore,
|51 Q ( 1 K )
max >—> —=exp| ———10+0(1) — |,
ARax [<(p)l 5, >0, P ¢(1cm(q,g*))( ( ))log 702

T<Sp<2T

by (3) in Lemme 7.2. If M = exp (¢/y/IogT), then we can chose K = \/¢(lem(q, g*)) log M log, M,

which gives
K S logM _ , (log T)1/4 ’
log K2 log, M (log, T')1/2

with ¢/ = 1/’ /2. In the second part, we can take M = T%" for some small & = §'(F,a) > 0 and

K log M logT
> >/ .
log K2 log, M log, T
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