EXACT EVALUATION OF SECOND MOMENTS ASSOCIATED
WITH SOME FAMILIES OF CURVES OVER A FINITE FIELD

RAVI DONEPUDI, JUNXIAN LI, AND ALEXANDRU ZAHARESCU

ABSTRACT. Let F, be the finite field with ¢ elements. Given an N-tuple @ € Fflv,
we associate with it an affine plane curve g over IF,. We consider the distribution
of the quantity ¢ — #%,,o where #%,,¢ denotes the number of Fy-points of the affine
curve ¢q, for families of curves parameterized by (). Exact formulae for first and
second moments are obtained in several cases when () varies over a subset of Ffzv .
Families of Fermat type curves, Hasse-Davenport curves and Artin-Schreier curves
are also considered and results are obtained when @ varies along a straight line.

1. INTRODUCTION

Given an elliptic curve E over the finite field IF, with ¢ elements, the number of points
of F over [F, can be expressed as ¢ + 1 — Tg, where T is the trace of the Frobenius of
E. A classical result of Hasse [7] states that

s < 24/4.

Questions on the distribution of the number of points have been studied by a number
of authors. In particular, for a fixed F,, one can consider the trace distribution of
a family of elliptic curves. Let F,,; denote the elliptic curve with Weierstrass form
y* = 2* 4+ ax + b, and let Ty, ,, denote the trace of Frobenius of E .. In [2], Birch
gave asymptotic formulae for the average of even moments zavbqu T ]%fa’b by using
the Selberg trace formula. More recently, in [§], He and Mc Laughlin obtained exact
formulae for zaele Tﬁ%p,a,b when the field is taken to be the prime field IF,,. For a smooth

algebraic curve ¢ over F, of genus g, a well known theorem of Weil [L1] states that

g+ 1 —#%| <2974, (1)

where #%, denotes the number of F -points of the projective curve. As with the case
of elliptic curves where g = 1, the distribution of the quantity Ty, := ¢ + 1 — #% has
also attracted attention. In the present paper, we establish exact formulae for the first
and second moments of analogous quantities to Ty, over some general families of plane
curves over a finite field F,.

For fixed non-negative integers a;, b;,7 € {1,2,..., N} and an N-tuple

Q= (c1,¢2,...,¢N) EF(]]V,
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we associate with it a plane curve 6 whose affine model is given by

N
Cq: ) ety =0, (2)
i=1

We set Ty = q — #%6, where #%; denotes the number of I -points, which are the
F,-solutions (x,y) to the defining equation of €. We will use points or solutions
instead of FF,-points or [F -solutions for short later on. Note that if we homogenize equa-
tion , then the points at infinity are determined by the highest degree homogeneous
equation in x and y. For elliptic curves in Weierstrass form, there is only one point at
infinity, and our definition of Ty matches the usual definition of Ty; as ¢ + 1 — #P%,
where #P% is the number of point on the projective curve associated to . In either
case, Ty measures the difference between the number of points on the curve and the
expected value. Given a subset S C IF(ZIV , we are interested in the distribution of Ty as
@ ranges over S. In particular we consider the variance of Ty for @ € S,

VITQ] = g S (Ta = MF)? = M5 — (M), 3)
151 &

where M7 is the average of Ty over all Q € S given by
Z Tq, (4)
QES

and My is the second moment of T over all Q) € S defined as
5T (5)
QGS

Under some restrictions on the set S, we establish exact formulae for M{ and My .
First we introduce some notation. For an index set I C {1,2,..., N} and an N-tuple
v = (v;) € FY, let S;(v) be the set of N-tuples whose coordinate with indices outside
I are given by the corresponding coordinates of v. More precisely, we are defining

Si(v) ={(c1,¢2,...,en)|c; =wvj for j ¢ I and ¢; € F, for i € I}, (6)
and letting

Iy={i€l|la;=0, b;=0, }, (7)

Ig={i¢1]a;=0, b =0} (8)

L= #{(aibi)] a; #0, b; =0, i € I}, (9)

i—#{(al, )| a; =0, b; #0, i €1}, (10)

= #{(aibi)| @i #0b; =0, i ¢ I}, (11)

= #{(ai, b)) a; =0, b; #0, i & I}, (12)

where I¢ denotes the complement set of I in {1,2,..., N}. For example, if ¢ = 17,
N =5, let (a1,...,a5) = (2,3,0,5,0), (bi,....bs) = (1,0,0,3,4), I = {2,3} and
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v =1(0,1,2,3,4), then

S1(v) = {(0, ¢z, ¢3,3,4)|ca, c3 € Fi7},
Ip={3}. 1§ ={1,2,4,5},nL = 1,n) = 0,n. = 0,n" = 1.

=

Intuitively, I, gives the indices of constant polynomials in the set {x%y% i € I}, nl
gives the number of monomials in x from the set {z%y% i € I} and né gives the number
of monomials in y from the set {z%y’ i€ I}.

Consider the F,-vector space spanned by {z%y’|i € {1,2,...,N}} for some non-
negative integers a;, b;,i € {1,2,...,N}. For any I C {1,2,...,N} and v € ]Fflv, we
are interested in finding the second moment of Tg, where Q € S(v) C FYY.

Theorem 1.1 Given fized exponents a;,b; € Z>y fori =1,...,N, consider a subset
I C{1,2,...,N}. Let I denote the complement of I in{1,2,...,N} andnl,n},nl nl
be defined as above. Then, for any v = (v;) € Fév and all Q € S;(v),

—kv(b) if Ip=10

= , (13)
Q€eS;(v) 0 if Ip # 0

where

el§
qg—1 ifb=0,
v(b) = (15)

-1 ifb#0,
21 ifpl =0, nl =0, nl" =0, nI" =0,
q x Yy x )
1 if n >0, nf =0, nl"=0

and Kk = 1n§ ,n? ,n?c ’ (16)
1 it n, =0, n, >0, n, =0,
‘ if nl, >0, n) > 0.

Before stating our next result, we discuss the notion of injectivity of an index set. For
a given set [ C {1,2,3,.., N} and distinct i, 5,k € I, let

a; — aj bl — bj
Mz'jk = det
a; — Qg bl — bk

We call I injective if the following condition hold,

ged{ged(M;jk, q — 1)| Mijr # 0, i,7,k € I,1,7,k distinct} = 1.
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We also introduce the following notation, which will be used to obtain exact number
of solutions for families of curves. Let

d! :=ged{gcd(a; — a,,q—1)| t,r € I, b, = b, = 0}, (17)
dy, = ged{ged(by D|l,s€l,a=a,=0}, (18)
m? = ged{ged(ay, q — 1)| tel, by =0}, (19)
m,, = ged{ged(b, ¢ — 1)| 1 € I, a; = 0}. (20)

As an example that illustrates this notation, let ¢ = 2% N = 5 and suppose that
(a1,...,as5) = (2,3,0,5,0) and (by,...,b5) = (1,0,0,3,5). Then, I} = {1,2,3,4} is
injective, but I, = {1,2,5} is not. Also, mll =1, dl» =3, df =5 and m{f =

Theorem 1.2 Given fized exponents a;,b; € Zsy for v = 1,..., N, suppose that a
subset I C {1,2,3,.., N} is injective and that nl” = 0, n:{; = 0. Then, for any given
v =(v;) € FY and all Q € S;(v),

2
1 v(b z(b)gr” . .
B (—5> <q 1+ () +q)——ql> Zf[g—@
2
QeESI(v) (1 - é) (g—1+ %”) if Io # 0,

where b and v(b) are defined as above, and k', K" and z(b) are defined as follows:

0 ifb=0,
z(b) = d
1 ifb£0,
(2¢—1)* ifnl=0,n)=0,
¢+q—1 ifnl=1n,=0o0rnl=0n,=1
2qg — 1 if nl —l,nézl,
, ¢+ dL 2fn£>2,né:0,
K =
¢ +d ifnl =0, nl >2,
q+di, z‘fn1>2n1:1
q—|—d£, ifnl =1, n > 2,
\di—i-dé—l—l intZQ,n£22,
== if nl = 0,n! =0,
B m£+q‘%21 if nl, > 0,n] =0,
K =
ml + L if nt = 0,n! >0,
\m£+m£+£_21 if nl, > 0,n} > 0.

In later sections, we consider the case when I is not injective. For some special
classes of curves, such as families of Fermat type curves, Hasse-Davenport curves and
Artin-Schreier curves, one can obtain explicit formulae for M:"™) and M5"™) even if
I is not injective.
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2. PRELIMINARIES
Let ¢ = p" be a prime power. The canonical additive character of IF, is defined as
eq(J]) _ e27riTr(m)/p7 (21)

where Tr(z) =z +a? + -+ 2 €T,
For 1 <d <r,d|r, define Try : Fy — F,a by

Try(z) = 2 + 2 + 27" + 27" + .- 4 297", (22)
By Lemma 4.2 of [5],

d .
p* if Try(y) =0,
> ey ={ " (23)
= 0 if Try(y) # 0
In particular, if we take d = [F, : F,] = r, then
q ify=0,
Z eq(zy) = . (24)
z€el, 0 if Yy 7é 0.

It follows that the number of solutions f(z,y) € Fy[z,y] in F; can be written as

3 SN ey(tf(aw). (25)

z,y€F, teF,

The t = 0 term contributes ¢ to the total number of solutions. Thus the quantity

T,(f) = —g S Y eyltf )

z,y€ly tGIF;
:q—#{(I,y) GFS f(x7y>:0} (26)

is the quantity we are interested in. For a hyperelliptic curve E over F, given by
y*> = f(x), where f(z) € Fplz], the quantity T,(f) can also be expressed using the

Legendre symbol as
n0) == 3 (1), (27)

Now, let e,(2) = exp(2miz/p), and

o VP ifp=1 mod 4,
' 1/p if p=3 mod 4.

(28)

From Theorem 1.1.5 and Theorem 1.5.2 of [I], we have

()55 (0)a(%)
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which was used in [§] to calculate the second moment in the case where the polynomial
f(x,y) is given by f(z,y) = y* — 2* — ax —b.

3. PROOF OF THEOREM [ 1]

We consider the family of curves parametrized by @ = (¢;) € F)Y, defined in as

N

folz,y) = ™y =0.

i=1
Given a subset I C {1,2,...,N}, v € Fév and @ € S;(v) defined in (), we set

b= Z v;, which gives the constant term for this family of curves. From ([26)), we have
i€lg

> TQ_—— > Y Zeq<t2cx%y)

QeSr(v) QESI v) z,y€Fq €F}

= —= Z Zeq thj 4% 4% H Z eq(citz®iy®). (30)

z,ycly teIF* i€l c;€Fy
J&H
Using , the only nonzero contributions arise from the pairs (z,y) that satisfy
%yt = 0, foralli € I. If Iy # 0, then the sum becomes zero, while if I, = 0,
the equation becomes

1]
Z Ty = qq Z Zeq th T (31)

QeSr(v) z,y€Fy telFy
x%ybi=0, Vicl ]QI

Now we consider the following cases separately.

3.1. Case nl =0, n{/ =0, n}” =0, n]=0:
The condition z%y% = 0 for all i € [ becomes xy = 0, so we have 2¢ — 1 such pairs
(x,y) € IF2 By the assumption that nl® =0 and n{f = 0, we have 2%y% = 0 for all

j & I for these 2q — 1 pairs. Thus becomes

S - Q" S Y et

QeSr(v) z,y€lq teFy
zy=0

_ D ety -1

z,yclfqy \telFy
zy=0

—(g—=1)(2¢ = 1)g"~" if b =0,
(2¢ — 1)gl"—1 if b £ 0.
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3.2. Case n} >0, n) =0, n[" = 0:
The condition that :paiyi = 0 for all + € I forces = to be zero, so there are ¢ such
pairs (z,y) € IFZ Since n = 0, we have 2%y% = 0 for all j € I when # = 0. Thus

. ) becomes
3 TQ__Q S Y et

QEeSr(v z,y€Fq teFy
=0

1]
- —% S [ Y eltn) -1

z,yelfy \tel,
=0

—(¢—1)¢"" ifb=0,
g if b # 0.

3.3. Case n, =0, n) >0, nl’ =0:
This is very similar to case (2), and is proved by switching = and y.

3.4. Case n. >0, n)>0:

Since there exist at least one term of the form 2%, a; > 0 and one term y%, b, > 0 for
some j, k € I, the condition z%7% = 0 for all i € I implies that z = 0, y = 0, which in
turn causes x%y’% = 0 for all j € I. So, there is only one term in the sum ([31)), which
becomes

> =Y Yaw

QeSr(v) ,é/quOtE]F*
Yy
1]
=T [ Y ey th) — 1
1 \icr,

—(q—1)g"=" if b =0,
g1 if b # 0.

This completes the proof of Theorem ({1.1)).

4. PROOF OF THEOREM (|1.2)
From (26), for @ € S;(v),

N
S0 TN D 3B 1) et
1

z,y€Fq teFy z,y€lFq tely 1=
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It follows that

Y Thims 3 XY altialm)etafolr )

QeSr(v) QEeS(v) z1,y1€F t1,t2€F
x2,y2€Fq

> > <H Si [T ealtrcsat v’ + 752Cj$gjygj)> :

tl,tQE]F;; Z‘l,xQE]Fq el Jé€rI
y1,y2€F,

where
Si = Si(w1,y1, 1, T2, Y2, ta) = Z eq(ciltialiyhi + taagiybi)).

C; GFq

By (24), the S; are equal to g precisely when ¢z’ Y + tyxiyb vanishes. Since we
have a product of S;, we need to find the simultaneous [F-solutions to the following |/|
equations

hafiyy + tagiyh =0, fori€ L.

Equivalently, we have the system

[ aiy biy aiy  biy 1 [ ]
T Ty " Yg 0
ai, bi2 @iy bi2
1Y Ty Yo tf |0 (35)
to
g big @y big 0
Ty U Ty Yo

4.1. Case: x1x2y1y> # 0. If we have that x1x5y1y2 # 0, then we reduce this matrix to

1 w%ipba

1 u%eqpbi

1wl

where u = £2 and v = 52 This system has a non-zero solution only when this matrix
has rank 1, that is

b .

ub o = y%pbi

i = u“’“vb’“,

for all distinct 7, j, k € I. Since u, v are non-zero, this further reduces to
u%~ %Pt = 1 and W% =1,

Raising the first equation to the power a; — a; and the second to a; — a;, we obtain
vMisk = 1, where M;j, is the determinant of the matrix

ai—aj bz—bj

a; — Ak bj—bk
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Denote by D the greatest common divisor of all M;j;, where ¢,j,k € I are distinct.
Then we can find integers r; ; , such that Z”k TijkMijr = D. Thus vP =1 as well.
The assumption that ged(D, ¢ — 1) = 1 guarantees that the power map = + z” is a
bijection and so v = 1. Similarly, u = 1 as well.
So x; = x9 and y; = yo. This in turn forces t; = —t,. Since we assume that
12211y # 0, there are (¢ — 1) solutions to the simultaneous equations.

4.2. Case: z1y 22y = 0. A more complicated scenario arises when xx9y1y2 = 0. The
number of solutions to the system (35| varies dramatically for different index sets I.
First we consider the case when the constant term in the family b =", e vi = 0. By
switching x and y if necessary, we divide the problem into six manageable cases.

(1) nL =0,n] =0,nL =0,n)" =0
In this case, we consider sets I for which a;b; # 0 for all © € I. Noticing that
r1y; = 0 if and only if 2oy, = 0, there are (2¢ — 1)? tuples (1, T2, y1,%2) that
satisfy this requirement. Since t; and ¢, do not affect the equation, there are
(¢ — 1)? choices for (t1,t5). This gives a total of (2¢ — 1)?(¢ — 1)? solutions to
the system ([35]).
(2) Io=0,nL =1,n] =0,n, =0,n) =0
This is the case where there is exactly one term ¢;z3", i € I in f(x,y). Then,
notice that x; = 0 if and only if 25 = 0, and in this case there are ¢? choices for
(y1,92). If 1 # 0, then y; and y, must be zero so that has solutions with
x12991Y2 = 0. Any choice of x1, x9,t; (all non-zero) determines a unique choice
for ¢, yielding a total of ¢*(¢ — 1)* + (¢ — 1)* = (¢ — 1)*(¢* + ¢ — 1) solutions.
3) Io=0,nL=1,n, =1,n =0,n) =0
In this case, there is exactly one term of the form c;xz% and one term of the
form c;y% with i, j € I. Again, z; = 0 if and only if x5 = 0 and in this case there
are (q—1)3 choices of tuples (y1, y2, t1, t2) where all the coordinates are non-zero.
Similarly, the requirement that y; = 0 if and only if yo = 0 yields (¢ — 1) tuples
(21, T2, t1, t2) with all coordinates non-zero. If 21, x9, y1, yo are all zero, there are
(q—1)? tuples (t1,t5). In summary, we have 2(¢—1)*+(¢—1)* = (¢—1)*(2¢—1)
solutions.
(4) I =0,n >2,n) =0,n)" =0
In this case, there are at least two terms of the form say c;2% and c;x%.
As before, z; = 0 if and only if x5 = 0, thus we have ¢*(q¢ — 1)? solutions for
(y1,y2,t1,t2). If 1 # 0 and y; = 0, then we must have zo # 0 and y, = 0. If
we let u = 7%, then non zeros solutions (t1,t2) to implies u% = 1, and any
of such u’s will give d%(q — 1)? choices of (z1,z2,11,t2) so that is satisfied.
This yields a total of (¢ — 1)2(¢? + d%) solutions.
(5) Io=0,nL >2,n) =1,n)" =0
Under this condition, there must be three terms in the form of %, x% and
y” appearing in f(z,y) with i,5,k € I. We still have z; = 0 if and only if
xo = 0 and y; = 0 if and only if yo = 0. For the solutions with x; = 0, we have
q(q — 1)? solutions for (y1, 92, t1,t2), and for the solutions with z; # 0, we have
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dL(q — 1)? solutions by a similar argument as in the previous case. This gives
(¢ — 1)?(q + d2) solutions in total.
(6) Io=0,nL >2,n] >2
In every other case, f(z,y) contains at least four terms ¢;x%, ¢;x%, ¢;y™ and
cy® with 4,4,k,1 € I. Then as before, if only one of z;,y; is zero, there are
(d% +d])(q — 1)? solutions. If ; = y; = 0, there are (¢ — 1)* solutions. In total
we obtain (d, 4 d] 4 1)(¢ — 1)* solutions.

Using our notation in ([7), we summarize our discussion for Iy = ) as follows:

Condition T1y1T2y2 # 0| x1y122y2 =0
ng=0n;=0| (¢—1)° |(¢g—1)>*2g—1)?
ny=1Ln, =0 (¢—1° |(@—-1D*F+q—1)
np=Ln,=1 (¢—1)* |(¢g—1)>*2¢—-1)
ny>2,n, =0 (¢—1° |(¢—1)*¢+dy)
ny>2mny =10 (¢-1° |(¢—1)%(q+d})
nt>2,n,>2| (¢—1° |(¢—1)%d, +d)+1)

For the case Iy # (), solutions to the system requires t; + to = 0. We need to
consider x1y1x2y2 = 0 in the following cases.

(1) nf = 0,n] =0,nL =0,n)" =0
Since the equations in are all in the form 2§y} + ty23yS = 0, where
ab # 0. Solutions with z;y; = 0 forces xoy, = 0, which gives (2¢ — 1)%(¢ — 1)
solutions to the system.
(2) Io #0,nL > 0,n] =0,n" =0,n)" =0
If z; = 0, then 2o = 0, which gives ¢*(q — 1) solutions for (yi, 92, t1,ts). If
z1 # 0,91 = 0, then there are mZ(q — 1) solutions to the system.
(3) Io #0,nL =0,n] >0,n," =0,n) =0
By a similar argument as above, there will be m/ (¢ —1)*+ (¢ — 1)¢* solutions
to the system.
(4) Iy #0,n. > 0,n) >0,n, =0,n) =0
If z; = 0, then z, = 0, which gives m/(q — 1) solutions for (y1,ys,t1,12),
where Y192 # 0 and (¢ — 1) solutions with y;yo = 0. If 21 # 0,3, = 0, then
there are mZ(q — 1)? solutions to the system.

We summarize the above cases in the following table:
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Condition T1y122Ys # 0 T1y122y2 = 0
n,=0,m,=0| (¢—17° |(g—1)(2¢—1)°
nt>0n) =0 (¢—1* |ml(g—1)*+¢*(g—1)
n,=0mn,>0 (¢—17° |mi(¢—1°+¢*(¢g—1)
nk >0,n, >0 (q—1)3 (mL+ml)(@g—1)?2+(¢—1)

Next, consider the case when b # 0 in the family defined in . It is easy to see that

the value of MQS '™ is the same for all b = 0 since we can always divide the equation of
the curve by b to make the constant term 1. Using the same notation as before, if we

sum over b, by a similar argument we see that

Y TH#0 = ti+1,=0,

QeSr(v)
beFy

which reduces to the case when Iy # (. By assumptions of Theorem [1.2] the number
of solutions to the system (35]) with ¢; + 2 = 0 is given by the above table:

Thus for each family with b # 0, the second moment Még '™ s as follows:

Iy =0 szgz(V)
nL=0,n=0](g—1)°+ (2¢ — 1)*
n,=1mn,=0|(q—1)°+ q(my(g—1)+¢°) — (¢—1)(¢° + ¢ — 1)
ny = Ln,=1](¢—1)*+ q((mg +my) (¢—1)+1) — (¢ —1)(2¢ — 1)
ny > 2,my =01 (¢—1)° + qg(mg(g — 1) +¢°) — (¢ — 1)(¢* + dy)
ng > 2,ny =11 (¢ =1 + q((mf +my) (¢ — 1) +1) = (¢ — (g +dy)
ny >2,m, >2 | (q— 1%+ q((my +m)) (¢—1)+1) — (¢ — 1)(d] +d +1)
Io #0 g? My
n, =0y, =0]|(¢— 1"+ (¢—1)(2¢ — 1)°
ny=1n,=0]|(¢g=1)°+ (¢—1)(mlg—1) +¢*)
nl=1nl=1|(¢—1>+ (¢g=1)((ml+m})(¢—1)+1)
ng >2,m, =0 (¢—1)> + (¢ — 1)(mz(q — 1) + ¢°)
nt>2nl=1](¢—1%+ (¢—1)((ml+ml) (¢—1)+1)
nl>2n,>2(¢g—1)°+ (¢ — 1)((m£+m£) (g—1)+1)
This completes the proof of Theorem [I.2]
Remark: The proof shows that in the case where nl > 2 and né = 0, we can get the
same result even if n.” > 0, and for the case when n} > 2 and n) > 2, no restriction

on /€ is necessary.
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5. FERMAT TYPE CURVES
Consider the family of Fermat type curves over F, defined by
Y= 2™+ az® + b, (36)
where a,b € I, and [, m, k are positive integers. Let

Thap =q—#{(z,y) € ]F?I| y' = 2™ + ax® + b} (37)
Then, we have the following result if we only average over a € F,,.

Theorem 5.1 Using the above notation,

Z Thap = K <1 a (L(JQ—_D (1 * <§>z>) o 70, (38)

a€ly 0 Zf b= 07
}:fwbzo, (39)

beF,

where

(b)__ 1 ifb=yh yo € FL
a4/,

—1 otherwise.

Theorem 5.2 If q is a prime power satisfying ged(q—1,1) = 2, ged(qg—1,m) =1 and
ged(q—1,k) =1, then

7 ifb+40, 244 g1,
q(q—dn(—1 if b#£0, 2d|q — 1,

ZT(ia,b: ( ( )) . ~ ’ (40)
0 ifb=0, 2dfq—1,

aclFy

q(qg —1)dn(=1) ifb=0, 2dlg—1,
where d = ged(q — 1,m — k) and n is the quadratic character for Fy.

When | = 2,m = 3, and k = 1, Theorem and reduce to Theorem 3 and 4
in [8]. Notice that in the previous notation, for N = 4 | (ay, as, as,as) = (m, k,0,0),
(b1, b2, b3, bs) = (0,0,1,0) and I = {2}, then I is injective but n." = n!" = 1, thus
Theorem can not be applied in this case.

5.1. Proof of Theorem [5.1 By the definition of 7} .,

Toap = —é Z Z e(t(y' — 2™ — ax® —b)). (41)

z,y€lfq el
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By summing over b € F,, we deduce that

ZTW’ Z ZZ@Q y—xm—a:ck—b))

belF, z,y€lfq be]Fq telFy
S X St —am =) 3 ey(—)
z,y€lfq tGIF* bel,
=0.

Also, if we average over a,

ILIVEED SE D) DVEFLETEED)

a€lFq z,y€lfq ae]Fq telFy

= — Z Z eq(t y —a™ — b)) Z eq(t(—axk))

z,y€lfq t€]F* a€lg

:_ZZeqtyl—b))

y€eF, teF;,

=q— ) ety —b)

y€lF, tefF,

If b= 0, then

D Thar=0

a€lFy

since only the term with y = 0 gives contribution to the sum. If b # 0, then

Sr=a(1=257 (4 (5))

<b> 1 1“7:967 yOEF%
l

where

q

—1 otherwise.

This completes the proof.
5.2. Proof of Theorem . From ,

} : 2
Tq,a,b

a€lfy

22 Z Z eq t1 —x’ln—aa:]f—b)—l—tﬂyé—x?—amé—b))

acF, 1,22, t; tQG]F*
Yy y2€Fy

1
2 Z Z eq (h(yh — 2" = b) + to(ys — 25" — b)) Z eq (—a(tiz} + toah)) .

T1,L2, ¢4 tQE]F* a€cF
y1,92€Fg K

13
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The innermost sum is nonzero precisely when x% = —t;'t;z%. If (k,q — 1) = 1, there
are integers s, s’ such that sk + s'(¢ — 1) = 1. Thus

2
Z Tq,a,b

a€lFy

- DT> eg(tilyr = b) + talyh — b) + (—taty (T — 1)

z1,Y1,Yy2€Fq t1,t2€FY

Z > e (il = b) +ta(yh = 1) D g (e (—taty (T = 13"7))

yl:y2€Fq t1,t2€Fy z1€F,

By the assumption that (m,q — 1) = 1, we see that the inner sum contributes a factor
of ¢ precisely when ¢! = ;™! Raising both sides to the k-th power, we obtain

m—k
(i—?) = 1. The number of (m — k)™ roots of unity in F, is d = ged(m — k,q — 1).
For each such root u, the equality to = ut; holds. Since ged(l,q — 1) = 2, we can make

a change of variable by replacing yf/ 2 by ;. Thus we rewrite our sum as

SNT2,= 0 > N e (tily —b) +uti(yi — b)) (42)

a€l, ud=1, y1,y2€Fq t1€FY
uEIFq

For a fixed u, we now count the number of solutions (y1,y2) to the equation
t1y? + uty2 = t1b(1 4 u). (43)

Let 7 denote the quadratic character of F;. Using Theorem 8 of [§], which gives the
number of solutions to certain quadratic forms, we see that in the case b # 0, if u # —1
there are exactly

g —n(=tiu) = g —n(-u). (44)

solutions to , and
¢+ (¢ = )n(—tiu) = 2¢ — 1. (45)
solutions when v = —1. Since the sum over ¢; excludes 0, each solution (u,y,ys)

contributes ¢ — 1 to our sum and each non-solution (u,y;,ys) contributes —1. By
combining this with the number of solutions to , and , we find our sum in
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is
oTry=(—D | > (¢g—n(-u)+2¢—1

a€lFy ud=1u#—1

—ld = D (g—n(-w)+2¢-1)

uld=1u#—1
=qlq—1- Y n(-u
ud=1u#—1
=q (q -y n(—U)) :
ud=1

Similarly, if b = 0, the number of solutions to equals
(=D +n(=w)+1=q+(qg—n(-u).

Summing over u¢ = 1,

d Tr=(—1) (Z(CH (q— 1)77(—U))>

aEIFq ud=1

- (d(f - (Z(q + (¢ — 1)77(—U))>>

=q(g—1) ) n(-u).

ud=1
In conclusion,
qla— Zn(—u)> if b £ 0,
Z qab - ( ul=1 (46)
“eto qlg—1) > a_qyn(—u) ifb=0.

If 2d 1 ¢ — 1, exactly half of the u satisfying u® = 1 are squares in F,, thus the sum
over all the u’s is zero. In this case, can be simplified as

2 ifp£0

Z g.ab — ! . ’ (47)

acF, 0 if b=0.

If 2d | ¢ — 1, every u satisfying u? = 1 is a square in I, and since there are d such u’s,
one can see that becomes

q(q—dn(-1)) ifb#0,
b= 48
QEZFQ A g(q — 1)dn(~1) if b= 0. (48)



16 RAVI DONEPUDI, JUNXIAN LI, AND ALEXANDRU ZAHARESCU

Moreover, the quadratic character  of the prime field I, is given by the Legendre
symbol <5> Thus becomes

sz, | Pod(3)) s (49)

ae]Fp O lf b — 0
If [F, : F,] > 2, then n(—1) = 1, thus becomes

Z . q(g—d) ifb#0, (50)

acF, q(¢—1)d ifb=0.

This completes the proof of Theorem [5.2]

6. HASSE-DAVENPORT CURVES

For a fixed positive integer n and a € F, the Hasse-Davenport curve is defined by
Co:y? +y=az" (51)

When n is an odd positive integer, the number of points of curves in this family is
closely related to the weight distribution of irreducible cyclic codes. A special type of
binary linear code was considered by Van der Vlugt in [10], where he provided some
explicit formulae for the weight distribution of such codes when n = pg where p and ¢
are primes satisfying ged(p — 1,¢q — 1) = 2 and ord,(2) = ¢(n)/2.

We prove a formula for the average value of the second moment of T, ,; over a
generalized Hasse-Davenport family C,,, : y* +y = ax™ + b.

Theorem 6.1 Let n be an integer and Tyqap = q — #{(z,y) € F} - y* +y = az™ + b}.
Let d = ged(q — 1,n). We have the following:
When q is even,

D Thas =0, (52)

aEIE‘*

Z gab — )Q(q - 1) (53)

acky

and when q is odd,

Z Tgap =0, (54)

acF?

[ (d—1g(g—1) if 4b+ 140, n odd,
Z 2 (d—=2)q(qg—1)4+(g—1) if 4b+1#0, n even, (55)
acFs 0 if 4b+1=0, n odd,

[ d(g—1)? if 4b+1=0, n even.
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Proof. When ¢ is even, we have

ZT,a,b:__Z Z Zeq (y> +y — az™ — b))

a€l, aEIFq z,y€lFq tely

== > et +y—b))

y€EF, teF;

= e (~t0) Y e, (tHyP + )

telFy y€l,

==Y e(-t0) 3 ey ((# + 1)y?)

teF; y€Fy
= —q ¢4(b). (56)
For the second moment, using , we have

Z gab — Z Z Z eq (L (YT + 91 — ax} — b) + ta(y5 + y2 — axl — b)) .

aclFy a€Fq x;,y;€Fq t1,t2€F}
=1,
(57)
After an interchange the order of summation, the right-hand side becomes
1 n n
= D e=(ti+t)b) D eg(—altia} +tya}))
tl,tQGFZ z1,T2,a€F,
X Y eg(tai(yi + 1)) Y eqlta(ys +12))
y1€Fg y2€F,
1 n n
= D e+ t)b) D ey—altiz} + tah))
tl,tQG]F;; xl,xg,aEFq
X Y et +1)d) Y egl(ts +13)y3). (58)
y1€F, y2€F,

The inner two sums are nonzero only if both ¢; and ¢, satisfy t*+¢ = 0. Since >+t =0

has t = —1 as its only nonzero solution, we obtain
> Tias= 2 D efl-alal +a3))
a€lFy x1,72€F; a€ly
=q(d(g—1)+1), (59)

as there are d(q — 1) nonzero solutions for 27 + z§ = 0, and z; = 0,2 = 0 is the only
solution such that at least one of x1, x5 is zero. When a = 0, the equation becomes
y* + y = b and this equation has two solutions if and only if Tr(b) = 0. Thus

—q if Tr(b) =0,
Tq,O,b - ( ) (60)
q if Tr(b) # 0.
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When ¢ is odd, by a change of variables by replacing 2y; + 1 by vy; and 4a by a, we have

Z ab—__z Z Zeq (y> — 1 —az™ — 4b))

a€lFq aE]Fq z,y€Fq tely
:—ZZeq (y> — 1 —4b))
yeFq telFy
=q— ZZeq (t(yz— 1—41)))
y€lFy tel,
=—n(4b+1) q. (61)

The second moment is given by

Z g,a,b
aEFq
Z Sy (g —axh —4b— 1) + ta(y3 — ax — 4b — 1))

x;,y; €Fq t1, tQE]F a€lFy

i=1,2
1
:_2 Z Z €q tl _4b_1)+t2( _4b_1 Zeq t1x1 +t2172))
x;,y; €Fq t1, tQEF* a€ly
i=1,2

(62)

The only contribution to the sum is from tuples (z1, x9, t1, t2) which satisfy the equation
tix? 4+ toxh = 0. If 29 = 0 then only z; = 0 will contribute to the sum and there is
no restriction on t; and t,. If xy29 # 0, we write to = ut; and xy = vy, then the
condition becomes

zh(u+v") = 0.
We have d solutions for v" = 1, where d = ged(q — 1,n). So, . ) becomes

Z aab = ZZ Z Z Z Z ¢ (t1(y? +uys — (1+u) (40 + 1))

a€lFy yzelFél t1€F; \z2€F; utv"=0velF;  uekFy
1=

:_ZZ (@=1Y D+ | e (tli+uys —(1+u)(db+1))

ylqu telFy veFy u+vn=0  uelF?
1=1,2

= Hl —|— H2
where

m = q_l SN Y e (Hy - vt 4 (0"~ Db +1))),  (63)

tEF* y1,y2€Fq UEF*

Z S S e (yF +uyd — (u+ 1)(db+ 1)) (64)

tEF* y1,y2€F, uE]F*
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From Theorem 8 of [§], which can also be found in [9], pp 282-293, we can see that
L=(¢—1) ) (qg+v((1—=v")(4b+1)n(") = alg —1)°

veFy

=(¢=1) Y v((1 = o")(Eb+ 1)n(v").

UEIF;

From the definition of v in , and the fact that

we obtain

0 if n is odd,

> ) =

veFs q—1 ifn iseven,

(q=1 | D q= Y n@") | ifdb+1#0,

=1 vekF;
(q—1)2> 0" if 4+ 1 =0,

L veF:
(dg(qg—1) if 4b+ 10, n odd,
dg(g—1) — (¢ —1)* if 4b+1+#0, n even,
0 if 4b+1=0, n odd,
[ d(g—1)* if 4b+1=0, n even.

Similarly for I, we have

Mo =Y (q¢+v((1—u)(b+ 1)) n(u) - q(g — 1)

u€lFy

= > v((1—u)(4b+1))n(u)

u€ly
g it 4b+1#0,
0 if 4b+1=0.

In summary, when ¢ is odd, we have

>

aclF,

T2

gab =

;

dq(q—1)+¢q if 4b+1+#0, n odd,
dg(g—1) — (q—1)>+¢q if 4b+1+#0, n even,
0 if 4b+1=0, n odd,
| d(g—1) if 4b+1=0, n even.

(65)

(67)

(68)

(69)

When a = 0, the curve reduces to two lines y(y + 1) = b, which give ¢(n(4b+ 1) + 1)
points in F, in total. Thus T} 0, = —qn(4b+ 1), and this together with completes
the proof of the theorem.

0
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7. ARTIN-SCHREIER CURVES

For a finite field F, with characteristic p, the Artin-Schreier curve is defined by
y? —y = f(x), where f(z) is a rational function in F (x). Write ¢ = p®. Wolfmann in
[12] considered the case when e = 2¢t, f(x) = az™ + b, where n is a divisor of ¢ — 1 and
has the property that there exists a divisor r of ¢ such that ¢" = —1 (mod n). Coulter
in [6] considered a similar family defined by y?* —y = az?’ ™ + b and gave formulae
for the number of points for several cases. More results can be found in [3], where both
results are generalized. The number of points depends on the exponential sum of the
type ermq e (ax™), and the case n = p” + 1 has been explicitly computed in [4] and
[5]. Here we consider a family of curves defined by

Y-y =az" +b,
where a,b € F, and a,n € N. As before we define
1 . .
Tyap = —— Z Z eq (L —y —aa" —b)). (70)
q z,y€Fq teFy

We will give explicit formulae for the first and second moment for Tj .5, and a € F
for all integers n.

Theorem 7.1 With the notation above and d = ged(a, e),

> Than =0, (71)

acFy
and
S 12, = (" = Dalg = D(ged(n(p? = 1),q = 1) = (»* = 1)) if Trq(b) =0,
sa.b T .
a€lFy ! Q(q - 1)(pd ng(n7 q— 1) - ng<n(pd - 1)7 q— 1) - 1) Zf Trd(b) 7é 0.
(72)
Proof. From ([23)), we find that
1 (o7
Z Toap = —— Z Z Zeq (t(y”" —y — aa" — b))
a€lFy q a€Fq z,yelfq telF}
== D et —y—1)
yeF, teF;
= Z eq(—1b) Z €q ((t - tpa>ypa)
tEF; yeF,
=—q Z eq(—tb)
teF”,
—q(p? = 1) if Try(b) =0,
I VI )
q if Try(b) # 0.
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When a = 0, the equation reduces to y** —y = b. From Lemma 3.4 of [6], the equation
has a solution only when Try(b) = 0, and there are p? such solutions. Thus,

d .
q—pq if Try(b) =0,
Tq,O,b = (74)
q if Try(b) # 0.

Combining and (74), we obtain the first moment for T, 4, a € Fr.
For the second moment, we have

Z qab — Z Z Z €q<t1 —yl—ax?—b)+t2(y§a—yQ—aa:g—b)>.

aclky a€lFq x; ,yzleéFq t1,t2€Fy
i—

Interchanging the order of summation yields

% Z eq(—t1b — t2b) Z Z eq(—altizy + tar3))

t1,to EIF* a€lFy z1,22€F,;
x> el IR eql(t —15)h). (75)
y1€F, y2€F,

The inner sum is nonzero precisely when ¢, and ¢, both satisfy the equation ¢ —t*" = 0,
whose solutions are exactly the elements in F,«. This simplifies the left hand side to

D eg(—tib—tad) Y D eg(—altial +tah)). (76)

t1,t2€F;d z1,22€F 4 aclFy
The inner sum is nonzero only if
tl.l"? + tQ.ng =0.

If we separate the zero solution which contributes ¢ to the sum and write z; = vy and
to = uty for the nonzero solutions, we see that becomes

Z eq(—t1b — tyub) Z Z eq(—atizy(v" +u)) +q | - (77)

t1uel*, a€Fq z2,0€F;
Only the solutions to the equation
V" +u=0,veEF, uecl,
will contribute to the sum. For each v € F} satisfying
D = 0,

we obtain an element u in IF;d, and vice versa. Also notice that

> efcnrapy = VT TR0 0 (78)

tu€f” 1 if Trq(b) #

Thus becomes
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Z q(g—1) Z eq(—t1(1 4+ u)b) + Z q

t1 GIF;d v"—&-u:O,ver,uerd uGIF;d

g ((r' = D(g = 1)ged(n(p! = 1),q — 1) + (p* = 1)?) if Trq(b) = 0,

= (79)
q(q — 1)(—ged(n(p? — 1),q — 1) + p?ged(n, ¢ — 1)) + ¢ if Tra(b) # 0.
Combining [74) and [T9] we complete the proof of the theorem.
0
Remark: If we average over b € I, as well, then we have
> 12, =" = Dalglg — 1) ged(n, q — 1) + q) (80)

a,bel,

by noticing that in , if we sum over b, we need to have t; + to = 0. This agrees
with Theorem since there are q/p? elements in F, with Try(b) = 0.
Also, if we consider the family defined by

d (o4
p _ pe+1
y —y=ax )

if e/d is even, according to [6], there will be (¢ —1)/(p? 4+ 1) da’s such that T, is

q(p* — 1)*p** and for the rest of the a's in F}, T2, is q(p* — 1)®. This agrees with
Theorem [7.1] which becomes

Z g,ab — q - 1) (pd - 1)2 (81)

aEIE‘*

after an application of Lemma 2.3 in [6], which says that

1 if p=2,
ged(p® +1,p° = 1) = ¢ 2 if ¢/d odd, (82)
pt+1 if e/d even.

Thus when e/d is even, T, ., ~ p¥?(p? — 1)/q on average, while the Weil bound in
this case is p?(p* — 1),/g, so not all the curves in this family are maximal or minimal.
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