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Abstract. We consider a family of approximations of the Dedekind zeta function ζK(s) of a
number field K/Q. Weighted L2-norms of the difference of two such approximations of ζK(s)
are computed. We work with a weight which is a compactly supported smooth function.
Mean square estimates for the difference of approximations of ζK(s) can be obtained from
such weighted L2-norms. Some results on the location of zeros of a family of approximations
of Dedekind zeta functions are also derived. These results extend results of Gonek and
Montgomery on families of approximations of the Riemann zeta-function.

1. Introduction

In [4], Hardy and Littlewood provided an approximate functional equation for the Riemann
zeta-function

ζ(s) =
∑
n≤X

1

ns
+ πs−1/2

Γ((1− s)/2)

Γ(s/2)

∑
n≤Y

1

n1−s +O(X−σ) +O(Y σ−1|t|−σ+1/2),

where s = σ + it, 0 ≤ σ ≤ 1, X > H > 0, Y > H > 0, and 2πXY = |t|, with the constant
implied by the big-O term depending on H only. Define

ζX(s) := FX(s) + χ(s)FX(1− s),

where FX(s) :=
∑

n≤X n
−s and χ(s) := πs−1/2Γ((1 − s)/2)/Γ(s/2). Denote s = σ + it

throughout the paper. Then for X =
√
|t|/2π, one form of the above approximate functional

equation asserts that

ζ(s) = ζX(s) +O(|t|−σ/2), (1.1)

where |t| ≥ 1 and |σ−1/2| < 1/2. Spira [12, 13] independently studied the family of approx-
imations ζX(s). Similar to ζ(s), the approximations ζX(s) satisfy the functional equation

ζX(s) = χ(s)ζX(1− s).

More interestingly, in [12], Spira proved that all the complex zeros of ζ1(s) and ζ2(s) lie on
the line σ = 1/2. In other words ζ1(s) and ζ2(s) satisfy the Riemann hypothesis. Spira

[13] also showed that if X <
√
t/2π < X + 1, then ζX(s) approximates ζ(s). This can be

shown easily from (1.1). In the same article, Spira also made an assertion that 2ζ(s) can be

approximated well by ζX(s) in the region
√

2πX ≤ t ≤ 2πX. Gonek and Montgomery [3]

gave a clever proof of Spira’s statement. They showed that the condition
√

2πX ≤ t ≤ 2πX
is not adequate to prove Spira’s assertion, it is also needed that σ be near 1/2 in order
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to complete the proof. More precisely they showed that for a fixed λ ∈ (0, 1), C > 1,
0 < σ0 ≤ σ < 1, and Xλ ≤ |t| ≤ (2π/C)X,

ζX(s) = 2ζ(s) + o(1),

where

max(σ0, 1− λ) < σ < min

(
1,

λ

2(1− λ)

)
.

The above inequality is nonempty if and only if σ > 1/2. They also deduced that for σ = 1/2
and 1 < |t| ≤ (2π/C)X,

ζX

(
1

2
+ it

)
= 2ζ

(
1

2
+ it

)
+O(X1/2|t|−1) +O(|t|−1/2),

which shows how the transition to a good approximation takes place as |t| increases past
X1/2. These motivate one to investigate such approximations in more generality. A natural
question that arises is how the sequence ζN(1/2+ it) converges in the L2-norm. In particular
we are interested in studying the integral∫ T

0

∣∣∣∣ζN(1

2
+ it

)
− ζM

(
1

2
+ it

)∣∣∣∣2dt. (1.2)

We will study such questions for a Dedekind zeta function of a number field. Since the case
of the Riemann zeta-function follows from the case of a Dedekind zeta function, we will focus
on Dedekind zeta functions throughout the paper.

Let K/Q be a number field. For Re(s) > 1 the Dedekind zeta function ζK(s) of K is given
by

ζK(s) =
∑
a

1

N(a)s
=
∞∑
n=1

a(n)

ns
, (1.3)

where the first sum is taken over all nonzero integral ideals a of K and where N(a) denotes
the absolute norm of a. In the second sum, a(n) denotes the number of integral ideals a with
norm N(a) = n.

The function ζK(s) is analytic everywhere except for a simple pole at s = 1 (see Neukrich
[9]). The residue at this pole is given by

H(K) = Ress=1 (ζK(s)) =
2rπn0−rRKhK

wK
√
|dK |

,

where r = r1 + r2 (with r1 the number of real embeddings and r2 the number of pairs
of complex embeddings of K), n0 = [K : Q] denotes the degree of K/Q, RK denotes the
regulator, hK denotes the class number, wK denotes the number of roots of unity in K, and
dK denotes the discriminant of K (see [9, p. 467]). The function ζK(s) satisfies the functional
equation

ζK(s) = B(s)ζK(1− s),
where

B(s) =

(
22r2πn0

|dK |

)s− 1
2 Γr1(1−s

2
)Γr2(1− s)

Γr1( s
2
)Γr2(s)

. (1.4)
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The coefficients of the Dirichlet series of ζK(s) satisfy the bound

a(n) ≤ (d(n))n0−1 � nε,

where ε > 0 and d(n) is the divisor function. This can be seen through the Euler product

ζK(s) =
∏
p

(1−N(p)−s)−1 =
∏
p

∏
p|p

(1−N(p)−s)−1 (1.5)

for Re(s) > 1 (see Chandrasekharan and Narasimhan [1, Lemma 9]). One also has the
estimate ∑

n≤x

a(n) = H(K)x+O(x1−1/n0) (1.6)

(see Marcus [8, p. 159]). For the second discrete moments we have∑
n≤x

a(n)2 � x logn0−1 x

for any number field K. If K/Q is a Galois extension, then we have∑
n≤x

a(n)2 ∼ C(K)x logn0−1 x, (1.7)

where C(K) is a constant that depends on the field K (see [1, Theorem 3]).
In view of (1.3), we define a partial sum of ζK(s) by

FK,X(s) :=
∑
n≤X

a(n)

ns
.

If we denote

ζK,X(s) := FK,X(s) +B(s)FK,X(1− s), (1.8)

then one form of the approximate functional equation of ζK(s) gives

ζK(s) = ζK,X(s) +OK

(
|t|

n0
2
(1−σ− 1

n0
)
log t

)
,

where X =
√
|dK |(|t|/2π)n0/2, |t| ≥ 1 and |σ − 1/2| < 1/2 (see [1]). For a given number

field K, it is easy to see that ζK(s) can be approximated by ζK,X(s) in the region X <√
|dK |(|t|/2π)n0/2 < X + 1 and σ > 1 − 1/n0. We wish to obtain an asymptotic of the

moment integral (1.2) for the family of approximations ζK,X(s). We will obtain this in a
slightly different way. In particular, we will estimate the L2 distance between ζK,M(s) and
ζK,N(s), weighted by a smooth function which satisfies certain conditions.

More specifically, let h(t) be a smooth function with the following properties:

(1) 0 ≤ h(t) ≤ 1 for all t ∈ R,
(2) h(t) is compactly supported in a subset of (0,∞),
(3) ‖h(j)(t)‖∞ �j 1 for each j = 0, 1, 2, . . . .

The Fourier transform of h(t) is denoted by ĥ(s). Our first result is as follows.



4 JUNXIAN LI, MARIA NASTASESCU, ARINDAM ROY, AND ALEXANDRU ZAHARESCU

Theorem 1.1. Let K/Q be a Galois extension of degree n0. Let h be a smooth function
satisfying (1)-(3). Then for any fixed ε0 > 0 and T ε0 ≤ N ≤M ≤ T n0/2−ε0, we have∫ ∞
−∞

h

(
t

T

)∣∣∣∣ζK,N(1

2
+ it

)
− ζK,M

(
1

2
+ it

)∣∣∣∣2dt ∼ 2T
ĥ(0)

n0

C(K)(logn0 M − logn0 N),

where C(K) is defined in (1.7).

Remark: In the special case K = Q it is known that C(K) = 1. Hence for the above
family of approximations of the Riemann zeta-function one has∫ ∞

−∞
h

(
t

T

)∣∣∣∣ζN(1

2
+ it

)
− ζM

(
1

2
+ it

)∣∣∣∣2dt ∼ 2T ĥ(0) log
M

N

for T ε0 ≤ N ≤M ≤ T 1/2−ε0 .
Although ζ1(s) and ζ2(s) satisfy the Riemann hypothesis, in [13] Spira numerically showed

that there are infinitely many zeros off the critical line for ζ3(s). In their paper [3], Gonek
and Montgomery studied the behavior of zeros of ζX(s) for larger X. They established a zero
free region for ζX(s). In the same paper they gave an asymptotic for the number of zeros of
ζX(s) in a rectangular box and provided a lower bound for the number of zeros on a segment
of the critical line. More strikingly, they showed that almost all the zeros of ζX(s) lie on the
critical line and are simple. Such results are sensitive to the length X of the truncated sum
FX(s). In [7], the first and the last two authors provide analogues of some results from [3]
to an L-function associated with a cusp form. In that case the length N can be taken to be
shorter. We now present some similar results for ζK,X(s).

By the reflection and duplication formulas for the gamma function one obtains

B(s)B(1− s) = 1. (1.9)

Combining (1.8) and (1.9) we have the functional equation

ζK,X(s) = B(s)ζK.X(1− s). (1.10)

Note that Γ(s) has simple poles at s = 0,−1,−2,−3, . . . . Therefore ζK,X(s) has zeros at
negative odd integers with order r2 and at non-positive even integers with order r1 + r2.
From the functional equation (1.10), we find that the nontrivial zeros are symmetric about
the critical line σ = 1

2
. Moreover ζK,X(s) is real on the real line, so the zeros of ζK,X(s)

are symmetric with respect to the real axis as well. Our next results are concerned with
properties of the nontrivial zeros of ζK,X(s). One result in this direction is an inequality
which gives an equivalent condition for the zeros on the critical line.

Theorem 1.2. Let K/Q be a number field and X be a positive integer. Then |ζK,X(1−s)| >
|ζK,X(s)| holds for all s with |t| > 40 and 1/2 < σ < 1, if and only if all the zeros β + iγ of
ζK,X(s) with β ∈ (0, 1) and |γ| > 40 lie on the critical line.

Our next result concerns the cases for which X = 1, 2.

Theorem 1.3. Let K/Q be a number field. Then all the zeros of ζK,1(s) for |t| > 40 lie on
the critical line. Moreover, if |a2| ≤ 1 then there exists a constant t(K) such that all the
zeros of ζK,2(s) lie on the critical line for |t| > t(K).

We now provide a zero free region for ζK,X(s).
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Theorem 1.4. Let K/Q be a Galois extension of degree n0 and λ > 1/n0. Let ρK,X =
βK,X + iγK,X be a zero of ζK,X(s). There exists a constant X0 such that if X > X0 and
|γK,X | ≥ 2πXλ, then∣∣∣∣βK,X − 1

2

∣∣∣∣ < 1

n0λ− 1

(
1

2
+
n2
0λ log logX

logX

)
for 1/n0 < λ < 2/n0

and ∣∣∣∣βK,X − 1

2

∣∣∣∣ < 1

2
+

2n0 log logX

logX
for λ ≥ 2/n0.

Moreover, there exists a constant T0 such that if X ≥ 1 and γK,X ≥ max(2πX2/n0 , T0), then∣∣∣∣βK,X − 1

2

∣∣∣∣ < n0 + 2.

Next, we introduce some notations to study the number of zeros of ζK,X(s) in a rectangular
box containing the critical strip. We denote

NK,X(T ) := #{ρ = σ + iγ : ζK,X(ρ) = 0 and 0 < γ ≤ T}
and

N0
K,X(T ) = #{ρ =

1

2
+ iγ : ζK,X(ρ) = 0 and 0 < γ ≤ T}.

We have the following asymptotic result.

Theorem 1.5. Let K/Q be a Galois extension of degree n0 and dK be the discriminant. Let
λ be a constant with λ > 1/n0. There exists a constant X0 such that if X > X0, T ≥ 2πXλ,
and U ≥ 2, then

NK,X(T + U)−NK,X(T ) =n0
T + U

2π
log

T + U

2π
− n0

T

2π
log

T

2π
− U

2π
(n0 − log |dk|)

+OK

(
n0λ

n0λ− 1
log(T + U)

)
. (1.11)

Furthermore, there exists a constant T0 such that if X ≥ 1 with γK,X ≥ max(2πX2/n0 , T0),
then (1.11) holds with λ replaced by 1 in the big-O term.

We also have the following lower bound.

Theorem 1.6. The number of zeros of FK,X with imaginary part in (0, T ] and real part
greater than or equal to 1

2
is

≤ aT

2π
logM +OK (X) ,

where 0 ≤ a ≤ 1 and M is the largest integer less than or equal to X such that a(M) 6= 0.
There exists a constant T0 such that if X ≥ 1, T ≥ max(2πX2/n0 , T0), and U ≥ 2, then

N0
K,X(T + U)−N0

K,X(T ) ≥ n0
T + U

2π
log

T + U

2πM2a/n0
− n0

T

2π
log

T

2πM2a/n0

− U

2π
(n0 − log |dK |) +OK(X).

Furthermore the quantity on the right-hand side is a lower bound for the number of simple
zeros on the corresponding segment of the critical line.
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If one chooses 1 ≤ X ≤ T o(1) and T > T0, with T0 the same constant as in Theorem 1.4,
then by Theorems 1.5 and 1.6 we have

N0
K,X(T + U)−N0

K,X(T ) ≥ NK,X(T + U)−NK,X(T ) +OK(U logM) +OK(X).

Choosing U ≥ T β for some positive constant β and X ≤ T o(1), one obtains

lim inf
T→∞

N0
K,X(T + U)−N0

K,X(T )

NK,X(T + U)−NK,X(T )
= 1.

This means that as T → ∞, almost all the zeros of ζK,X(s) with imaginary part in (0, T ]
lie on the critical line for X ≤ T o(1). Also by the last part of Theorem 1.6, one finds that
almost all such zeros are simple.

2. Preliminary Results

In this section we gather all the necessary ingredients to prove our results. The following
inequality is due to Gonek and Montgomery [3, Lemma 2.1].

Lemma 2.1. Let σ > 1. Then we have
σ − 1

σ
< |ζ(s)| < σ

σ − 1
.

These results are also required and important in their own right.

Lemma 2.2. Let K/Q be a Galois extension of degree n0. Then for σ > 1 we have(
σ − 1

σ

)n0

< |ζK(s)| <
(

σ

σ − 1

)n0

.

Proof. Since K/Q is a Galois extension, for each rational prime p we have the decomposition

pOK = (p1...pr)
e with N(pi) = pfi,

where e is the ramification index, f is the inertial degree, and r is the decomposition index.
Also efr = n0. Thus, for each prime p we have∏
p|p

(1−N(p)−σ)−1 = (1− p−fσ)−r =

( ∞∑
k=0

p−kfσ
)r

≥
∞∑
k=0

p−kfrσ ≥
∞∑
k=0

p−kn0σ = (1− p−n0σ)−1

and∏
p|p

(1−N(p)−σ)−1 =

( ∞∑
k=0

p−kfσ
)r

≤
( ∞∑

k=0

p−kσ
)fr

≤
( ∞∑

k=0

p−kσ
)n0

= (1− p−σ)−n0 .

Combining the above two inequalities with the Euler product (1.5) we have

ζ(n0σ) ≤ ζK(σ) ≤ ζ(σ)n0 . (2.1)

Also by the triangle inequality one has∣∣∣∣∣∏
p

(1−N(p)−s)−1

∣∣∣∣∣ ≥∏
p

(1 +N(p)−σ)−1 ≥
∏
p

(1−N(p)−2σ)−1

(1−N(p)−σ)−1
=
ζK(2σ)

ζK(σ)
. (2.2)

Combining (2.1) and (2.2) we find

ζ(2n0σ)

ζ(σ)n0
≤ |ζK(s)| ≤ ζ(σ)n0 .
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Using Lemma 2.1 we see that(
σ − 1

σ

)n0

≤ |ζK(s)| ≤
(

σ

σ − 1

)n0

,

which completes the proof. �

Lemma 2.3. Let K/Q be a number field of degree n0. We have the following estimates:
a) Let σ > 1. Then ∣∣∣∣∣∑

n>X

a(n)

ns

∣∣∣∣∣ ≤ H(K)

σ − 1
X1−σ +OK

(
X1−σ−1/n0

)
. (2.3)

b) Let σ ≤ 0. Then ∣∣∣∣∣∑
n≤X

a(n)

ns

∣∣∣∣∣ ≤ H(K)

1− σ
X1−σ +OK

(
X1−σ−1/n0

)
.

Proof. Let σ > 1 and define I(x) :=
∑

n≤x a(n). From (1.6) and by partial summation we
have ∣∣∣∣∣∑

n>X

a(n)

ns

∣∣∣∣∣ ≤∑
n>X

a(n)

nσ
= σ

∫ ∞
X

I(t)t−1−σ dt− I(X)X−σ

=
H(K)

σ − 1
X1−σ +OK

(
X1−σ−1/n0

)
.

For the second part of the lemma we take σ ≤ 0. Note that∣∣∣∣∣∑
n≤X

a(n)

ns

∣∣∣∣∣ ≤∑
n≤X

a(n)

nσ
.

By using (1.6) one can see that∑
n≤X

a(n)

nσ
= σ

∫ X

1

I(t)t−1−σ dt+ I(X)X−σ − 1

=
H(K)

−σ + 1
X−σ+1 +OK

(
X1−σ−1/n0

)
,

which completes the proof of the lemma. �

Lemma 2.4. Let K/Q be a number field of degree n0. Then for |t| > 10 and σ > 1/2 we
have

∂

∂σ

(
log

1

|B(s)|

)
> n0(log |s| − 2.55468).

Proof. By Stirling’s formula (see [2]) we have

log Γ(s) = (s− 1/2) log s− s+
1

2
log 2π +

1

12s
− 2

∫ ∞
0

P3(x)

(s+ x)3
dx, (2.4)

with P3(x) a periodic function of period 1. For x ∈ [0, 1] it is given by

P3(x) =
x

12
(2x2 − 3x+ 1).
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It is straightforward that for x ∈ [0, 1],

|6P3(x)| ≤
√

3

36
. (2.5)

From (1.4) and (2.4), one has

∂

∂σ

(
log

1

|B(s)|

)
= Re

(
∂

∂s
log

1

B(s)

)
= Re

(
− r1

2s
+

r1
2(s− 1)

− r1
6s2
− r1

6(s− 1)2
+
r1
2

log
s

2
+
r1
2

log
(1− s)

2

− r2
2s

+
r2

2(s− 1)
− r2

12s2
− r2

12(s− 1)2
+ r2 log s+ r2 log(1− s)

− log(
22r2πn0

dK
) + 3r1

∫ ∞
0

P3(x)

(s/2 + x)4
dx

+ 3r1

∫ ∞
0

P3(x)

((1− s)/2 + x)4
dx

+6r2

∫ ∞
0

P3(x)

(s+ x)4
dx+ 6r2

∫ ∞
0

P3(x)

(1− s+ x)4
dx

)
= Re

(
r1 + r2

2s(s− 1)
− 2r1 + r2

12s2
− 2r1 + r2

12(s− 1)2
+
n0

2
log s(1− s)

− log(
(2π)n0

dK
) + 3r1

∫ ∞
0

P3(x)

(s/2 + x)4
dx+ 3r1

∫ ∞
0

P3(x)

((1− s)/2 + x)4
dx

+6r2

∫ ∞
0

P3(x)

(s+ x)4
dx+ 6r2

∫ ∞
0

P3(x)

(1− s+ x)4
dx

)
.

Thus we have

∂

∂σ

(
log

1

|B(s)|

)
= Re

(
∂

∂s
log

1

B(s)

)
≥ n0

2
log |s(1− s)| − r1 + r2

2|s(s− 1)|
− 2r1 + r2

12|s|2
− 2r1 + r2

12|s− 1|2

− log

(
(2π)n0

|dK |

)
− (4r1 + r2)

√
3

108

(
1

|s|3
+

1

|1− s|3

)
. (2.6)

Choose |s| > 2. Then clearly |1− s| > |s| − 1 > |s|/2. Applying this to (2.6), one finds

∂

∂σ

(
log

1

|B(s)|

)
≥ n0

2
log
|s|2

2
− r1 + r2
|s|2

− 2r1 + r2
3|s|2

− 2r1 + r2
3|s|2

− log

(
(2π)n0

|dK |

)
− (4r1 + r2)

√
3

108
(

5

|s|3
)

≥ n0

(
log |s| − 7

3|s|2
− 5
√

3

27|s|3
− log(4π)

)
+ log |dK |.
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Using the Minkowski bound

|dK |
1
2 ≥ nn0

0

n0!

(
π

4

)n0

(2.7)

and |s| > 10, we conclude that

∂

∂σ

(
log

1

|B(s)|

)
≥ n0(log |s| − 2.55468).

This proves the lemma. �

Lemma 2.5. Let K/Q be a number field of degree n0 and let dK be the discriminant. If
|t| > 20n0 and σ > 1/2, then

|B(s)| < 1.03

(
|s|
2πe

)n0(
1
2
−σ)

|dK |
1
2
−σ.

Proof. From [14] we have

|Γ(s)| = (2π)1/2e−σ|s|σ−1/2e−t arg s| exp(R1(s) + 1/12s)|, (2.8)

with R1(s) <
1

6|s| . Using (2.8), we find∣∣∣∣Γ(1−s
2

)

Γ( s
2
)

∣∣∣∣ = (2e)σ−
1
2 |1− s|−

σ
2 |s|−

σ
2
+ 1

2

× exp

{
t

2
arg s(1− s) +R1(

1− s
2

)−R1(
s

2
) +

1

6(1− s)
− 1

6s

}
(2.9)

and∣∣∣∣Γ(1− s)
Γ(s)

∣∣∣∣ = e2σ−1|1− s|
1
2
−σ|s|

1
2
−σ

× exp

{
t arg s(1− s) +R1(1− s)−R1(s) +

1

12(1− s)
− 1

12s

}
. (2.10)

Hence by (1.4), (2.9) and (2.10) we deduce

|B(s)| = |dK |
1
2
−σ
(
|s|
2πe

)n0(
1
2
−σ)

exp(
n0t

2
arg(s(1− s)))×∣∣∣∣1− 1

s

∣∣∣∣
r2−n0σ

2 | exp(r1R1(
1−s
2

) + r2R1(1− s) + 2r1+r2
12(1−s) |

| exp(r1R1(
s
2
) + r2R1(s) + 2r1+r2

12s
|

. (2.11)

Next we denote

z := r1R1

(
1− s

2

)
+ r2R1(1− s) +

2r1 + r2
12(1− s)

− r1R1(
s

2
) + r2R1(s) +

2r1 + r2
12s

.

Therefore

|z| ≤ 2r1 + r2
6|1− s|

+
2r1 + r2

6|s|
+

2r1 + r2
12|1− s|

+
2r1 + r2

12|s|
≤ n0

2|t|
≤ 1

40
.

Since |z| ≤ 1/40 < 1, we have

|ez| ≤
(

1− |z|
(

1

1− |z|

))−1
≤ 39/38. (2.12)
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For |t| > 20n0, one can see that |1− 1/s| > 1. Therefore, for r2/n0 ≤ 1/2 ≤ σ we have∣∣∣∣1− 1

s

∣∣∣∣r2−n0σ

< 1. (2.13)

Clearly

t arg(s/2) + arg((1− s)/2)) < 0. (2.14)

Combining (2.11), (2.12), (2.13) and (2.14) we obtain

|B(s)| < 1.03

(
|s|
2πe

)n0(
1
2
−σ)

|dK |
1
2
−σ.

Hence the lemma is proved. �

We also need the following estimate for the number of zeros of FK,X(s) up to height T ,
which can be found in [5, 6].

Lemma 2.6. Let K/Q be a number field. Let X,T ≥ 2 and let NK,X,F (s) denote the number
of zeros of FK,X whose imaginary parts are in the interval (0, T ], and let M be the largest
integer less than or equal to X such that a(M) 6= 0. Then∣∣∣∣NK,X,F (T )− T

2π
logM

∣∣∣∣�K X.

3. Proof of theorem 1.1

For the sake of simplicity we define

hT (t) := h

(
t

T

)
.

Now we compute the weighed second moment of the difference between two approximations
ζK,N(s) and ζK,M(s) on the critical line Re(s) = 1

2
. From the definition (1.8) one can write

I :=

∞∫
−∞

hT (t)

∣∣∣∣ζK,N(1

2
+ it

)
− ζK,M

(
1

2
+ it

)∣∣∣∣2dt
=

∞∫
−∞

hT (t)

( ∑
N≤n≤M

a(n)n−
1
2
−it +B

(
1

2
+ it

) ∑
N≤n≤M

a(n)n−
1
2
+it

)

×

( ∑
N≤m≤M

a(m)m−
1
2
+it +B

(
1

2
− it

) ∑
N≤m≤M

a(m)m−
1
2
−it

)
dt. (3.1)

Invoking (1.9) in (3.1) and exchanging the summation and integration we have

I =
∑

N≤m,n≤M

1√
mn

∞∫
−∞

hT (t)

(
a(n)n−it +B

(
1

2
+ it

)
a(n)nit

)(
a(m)mit +B

(
1

2
− it

)
a(m)m−it

)
dt

=
∑

N≤m,n≤M

a(n)a(m)√
mn

( ∞∫
−∞

hT (t)

((
n

m

)it
+

(
n

m

)−it)
dt
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+

∞∫
−∞

hT (t)

(
B

(
1

2
+ it

)
(nm)it +B

(
1

2
− it

)
(nm)−it

)
dt

)
=: I1 + I2,

where

I1 :=
∑

N≤m,n≤M

a(n)a(m)√
mn

∞∫
−∞

hT (t)

((
n

m

)it
+

(
n

m

)−it)
dt

and

I2 :=
∑

N≤m,n≤M

a(n)a(m)√
mn

∞∫
−∞

hT (t)

(
B

(
1

2
+ it

)
(nm)it +B

(
1

2
− it

)
(nm)−it

)
dt.

The diagonal terms m = n of I1 contribute∑
N≤m≤M

2a(m)2

m

∞∫
−∞

h

(
t

T

)
dt = 2T ĥ(0)

∑
N≤m≤M

a(m)2

m
. (3.2)

The off-diagonal terms m 6= n of I1 can be written as∑
N≤m 6=n≤M

a(m)a(n)√
mn

∞∫
−∞

hT (t)

((
n

m

)it
+

(
n

m

)−it)
dt

=
∑

N≤m6=n≤M

a(m)a(n)√
mn

∞∫
−∞

hT (t)

(
eit log

n
m + e−it log

n
m

)
dt

=
∑

N≤m<n≤M

2a(m)a(n)√
mn

∞∫
−∞

hT (t)

(
eit log

n
m + e−it log

n
m

)
dt

=
∑

N≤m<n≤M

2a(m)a(n)√
mn

(S11(m,n) + S12(m,n)), (3.3)

where

S11(m,n) :=

∞∫
−∞

hT (t)eit log
n
mdt

and

S12(m,n) :=

∞∫
−∞

hT (t)e−it log
n
mdt.

Integrating by parts one obtains

S11(m,n) =

∞∫
−∞

hT (t)eit log
n
mdt =

(−1)r

T r

∞∫
−∞

h(r)
(
t

T

)
eit log

n
m

(i log n
m

)r
dt (3.4)
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for any positive integer r. Note that

log(1 +
n−m
m

) ≥ log(1 +
1

m
) ≥ 1

2m
(3.5)

for large m. Using (3.5) in (3.4) we find

S11(m,n)�
(

2m

T

)r ∞∫
−∞

∣∣∣∣h(r)( t

T

)∣∣∣∣ dt� ‖h(r)‖∞((2m)r

T r−1

)
.

Similarly

S12(m,n)� ‖h(r)‖∞
(

(2m)r

T r−1

)
.

Therefore∑
N≤m<n≤M

2a(m)a(n)√
mn

(S11(m,n) + S12(m,n))� ‖h(r)‖∞

( ∑
N≤m<n≤M

2a(m)a(n)√
mn

(2m)r

T r−1

)

�K

(
M r+3

T r−1

)
(3.6)

for any positive integer r. Combining (3.2), (3.3), and (3.6) we see

I1 = 2T ĥ(0)
∑

N≤m≤M

a(m)2

m
+OK

(
M r+3

T r−1

)
. (3.7)

We now estimate I2. Let

I2 =
∑

N≤m,n≤M

a(n)a(m)√
mn

(S21(m,n) + S22(m,n)),

where

S21(m,n) :=

∞∫
−∞

hT (t)B

(
1

2
+ it

)
eit log(nm)dt (3.8)

and

S22(m,n) :=

∞∫
−∞

hT (t)B

(
1

2
− it

)
e−it log(nm)dt.

From Stirling’s formula we have

B(s) =

(
(2π)n0

dK

)s− 1
2

exp(
π

4
ir1) exp

(
n0(

1

2
− s) log(1− s)i+ n0(s− 1)

)(
1 +O(

1

|s|
)

)
.

Now in a bounded vertical strip one can write

B(σ + it) =

(
(2π)n0

tn0|dK |

)σ− 1
2
+it

en0it+
π
4
ir1

(
1 +O(

1

|t|
)

)
for a ≤ σ ≤ b and t ≥ 1. In particular

B

(
1

2
+ it

)
= exp{−n0t log t+ it(n0 log(2eπ)− log(|dK |) +

π

4
ir1}

(
1 +O(

1

|t|
)

)
(3.9)
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for t ≥ 1. Invoking (3.9) in (3.8) we have

S21(m,n) =

∞∫
0

(
hT (t)e−in0t log t+it(n0 log(2eπ)−log(|dK |)+log(nm))+π

4
ir1

{
1 +O(

1

t
)

})
dt

=

∞∫
0

hT (t)eiF (t)+π
4
ir1dt+O(‖h‖∞ log T ), (3.10)

where F (t) = −n0t log t+ t(n0 log(2eπ)− log(|dK |) + log(nm)). Note that

|F ′(t)| =
∣∣∣∣n0 log

2π

t
+ log

nm

dK

∣∣∣∣�K,ε0 log T (3.11)

for all t in the support of the function hT and m,n ≤ T
n0
2
−ε0 . Then from (3.11) and by

integrating by parts we have
∞∫
0

hT (t)eiF (t)+
iπr1
4 dt =

∞∫
T ε

hT (t)

iF ′(t)
d
(
eiF (t)+

iπr1
4

)

≤
∞∫
0

(
|h′ (t/T ) |
T |F ′(t)|

+
n0|h (t/T ) |
t|F ′(t)|2

)
dt

�K,ε0

1

log T
max(‖h‖∞, ‖h′‖∞). (3.12)

Combining (3.10) and (3.12) we have

S21(m,n)�K,ε0 log T.

By an similar argument we obtain

S22(m,n)�K,ε0 log T.

Putting these together we arrive at

I2 =
∑

N≤m,n≤M

a(m)a(n)√
mn

(S21(m,n) + S22(m,n))

�K,ε0,h log T
∑

N≤m,n≤M

a(m)a(n)√
mn

�K,ε0 M
1+ε log T. (3.13)

Hence from (3.7), (3.13), and using that M ≤ T 1−ε0 we have

I = 2T ĥ(0)
∑

N≤m≤M

a(m)2

m
+OK,ε0

(
T 4−ε0(r+3)

)
+OK,ε0

(
T (1−ε0)(1+ε) log T

)
.

Thus by choosing ε < ε0 and r large enough we deduce

I = 2T ĥ(0)
∑

N≤m≤M

a(m)2

m
(1 + oK(1))
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for T →∞. Finally by partial summation and (1.7) we conclude

I = 2T
ĥ(0)

n0

C(K)(logn0 M − logn0 N)(1 + oK(1))

for M,N ≥ T ε0 and T →∞. This completes the proof of the theorem.

4. Proof of Theorem 1.2

From (1.4) one can see that B(s) is analytic for all s with t 6= 0. Let us now define
h(s) := − log |B(s)| for t 6= 0. We will show that h(s) > 0 for 1/2 < σ < 1 and |t| ≥ 40.
Here we should mention that by using the bound in Lemma 2.5 one can obtain h(s) > 0 for
1/2 < σ < 1 and sufficient large |t|. Using the fact that n0 = r1 + 2r2, one has

h(s) = log

∣∣∣∣∣
(

22r2πn0

|dK |

)−s+ 1
2 Γr1

(
s
2

)
Γr2 (s)

Γr1
(
1−s
2

)
Γr2 (1− s)

∣∣∣∣∣
= −r1(σ −

1

2
) log π + r1 log

∣∣∣∣Γ(σ + it

2

)∣∣∣∣− r1 log

∣∣∣∣Γ(1− σ + it

2

)∣∣∣∣
− 2r2

(
σ − 1

2

)
log 2π + r2 log |Γ (σ + it)| − r2 log |Γ (1− σ + it)|

+

(
σ − 1

2

)
log |dK |

=

(
σ − 1

2

)(
− 2r2

(
log 2π − ∂

∂σ
log |Γ (σ + it)|

∣∣∣∣
σ=σ1

)

− r1

(
log π − ∂

∂σ
log

∣∣∣∣Γ(σ + it

2

) ∣∣∣∣∣∣∣∣
σ=σ2

)
+ log |dK |

)
,

with 0 ≤ σ1, σ2 ≤ 1. In the penultimate step we also used that |Γ(s)| = |Γ(s)|. Next we
prove that

∂

∂σ
log |Γ (σ + it)|

∣∣∣∣
σ=u

− 2 log 2π > 0 (4.1)

for all 0 ≤ u ≤ 1. From (2.4) we have

∂

∂σ
log |Γ(s)| = ∂

∂σ
Re log Γ(s)

= Re
∂

∂s
log Γ (s)

= Re

(
log s− 1

2s
− 1

12s2
+ 6

∫ ∞
0

P3(x)

(s+ x)4
dx

)
= log

√
σ2 + t2 − σ

2(σ2 + t2)
− σ2 − t2

12(σ2 + t2)2

+ 6

∫ ∞
0

P3(x)((σ + x)4 − 6(σ + x)2t2 + t4)(
(σ + x)2 + t2

)4 dx. (4.2)
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Invoking the inequalities (2.5) and (σ+ x)4− 6(σ+ x)2t2 + t4 ≤
(
(σ + x)2 + t2

)2
in (4.2) we

derive

∂

∂σ
log |Γ (σ + it)| ≥ log

√
σ2 + t2 − σ

2(σ2 + t2)
− σ2 − t2

12(σ2 + t2)2
−
√

3

36

∫ ∞
0

dx(
(σ + x)2 + t2

)2 .
(4.3)

For σ > 0 the integral part of (4.3) can be bounded by
√

3

36

∫ ∞
0

dx

(x2 + t2)2
=

√
3π

144t3
. (4.4)

Combining (4.3) and (4.4) we have

∂

∂σ
log |Γ (σ + it)| ≥ log

√
σ2 + t2 − σ

2(σ2 + t2)
− σ2 − t2

12(σ2 + t2)2
−
√

3π

144t3
≥ 2 log 2π

for 0 ≤ σ ≤ 1 and |t| > 40. Using the Minkowski bound (2.7) and (4.1), we conclude
that h(s) > 0 for 1/2 < σ < 1 and |t| > 40. Therefore, for |t| > 40, the inequality
|ζK,X(1−s)| > |ζK,X(s)| holds true if and only if ζK,X(s) 6= 0 in the vertical strip 1/2 < σ < 1.
By using (1.10), one can make the similar statement in the strip 0 < σ < 1/2, which concludes
the proof of the theorem.

5. Proof of Theorem 1.3

Let n0 > 2. An argument similar to the argument in [11, 15] will work for n0 = 1. In the
previous section we proved h(s) = − log |B(s)| > 0 for 1/2 < σ < 1 and |t| > 40. Hence for
X = 1 we see trivially

|ζK,1(s)| = |1 +B(s)| ≥ 1− |B(s)| > 0

for 1/2 < σ < 1 and |t| > 40. The same holds for 0 < σ < 1/2.
Next we will prove the desired result in the case when X = 2. From (1.8) we can write

|ζK,2(s)| =
∣∣∣∣1 +

a(2)

2s
+B(s)

(
1 +

a(2)

21−s

)∣∣∣∣ ≥ ∣∣∣∣1 +
a(2)

2s

∣∣∣∣− |B(s)|
∣∣∣∣(1 +

a(2)

21−s

)∣∣∣∣ .
So it suffices to prove that

1/|B(s)| >

∣∣∣∣∣1 + a(2)
21−s

1 + a(2)
2s

∣∣∣∣∣ (5.1)

for large enough t and σ > 1/2.
First we consider the case 3/4 < σ < 1. Using the fact that |a(2)| ≤ 1, one obtains∣∣∣∣∣1 + a(2)

21−s

1 + a(2)
2s

∣∣∣∣∣ ≤
∣∣∣∣1 + 2σ−1

1− 2−σ

∣∣∣∣ ≤ 1 + 2

1− 2−3/4
< 5. (5.2)

Then from (5.2) and Lemma 2.5, inequality (5.1) holds true if

1

|B(s)|
> 0.97

(
|s|
2πe

)n0(− 1
2
+σ)

|dK |−
1
2
+σ > 5. (5.3)
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For σ ≥ 1, one can see that 1 + 2σ−1 ≤ 2σ. Following the same logic as in (5.2) and (5.3),
inequality (5.1) holds true if

0.97

(
|s|

2
√

2πe

)n0(− 1
2
+σ)

|dK |−
1
2
+σ >

√
2

1− 2−3/4
(5.4)

for σ ≥ 1. Finally, we consider the case 1/2 < σ ≤ 3/4. Let

g1(s) := B(s)
1 + a(2)

21−s

1 + a(2)
2s

and l(s) := log

∣∣∣∣ g1(s)

g1(1/2 + it)

∣∣∣∣ .
From (1.9) it is clear that |g1(1/2 + it)| = 1. Proceeding as in the previous section, one
derives that

l(s) =

(
σ − 1

2

)
∂

∂σ

(
log

1

|B(s)|
− log

∣∣∣∣∣1 + a(2)
21−s

1 + a(2)
2s

∣∣∣∣∣
)∣∣∣∣∣

σ=σ1

,

for some σ1 > 1/2. Therefore l(s) > 0 only when

∂

∂σ

(
log

1

|B(s)|

)∣∣∣∣
σ=σ1

>
∂

∂σ

(
log

∣∣∣∣∣1 + a(2)
21−s

1 + a(2)
2s

∣∣∣∣∣
)∣∣∣∣∣

σ=σ1

, (5.5)

for some σ1 ∈ (1/2, 3/4]. Note that

∂

∂σ

(
log

∣∣∣∣∣1 + a(2)
21−s

1 + a(2)
2s

∣∣∣∣∣
)

= Re
∂

∂s

(
log

1 + a(2)
21−s

1 + a(2)
2s

)

= a(2) log 2 Re

(
a(2) + 2s−1 + 2−s

(1 + a(2)2s−1)(1 + a(2)2−s)

)
≤ log 2

(
1 + 2σ−1 + 2−σ

(1− 2σ−1)(1− 2−σ)

)
< 27. (5.6)

Using Lemma 2.4 and (5.6), inequality (5.5) holds for

n0(log |t| − 2.55468) > 27. (5.7)

Clearly (5.3), (5.4), and (5.7) hold true when t > t(K) for some large constant t(K) depend-
ing on K. The functional equation (1.10) gives the case σ < 1/2. This completes the proof
of the theorem.

6. Proof of Theorem 1.4

Let ρ = β+ iγ be a complex zero of ζK,X(s) with |γ| ≥ 2πeXλ. We will show that ζK,X(s)
never vanishes for

β >
n0λ

2(n0λ− 1)

(
1 +

2n0 log logX

logX

)
,

when 1/n0 < λ ≤ 2/n0, and is nonzero for

β > 1 +
2n0 log logX

logX
,
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when λ > 2/n0. Let λ > 1/n0, |t| ≥ 2πeXλ, and

σ > max

(
1,

λn0

2(λn0 − 1)

)(
1 +

c log logX

logX

)
(6.1)

for some positive constant c which will be determined later. From (1.8) we have

|ζK,X(s)| ≥

∣∣∣∣∣∑
n≤X

a(n)

ns

∣∣∣∣∣− |B(s)|

∣∣∣∣∣∑
n≤X

a(n)

n1−s

∣∣∣∣∣ .
By Lemmas 2.2 and 2.3 we see that∣∣∣∣∣∑

n≤X

a(n)

ns

∣∣∣∣∣ ≥ |ζK,X(s)| −

∣∣∣∣∣∑
n>X

a(n)

ns

∣∣∣∣∣
>

(
σ − 1

σ

)n0

− H(K)X1−σ

σ − 1
+OX

(
X1−σ−1/n0

)
. (6.2)

By (6.1) we always have

σ > 1 +
c log logX

logX
.

Hence from (6.2) we have∣∣∣∣∣∑
n≤X

a(n)

ns

∣∣∣∣∣ >
(

c log logX

logX + c log logX

)n0

− 1

logcX

(
logX

c log logX

)(
H(K) +O

(
X−1/n0

))
.

Therefore for c ≥ 2n0 and sufficiently large X we have∣∣∣∣∣∑
n≤X

a(n)

ns

∣∣∣∣∣ >
(
c log logX

2 logX

)n0

. (6.3)

Using Lemmas 2.3 and 2.5 we have

|B(s)|

∣∣∣∣∣∑
n≤X

a(n)

n1−s

∣∣∣∣∣ < 1.03

(
|s|
πe

)n0(
1
2
−σ)

|dK |
1
2
−σ (H(K)Xσ +O

(
Xσ−1/n0

))
for |t| > max{2πeXλ, 20n0}. For a large value of X,

|B(s)|

∣∣∣∣∣∑
n≤X

a(n)

n1−s

∣∣∣∣∣ < 1.03|dK |
1
2
−σ
(
|s|
πe

)n0(
1
2
−σ)

H(K)Xσ

< 1.03|dK |
1
2
−σH(K)Xλn0(

1
2
−σ)+σ. (6.4)

Now consider 1/n0 < λ < 2/n0. By the aid of (6.1), the exponent of X in (6.4) can be
written as

n0λ(
1

2
− σ) + σ =

λn0

2
− σ(n0λ− 1) < −n0λ

c log logX

2 logX
≤ −c log logX

2 logX
.

If λ ≥ 2
n0

, then the exponent of X in (6.4) is

n0λ(
1

2
− σ) + σ ≤ (1− 2σ) + σ ≤ −c log logX

logX
.
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Combining the above two cases and using (6.4), we derive∣∣∣∣∣B(s)
∑
n≤X

a(n)

n1−s

∣∣∣∣∣ < 1.03|dK |
1
2
−σH(K)

logc/2X
. (6.5)

Therefore from (6.3) and (6.5) we have

|ζK,X(s)| > c log logX

2 logX
− 1.03|dK |

1
2
−σH(K)

log
c
2 X

> 0,

with X > X0 for some X0.
For the last part of the theorem we will use the inequality

|ζK,X(s)| ≥ ζK(s)−

∣∣∣∣∣∑
n>X

a(n)

ns

∣∣∣∣∣− |B(s)|

∣∣∣∣∣∑
n≤X

a(n)

n1−s

∣∣∣∣∣
≥
(
σ − 1

σ

)n0

−

∣∣∣∣∣∑
n>X

a(n)

ns

∣∣∣∣∣− |B(s)|

∣∣∣∣∣∑
n≤X

a(n)

n1−s

∣∣∣∣∣ .
We recall the trivial bound a(n) ≤ (d(n))n0−1 ≤ nn0−1. Using this fact together with
Lemma 2.5 one can show that there exists a large T0 (depending on K) such that if |t| >
max(2πX2/n0 , T0) and σ > n0 + 2, then ζK,X(s) 6= 0.

Using the functional equation (1.10) one gets the zero free region on the left side of the
vertical axis. This completes the proof of Theorem 1.4.

7. Proof of Theorem 1.5

Let T > 2πeXλ be a large number for λ > 1
n0

. Then by Theorem 1.4 we conclude that

the zeros of Lf (N ; s) with ordinates T < γN < T + U , for some positive constant U , must
lie in a rectangle of width 2w − 1, with w = max{2, n0λ/(n0λ− 1)}.

Let R be a positively oriented rectangle with vertices w+iT , w+i(T+U), 1−w+i(T+U)
and 1 − w + iT . From Theorem 1.4, we observe that the complex zeros will be inside the
rectangle R for sufficiently large X. Without loss of generality we assume that the edges of
the rectangle do not pass through any zeros of ζK,X(s). Then by the argument principle we
have

N(T + U)−N(T ) =
1

2π
4RζK,X(s).

From (1.8) we have

ζK,X(s) = 1 +
∑

2≤n≤X

a(n)

ns
+B(s)

∑
1≤n≤X

a(n)

n1−s . (7.1)

Then from (7.1) we write

|ζK,X(s)− 1| ≤
∑

2≤n≤X

a(n)

nσ
+ |B(s)|

∑
1≤n≤X

a(n)

n1−σ .

Since T ≥ 2πeNλ, applying (2.3) and (6.4) we find that

|ζK,X(s)− 1| �K
X1−σ

σ − 1
+ |dK |

1
2
−σXλn0(

1
2
−σ)+σ
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�K X1−σ + |dK |
1
2
−σXλn0(

1
2
−σ)+σ

�K

(
1

2

)min(σ−1,−λn0(
1
2
−σ)−σ)

, (7.2)

for σ ≥ w and large X. Note that for λ > 1/n0, both σ− 1 and −λn0(
1
2
− σ)−σ are positive

and increasing as a function of σ. Therefore from (7.2), log ζK,X(s) is analytic and non-zero
for σ ≥ w.

For λ ≥ 2/n0, we have w = 2 and hence

|ζK,X(w + iT )| �K
1

2
.

For 1/n0 < λ ≤ 2/n0, we have w = 2n0λ/2(n0λ− 1). In this case,

|ζK,X(w + iT )| �K 1− 1

2n0λ
.

Then the change of argument of ζK,X(s) along the right vertical segment of R is bounded by
π.

Using the functional equation (1.10) we may write

arg(ζK,X(1− w + it)) = arg(ζK,X(w + it))− arg(B(w + it)) (7.3)

Recall Stirling’s formula in the form

log Γ(s) =

(
s− 1

2

)
log s− s+

1

2
log 2π +O

(
1

|s|

)
, (7.4)

for |s| → ∞ and | arg s| ≤ π − ε. Then from (1.4) and (7.4) we have

logB(s) =

(
s− 1

2

)
log

(2π)n0

|dK |
+
π

4
ir1 + n0

(
1

2
− s
)

log(1− s)i+ n0(s− 1) +O

(
1

|s|

)
as |s| → ∞ and arg ≤ π − ε. Also for t→∞

Re(log s) = log t+O

(
σ2

t2

)
and Im(log s) =

(π
2
− σ

t

)
+O

(
σ3

t3

)
.

Note that

argB(s) = Im(logB(s))

= Im

((
s− 1

2

)
(n0 log 2π − log |dK |)

+
π

4
ir1 + n0

(
1

2
− s
)

log(1− s)i+ n0(s− 1) +O

(
1

|s|

))
= −n0t log

t

2π
+ t(n0 − log |dK |) +

πr1
4

+ n0

(
1

2
− σ

)
π +O

(
σ2

t

)
. (7.5)

Therefore, from (7.3) and (7.5), the change of the argument on the left vertical segment of
R is

2(T + U) log
T + U

2π
− 2T log

T

2π
− 2U +O

(
w2

T

)
.

Next we consider the change in arg ζK,X(s) along the bottom edge of R. Let q be the
number of zeros of Re(ζK,X(σ + iT )) on the interval (1 − w,w). Then there are at most
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q + 1 subintervals of (1 − w,w) in which Re (ζK,X(σ + iT )) is of constant sign. Therefore
the variation of arg ζK,X(σ + iT ) is at most π in each subinterval. So we have

arg ζK,X(σ + iT )|w1−w ≤ (q + 1)π. (7.6)

To estimate q, first we define

g(z) := ζK,X(z + iT ) + ζK,X(z̄ + iT ). (7.7)

If z = σ is a real number then we have

g(σ) = Re (ζK,X(σ + iT )).

Let R = 2(2w− 1) and consider the disk |z−w| < R centered at w. Choose T large so that

Im (z + iT ) > T −R > 0.

Thus, ζK,X(z + iT ), and hence also g(z), are analytic in the disk |z − w| < R. Let n(r) be
the number of zeros of g(z) in the disk |z − w| < r and R1 = R/2. Then we have∫ R

0

n(r)

r
dr ≥ n(R1)

∫ R

R1

dr

r
= n(R1) log 2. (7.8)

By Jensen’s theorem,∫ R

0

n(r)

r
dr =

1

2π

∫ 2π

0

log
|g(w +Reiθ)|
|g(w)|

dθ =
1

2π

∫ 2π

0

log |g(w +Reiθ)| dθ − log |g(w)|.

(7.9)

From (7.2) we have

|ζK,X(w + iT )| �K 1−
(

1

2

)min(w−1,λ(2w−1)−w)

,

for T ≥ 2πeXλ and λ > 1/n0, which shows that log |g(w)| is well defined. From the definition
(1.8) we have

|ζK,X(s)| ≤
∑
n≤X

a(n)

nσ
+ |B(s)|

∑
n≤X

a(n)

n1−σ .

By Lemma 2.5, we have

B(s)� |s|n0(
1
2
−σ).

One can show (similarly to Lemma 2.3) that∑
n≤X

a(n)

nσ
�K

{
X1−σ if σ 6= 1
logX if σ = 1

.

Thus,

|ζK,X(s+ iT )| �K (X1−σ + logX + T n0(
1
2
−σ)Xσ).

Therefore from (7.7) we have

|g(s)| ≤ |ζK,X(s+ iT )|+ |ζK,X(s− iT )| � (X1−σ + logX + T n0(
1
2
−σ)Xσ). (7.10)
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Since |s− w| < R = 2(2w − 1), then 2− 3w < σ < 5w − 2. Also T ≥ 2πeXλ for λ > 1/n0.
Thus the expression on the right-hand side of (7.10) is largest when σ = −3w+2. Therefore

|g(s)| �K (X3w−1 + logX + T n0(− 3
2
+3w)X2−3w)

�K (T (3w−1)/λ + T n0(− 3
2
+3w)+(−3w+2)/λ)

�K (T n0(3w−1) + T n0(− 3
2
+3w)+n0(−3w+2))

�K T 3n0w.

Finally

|g(w +Reiθ| �K T 3wn0 .

Hence, from (7.8) and (7.9), it follows that n(R1) � w log T . The zeros of ζK,X(σ + iT )
for 1 − w < σ < w correspond to the zeros of g(σ) in the same interval. Since the interval
(1− w,w) is contained in the disk |s− w| < R1 we have q ≤ n(R1). Since

w = max

(
2,

n0λ

n0λ− 1

)
≤ 2n0λ

n0λ− 1
,

from (7.6) we conclude that the change of the argument on the lower horizontal segment of
R is bounded by w log T . Similarly, the change of the argument on the top vertical segment
of R is bounded by w log(T + U).

Combing the four sides of R, we see that

4R(Lf (N ; s)) = 2(T + U) log
T + U

2π
− 2T log

T

2π
− 2U +O(w log(T + U)),

which concludes the first part of Theorem 1.5. For the last part of the theorem, we will
follow the same argument as in the proof above, on the positively oriented rectangle [n0 +
2 + iT, n0 + 2 + i(T + U),−1− n0 + i(T + U),−1− n0 + iT ]. This proves the theorem.

8. Proof of Theorem 1.6

Let N+
K,X,F (T ) denote the number of zeros of FK,X(s) with imaginary part in (0, T ] and

real part ≥ 1
2
. From Lemma 2.6 we have

N+
K,X,F (T ) ≤ aT

2π
logM +OK (X) (8.1)

for some 0 ≤ a ≤ 1. We re-write (1.8) as

ζK,X(s) = FK,X(s)

(
1 +B(s)

FK,X(1− s)
FK,X(s)

)
= FK,X(s)ZK,X(s).

Then ζK,X(1
2

+ it) = 0 if and only if

(i) FK,X(1
2

+ it) = 0

(ii) ZK,X(1
2

+ it) = 0.

We are going to estimate the number of zeros of ZK,X(s) on the critical line Re (s) = 1
2
. Note

that

ZK,X(
1

2
+ it) = 0
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⇐⇒ B(s)
FK,X(1− s)
FK,X(s)

= −1

⇐⇒ arg(B(s)
FK,X(1− s)
FK,X(s)

) = (2k + 1)π

⇐⇒ argB(s)− 2 argFK,X(s) = (2k + 1)π.

We estimate the number of zeros of argB(s)−2 argFK,X(s) on the line segment (1
2

+ iT, 1
2

+
i(T + U)]. Let L(ε) be the curve defined in [3, p. 20]. Let m(g) be the multiplicity of the
zero 1

2
+ ig of FK,X(s). An argument similar to [3, p. 20] shows that a lower bound for the

number of zeros of ZK,X(s) is

= lim
ε→0+

1

2π
|4L(ε)(argB(s)− 2 argFK,X(s))| −

∑
T≤g≤T+U

m(g) +OK(1).

This also gives a lower bound for the number of distinct zeros of ZK,X(s) on the line segment
(1
2

+ iT, 1
2

+ i(T + U)].
Note that a similar computation to (7.5) gives

4L(ε) argB(s) = −n0(T + U) log
T + U

2π
+ n0(T ) log

T

2π
+ U(n0 − log |dK |) +O

(
w2

T

)
.

Next we estimate 4L(ε)FK,X(s). Consider the contour C(ε) consisting of L(ε) and three
line segments: top (1

2
+ i(T + U), w + i(T + U)], right [w + i(T ), w + i(T + U)], bottom

(1
2

+ i(T + U), w + i(T )], with counter-clockwise orientation. If ε is small enough, we have

4C(ε) argFK,X(s) = −2π(N+
K,X,F (T + U)−N+

K,X,F (T )).

From the definition of FK,X(s) and an argument similar to (7.2) we find

|FK,X(s)− 1| � 1

2w−1
.

Hence

argFK,X(w + it)|T+UT � 1.

Note that

Im (FK,X(σ + iT )) = −
∑
n≤X

a(n) sin(T log n)

nσ
.

By a generalization of Descartes’s Rule of Signs (see Pólya and Szegö [10], Part V, Chapter
1, No. 77), the number of real zeros of Im (FK,X(σ + iT )) in the interval 1/2 ≤ σ ≤ 3
is less than or equal to the number of sign changes in the sequence {a(n) sin(T log n)}, for
1 ≤ n ≤ X, which in turn is less than or equal to the number of nonzero coefficients of
a(n) sin(T log n). Therefore

argFK,X(σ + iT )|w1/2 �K X.

Similarly

argFK,X(σ + i(T + U))|w1/2 �K X.

Thus

4L(ε) argFK,X(s) = −2π(N+
K,X,F (T + U)−N+

K,X,F (T )) +OK(X).
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Thus we have

lim
ε→0+

1

2π
|4L(ε)(argB(s)− 2 argFK,X(s))| −

∑
T≤g≤T+U

m(g)

≥ n0
T + U

2π
log

T + U

2π
− n0

T

2π
log

T

2π
− U(n0 − log |dK |)−

∑
T≤g≤T+U

m(g)

− 2(N+
K,X,F (T + U)−N+

K,X,F (T )) +OK(logX).

Using Lemma (8.1) we have

N+
K,X,F (T + U)−N+

K,X,F (T ) ≤ aU

2π
logM +OK (X)

for some 0 ≤ a ≤ 1. Note that ∑
T≤g≤T+U

m(g)

is the number of zeros of FK,X on the line segment of (1
2

+ iT, 1
2

+ i(T +U)]. Combining this
with the estimate of the number of zeros of ZK,X(s), we have

N0
K,X(T + U)−N0

K,X(T ) ≥ n0
T + U

2π
log

T + U

2πM2a/n0
− n0

T

2π
log

T

2πM2a/n0

− U

2π
(n0 − log |dK |) +OK(X).

This completes the proof of the theorem.

References

[1] K. Chandrasekharan and R. Narasimhan. The approximate functional equation for a class of zeta-
functions. Math. Ann., 152:30–64, 1963.

[2] R. D. Dixon and L. Schoenfeld. The size of the Riemann zeta-function at places symmetric with respect
to the point 1

2 . Duke Math. J., 33:291–292, 1966.
[3] S. M. Gonek and H. L. Montgomery. Zeros of a family of approximations of the Riemann zeta-function.

Int. Math. Res. Not. IMRN, (20):4712–4733, 2013.
[4] G. H. Hardy and J. E. Littlewood. The zeros of Riemann’s zeta-function on the critical line. Math. Z.,

10(3-4):283–317, 1921.
[5] R. E. Langer. On the zeros of exponential sums and integrals. Bull. Amer. Math. Soc., 37(4):213–239,

1931.
[6] A. Ledoan, A. Roy, and A. Zaharescu. Zeros of partial sums of the Dedekind zeta function of a cyclotomic

field. J. Number Theory, 136:118–133, 2014.
[7] J. Li, A. Roy, and A. Zaharescu. Zeros of a familiy of approximations of Hecke L-functions associated

with cusp forms. submitted for publication.
[8] D. A. Marcus. Number fields. Springer-Verlag, New York-Heidelberg, 1977. Universitext.
[9] J. Neukirch. Algebraic number theory, volume 322 of Grundlehren der Mathematischen Wissenschaften

[Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999. Translated from the
1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder.
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