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Abstract. Benford’s Law is an empirical “law” governing the frequency of leading digits
in numerical data sets. While for real-world data Benford’s Law typically represents a rela-
tively crude approximation to the actual frequencies, for mathematical sequences the predic-
tions derived from it can be uncannily accurate. For example, among the first billion powers
of 2, exactly 301029995 begin with digit 1, while the Benford prediction for this count is
106 log10 2 = 301029995.66 . . . . If we ignore the fractional part of the predicted value, this
represents a perfect hit. The same “perfect hit” can be observed in the digit 1 counts for the
first billion powers of 3 and the first billion powers of 5, and the digit 2 counts among the
first billion powers of 3. Are these observations mere coincidences or part of some deeper
phenomenon? In this paper we seek to answer this and related questions.

1. INTRODUCTION. Benford’s Law is the empirical observation that leading digits
in many real-world data sets tend to follow the Benford distribution, depicted in Figure
1 and given by

P (first digit is d) = P (d) = log10

(
1 +

1

d

)
, d = 1, 2, . . . , 9. (1.1)
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Figure 1. The Benford distribution, P (d) = log10(1 + 1/d).

Thus, in a data set following Benford’s Law, approximately log10 2 ≈ 30.1% of the
numbers begin with digit 1, approximately log10(3/2) ≈ 17.6% begin with digit 2,
while only around log10(10/9) ≈ 4.6% begin with digit 9.

Benford’s Law has been found to be a good match for a wide range of real world
data, from populations of cities to accounting data, and it has been the subject of nearly
one thousand articles (see the online bibliography [5]), including the Monthly articles
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by Raimi [20], Hill [15], and Ross [21]. It has also long been known (see, e.g., Dia-
conis [8]) that Benford’s Law holds for many “natural” mathematical sequences with
sufficiently fast rate of growth, such as the Fibonacci numbers, the powers of 2, and
the sequence of factorials. In this context, saying that Benford’s Law holds is usually
understood to mean that, for each digit d ∈ {1, 2, . . . , 9}, the proportion of terms be-
ginning with digit d among the firstN terms of the sequence converges to the Benford
frequency P (d) given by (1.1), as N →∞.

How accurate is Benford’s Law? Given a sequence such as the powers of 2, Ben-
ford’s Law predicts that, among the first N terms of the sequence, approximately
N log10(1 + 1/d) begin with digit d, for each d ∈ {1, 2, . . . , 9}. How good are these
approximations? A natural benchmark is a random model: Imagine the sequence of
leading digits were generated randomly by repeated throws of a 9-sided die with faces
marked 1, 2, . . . , 9, weighted such that face d comes up with the Benford probability
P (d) = log10(1 + 1/d). Under these assumptions, by the Central Limit Theorem the
difference between the actual and predicted digit counts among the first N terms will
be roughly of order

√
N . Thus, in a data set consisting of a billion terms (i.e., with

N = 109) it would be reasonable to expect errors on the order of 10, 000.
Random models of the above type form the basis of numerous conjectures in num-

ber theory, most notably the Riemann Hypothesis. However, there also exist problems
in which, due to additional structure inherent in the problem, it is reasonable to ex-
pect smaller errors than the squareroot type errors that are typical for random situ-
ations. Two classic examples of this type are the Circle Problem of Gauss and the
Divisor Problem of Dirichlet, which have been the subject of a recent Monthly article
by Berndt, Kim, and Zaharescu [6]. In both of these problems the “correct” order of
the error terms is believed to be N1/4. For N = 109, this would suggest errors in the
order of 100.

Finally, there are examples in number theory in which the approximation error,
while still exhibiting “random” behavior, grows at a logarithmic rate. One such case is
a problem investigated by Hardy and Littlewood [13] concerning the number of lattice
points in a right triangle.

How good are the predictions provided by Benford’s Law when compared to such
benchmarks? The surprising answer is that, in many cases, these predictions seem to
be uncannily accurate—more accurate than any of the above benchmarks, and more
accurate than even the most optimistic conjectures would lead one to expect. In fact,
when we first observed some remarkable coincidences in data we had compiled for a
different project[7], we thought of them as mere flukes. Later we revisited the problem,
approaching it in a systematic manner, expecting to either confirm the “fluke” nature
of these coincidences, or to come up with a simple explanation for them.

What we found instead was something far more complex, and more interesting,
than any of us had anticipated. Our attempt at getting to the bottom of some seemingly
insignificant numerical coincidences turned into a research adventure full of surprises
and unexpected twists that required unearthing little known classical results in Dio-
phantine approximation as well as drawing on some of the deepest recent work in the
area. In this paper we take the reader along the ride in this adventure in mathematical
research and discovery, and we describe the results that came out of this work.

Outline of the paper. The rest of this paper is organized as follows. In Sections 2–4
we present the surprising numerical data alluded to above, we formalize several no-
tions of “unreasonable” accuracy, and we pose three questions suggested by the numer-
ical observations that will serve as guideposts for our investigations. The remainder of
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the paper is devoted to unraveling the mysteries behind the numerical observations and
uncovering, to the extent possible, the underlying general phenomenon. We proceed
in three stages, corresponding to three different levels of sophistication in terms of the
mathematical tools used. The three stages are largely independent of each other, and
they can be read independently.

In the first stage, consisting of Sections 5 and 6, we use an entirely elementary
approach to settle the mystery in a particularly interesting special case. In the second
stage, presented in Sections 7–9, we draw on results by Ostrowski and Kesten from the
mid 20th century to obtain a general solution to the mystery in the “bounded Benford
error” case. In the third stage, contained in Section 10, we bring recent groundbreaking
and deep work of Jozsef Beck to bear on the remaining—and most difficult—case,
that of an “unbounded Benford error,” and we present the surprising denouement of
the mystery in this case.

The final section, Section 11, contains some concluding remarks on extensions and
generalizations of these results and related results.

2. NUMERICAL EVIDENCE: EXHIBIT A. We begin by presenting some of the
numerical data that had spurned our initial investigations. Our data consisted of leading
digit counts for the first billion terms of a variety of “natural” mathematical sequences.
Carrying out such large scale computations is a highly non-trivial task that, among
other things, required the use of specialized C++ libraries for arbitrary precision real
number arithmetic. The technical details are described in [7].

Table 1 shows the actual leading digit counts for the sequences {2n}, {3n}, and
{5n}, along with the predictions provided by Benford’s Law, i.e., N log10(1 + 1/d),
where N = 109.

Digit Benford Prediction {2n} {3n} {5n}
1 301029995.66 301029995 301029995 301029995
2 176091259.06 176091267 176091259 176091252
3 124938736.61 124938729 124938737 124938744
4 96910013.01 96910014 96910012 96910013
5 79181246.05 79181253 79181247 79181239
6 66946789.63 66946788 66946787 66946793
7 57991946.98 57991941 57991952 57991951
8 51152522.45 51152528 51152520 51152519
9 45757490.56 45757485 45757491 45757494

Table 1. Predicted versus actual counts of leading digits among the first billion terms of the sequences {2n},
{3n}, {5n}. Entries in boldface fall within ±1 of the predicted counts.

Remarkably, nine out of the 27 entries in this table fall within ±1 of the Benford
predictions and are equal to the floor or the ceiling of the predicted values. This is an
amazingly good “hit rate” for numbers that are in the order of 108. Of the remaining
18 entries, all are within a single digit error of the predicted value.

As remarkable as these observed coincidences seem to be, one has be careful before
jumping to conclusions. For example, a “perfect hit” observed at N = 109 might just
be a coincidence that does not persist at other values of N . Such coincidences would
not be particularly unusual in case the errors in the Benford approximations have a
slow (e.g., logarithmic) rate of growth.
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One must also keep in mind Guy’s “Strong Law of Small Numbers” [12], which
refers to situations in which the “true” behavior is very different from the behavior
that can be observed within the computable range. Such situations are not uncommon
in number theory; Guy’s paper includes several examples. Could it be that the uncanny
accuracy of Benford’s Law observed in Table 1 is just a manifestation of Guy’s “Strong
Law of Small Numbers”, and thus a complete mirage?

3. PERFECT HITS, ALMOST PERFECT HITS, AND BOUNDED ERRORS.
Motivated by the observations in Table 1, we now formalize several notions of “unrea-
sonable” accuracy of Benford’s Law.

We begin by introducing some basic notations. We denote by D(x) the leading
(i.e., most significant) digit of a positive number x, expressed in its standard deci-
mal expansion and ignoring leading 0’s; for example,D(π) = D(3.141 . . . ) = 3 and
D(1/6) = D(0.166 . . . ) = 1.

We write bxc (resp. dxe) for the floor (resp. ceiling) of a real number x, and {x} =
x− bxc for its fractional part.

Given a sequence {an} of positive real numbers and a digit d ∈ {1, 2, . . . , 9}, we
define the associated leading digit counting function as

Sd(N, {an}) = #{n ≤ N : D(an) = d}, (3.1)

where, here and in the sequel, N denotes a positive integer and the notation “n ≤ N”
means that n runs over the integers n = 1, 2, . . . , N . We denote the Benford approxi-
mation, or Benford prediction, for the counting function Sd(N, {an}) by

Bd(N) = NP (d) = N log10

(
1 +

1

d

)
, (3.2)

and we define the Benford error as the difference between the actual and predicted
leading digit counts:

Ed(N, {an}) = Sd(N, {an})−Bd(N). (3.3)

In terms of these notations, the entries in the second column of Table 1 areBd(109),
d = 1, 2, . . . , 9, while those in the three right-most columns are Sd(109, {an}), d =
1, 2, . . . , 9, for a = 2, a = 3, and a = 5.

Definition 3.1 (Perfect Hits, Almost Perfect Hits, and Bounded Errors). Let {an}
be a sequence of positive real numbers and let d ∈ {1, 2, . . . , 9}. We call the Benford
prediction for leading digit d in the sequence {an}
• a lower perfect hit if

Sd(N, {an}) = bBd(N)c for all N ∈ N, (3.4)

i.e., if the actual leading count is always equal to the predicted count rounded
down to the nearest integer;
• an upper perfect hit if

Sd(N, {an}) = dBd(N)e for all N ∈ N, (3.5)

i.e., if the actual leading count is always equal to the predicted count rounded
up to the nearest integer;
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• an almost perfect hit if there exists θ ∈ [0, 1] such that

Sd(N, {an}) = bBd(N) + θc for all N ∈ N. (3.6)

Moreover, we say that the Benford prediction for leading digit d in the sequence {an}
has bounded error if there exists a constant C such that

|Ed(N, {an})| ≤ C for all N ∈ N. (3.7)

Remarks. (1) Note that, while the actual leading digit count, Sd(N, {an}), is
necessarily a nonnegative integer, the Benford prediction for this count, Bd(N) =
N log10(1 + 1/d), represents an irrational number whenever N ∈ N. Thus, the best
we can hope for is that the actual count is equal to the Benford prediction rounded up
or down to an integer. In this sense, the “perfect hit” and “almost perfect hit” cases
defined above represent best-possible scenarios. In the “almost perfect hit” case both
“up” and “down” rounding may be required, while in the “lower perfect hit” and
“upper perfect hit” cases the same type of rounding (either “down” or “up”) always
gives the exact count.

(2) A lower perfect hit corresponds to the case θ = 0 in the definition (3.6) of an
almost perfect hit. Similarly, in view of the identity dxe = bx+ 1c for x ∈ R \ Z, an
upper perfect hit corresponds to the case of θ = 1 in (3.6). In this sense, the notion of
an almost perfect hit can be viewed as a natural extension of the concepts of lower and
upper perfect hits.

(3) Writing Sd(N, {an}) = Bd(N) + Ed(N, {an}), the definitions of lower, up-
per, and almost perfect hits can be restated in terms of the Benford errorEd(N, {an}):

lower perfect hit ⇐⇒ −1 < Ed(N, {an}) < 0 for all N ∈ N, (3.8)

upper perfect hit ⇐⇒ 0 < Ed(N, {an}) < 1 for all N ∈ N, (3.9)

almost perfect hit ⇐⇒ −1 + θ < Ed(N, {an}) < θ for all N ∈ N

and some θ ∈ [0, 1]. (3.10)

As observed above, of the 27 entries in Table 1 nine are equal to the Benford predic-
tion rounded up or down to an integer. Hence, each of these cases represents a potential
(lower or upper) perfect hit or almost perfect hit in the sense of Definition 3.1. This
suggests the following questions:

Question 1 (Perfect Hits). Which, if any, of the nine observed “perfect hits” in Table
1 are “for real”, i.e., are instances of a true lower or upper perfect hit, or an almost
perfect hit, in the sense of Definition 3.1?

Question 2 (Bounded Errors). Which, if any, of the 27 entries in Table 1 represent
cases in which the Benford prediction has bounded error?

In this paper we will provide a complete answer to these questions, not only for
the sequences shown in Table 1, but for arbitrary sequences of the form {an}. We
encourage the reader to guess the answers to these questions before reading on. Suffice
it to say that our own initial guesses turned out to be way off!

4. NUMERICAL EVIDENCE: EXHIBIT B. For further insight into the behavior
of the Benford approximations, it is natural to consider the distribution of the Benford
errors defined in (3.3). Focusing on the sequence {2n}, we have computed, for each
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digit d ∈ {1, 2, . . . , 9}, the quantities Ed(N ; {2n}), N = 1, 2, . . . , 109, and plotted
a histogram of the distribution of these 109 terms. The results, shown in Figure 2,
turned out to be quite unexpected.

Figure 2. Distribution of the Benford errors for the sequence {2n}, based on the first billion terms of this
sequence. The three rows of histograms show the distributions of Benford errors for digits 1–3, 4–6, and 7–9,
respectively.

The most noticeable, and least surprising, feature in Figure 2 is the distinctive nor-
mal shape of seven of the nine distributions shown. This suggests that the correspond-
ing Benford errors are asymptotically normally distributed. The means and standard
deviations of these distributions are in the order of single digits, indicating a logarith-
mic, or even sublogarithmic, growth rate.

The error distribution for digit 1 (shown in the top left histogram) also has an easily
recognizable shape: It appears to be a uniform distribution supported on the interval
[−1, 0].

By contrast, the error distribution for digit 4 (shown in the middle left histogram)
does not resemble any familiar distribution and seems to be a complete mystery. Un-
raveling this mystery, and discovering the underlying general mechanism, has been a
key motivation and driving force in our research; we will describe the results later in
this paper. In the meantime, the reader may ponder the following question, keeping in
mind the possibility of Guy’s “Strong Law of Small Numbers” being in action.

Question 3 (Distribution of Benford Errors). Which, if any, of the distributions ob-
served in Figure 2 are “for real” in the sense that they represent the true asymptotic
behavior of the Benford errors?

5. UNRAVELING THE DIGIT 1 AND 4 MYSTERIES, I. In this section we fo-
cus on the sequence {2n}. Using entirely elementary arguments, we seek to unravel
some of the mysteries surrounding the leading digit behavior of this sequence we have
observed above.
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We write

Sd(N) = Sd(N, {2n}), Ed(N) = Ed(N, {2n})

for the leading digit counting functions, resp. the Benford error functions, associated
with the sequence {2n}. We will need a slight generalization of Sd(N), defined by

SI(N) = SI(N, {2n}) = #{n ≤ N : D(2n) ∈ I}, (5.1)

where I is an interval in [1, 10).
The key to unlocking the digit 1 and 4 mysteries for the sequence {2n} is contained

in the following lemma which provides an explicit formula for SI(N) for certain in-
tervals I .

Lemma 5.1. Let N ∈ N and d ∈ {1, 2, . . . , 5}. Then

S[d,2d)(N) =

{
bN log10 2c if d = 1,

bN log10 2 + log10(10/d)c if 2 ≤ d ≤ 5.
(5.2)

Proof. Let N ∈ N and d ∈ {1, 2, . . . , 5} be given.
Suppose first that 2N < d. In this case we have 2n ≤ 2N < d and hence D(2n) <

d for all n ≤ N , and thus S[d,2d)(N) = 0. On the other hand, in view of the inequali-
ties

0 < N log10 2 + log10(10/d) = log10(2
N/d) + 1 < 1,

we have bN log10 2 + log10(10/d)c = 0. Therefore (5.2) holds trivially when 2N <
d, and we can henceforth assume that

2N ≥ d. (5.3)

Let k be the unique integer satisfying

d · 10k ≤ 2N < d · 10k+1. (5.4)

Our assumption (5.3) ensures that k is a nonnegative integer, and rewriting (5.4) as

log10 d+ k ≤ N log10 2 < log10 d+ k + 1

yields the explicit formula

k = bN log10 2− log10 dc . (5.5)

Now observe that d ≤ D(2n) < 2d holds if and only if 2n falls into one of the
intervals

[d · 10i, 2d · 10i), i = 0, 1, . . . (5.6)

Since each such interval is of the form [x, 2x), it contains exactly one term 2n. Hence
the number of integers n ≤ N counted in S[d,2d)(N) is equal to the number of integers
i for which the interval (5.6) overlaps with the range [21, 2N ]. By the definition of k
(see (5.4)), this holds if and only if 1 ≤ i ≤ k in the case d = 1, and if and only if
0 ≤ i ≤ k in the case d ≥ 2. Thus, S[d,2d)(N) is equal to k in the first case, and k + 1
in the second case. Substituting the explicit formula (5.5) for k then yields the desired
relation (5.2).
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From Lemma 5.1 we derive our first main result, an explicit formula for the Benford
errors E1(N) and E4(N) associated with the sequence {2n}.

Theorem 5.2 (Digit 1 and 4 Benford Errors for {2n}). Let N be a positive integer.
Then the Benford errors Ed(N) = Ed(N, {2n}) satisfy

E1(N) = −{Nα} , (5.7)

E4(N) = {Nα}+ {Nα− α}+ {Nα+ α} − 1, (5.8)

where α = log10 2.

Proof. For the first formula, note thatD(2n) = 1 holds if and only if 1 ≤ D(2n) < 2.
Thus we have S1(N) = S[1,2)(N), and applying Lemma 5.1 with d = 1 gives

E1(N) = S1(N)−B1(N) = bN log10 2c −N log10

(
1 +

1

1

)
= −{N log10 2} ,

which proves (5.7).
The proof of the second formula is more involved. The key lies in the relation

D(2n) 6= 4⇐⇒ 1 ≤ D(2n) < 2 or 2 ≤ D(2n) < 4 or 5 ≤ D(2n) < 10. (5.9)

Note that the three conditions on the right of (5.9) are mutually exclusive, and that
each of these conditions is of the form appearing in the definition of the quantities
S[d,2d). Counting the number of integers n ≤ N for which the condition on the left
(resp. right) side of (5.9) is satisfied therefore yields the following relation between
the functions Sd(N) and SI(N):

N − S4(N) = S[1,2)(N) + S[2,4)(N) + S[5,10)(N).

Applying Lemma 5.1 to each of the terms on the right of this relation, we obtain

S4(N) = N − bN log10 2c −
⌊
N log10 2 + log10

10

2

⌋
−
⌊
N log10 2 + log10

10

5

⌋
= N (1− 3 log10 2)− 1 + {Nα} − {Nα+ 1− α} − {Nα+ α}

= N log10

5

4
− 1 + {Nα} − {Nα− α} − {Nα+ α} ,

where α = log10 2. Since E4(N) = S4(N)−N log10(5/4), this yields the desired
formula (5.8).

As an immediate consequence of the formulas (5.7) and (5.8) we obtain the bounds

− 1 < E1(N) ≤ 0 for all N ∈ N, (5.10)

− 1 ≤ E4(N) < 2 for all N ∈ N. (5.11)

In particular, the Benford errors for digits 1 and 4 for the sequence {2n} are bounded,
thus providing a partial answer to Question 3. Moreover, the case d = 1 of Lemma 5.1
yields

S1(N) = bN log10 2c = bB1(N)c for all N ∈ N. (5.12)
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This shows that the Benford prediction for leading digit 1 for the sequence {2n} is
indeed a true perfect hit in the sense of Definition 3.1. Hence, at least one of the five
“perfect hits” observed in Table 1 turned out to be “for real”.

What about the other four entries in this table that represented perfect hits at N =
109, i.e., the cases of digits 1 and 2 in the sequence {3n}, and digits 1 and 4 in the
sequence {5n}? Are these “for real” as well, or are they mere coincidences? We will
address this question in Section 9 below, but we first use the results of Theorem 5.2
to settle another numerical mystery, namely the distribution of the Benford errors for
digits 1 and 4 in Figure 2.

6. UNRAVELING THE DIGIT 1 AND 4 MYSTERIES, II. Continuing our focus
on the sequence {2n}, we now turn to the distribution of the Benford errors E1(N)
and E4(N) for this sequence and we seek to explain the peculiar shapes of these
distributions that we had observed in Figure 2. We will prove:

Theorem 6.1 (Distribution of Digit 1 and 4 Benford Errors for {2n}). The se-
quences {E1(n)} and {E4(n)} satisfy, for any real numbers s < t,

lim
N→∞

1

N
#{n ≤ N : s ≤ Ei(n) < t} =

∫ t

s

fi(x) dx (i = 1, 4), (6.1)

where f1(x) and f4(x) are defined by

f1(x) =

{
1 if −1 ≤ x ≤ 0,
0 otherwise,

(6.2)

f4(x) =


1/3 if 3α− 1 ≤ x ≤ 0 or 1 ≤ x < 2− 3α,
2/3 if 0 ≤ x < 1− 3α or 3α ≤ x < 1,
1 if 1− 3α ≤ x < 3α,
0 otherwise,

(6.3)

where α = log10 2.

Figure 3. The probability density function f4(x).

The function f1(x) is the probability density of a uniform distribution on the inter-
val [−1, 0]. The function f4(x), shown in Figure 3, is a weighted average of three uni-
form densities supported on the intervals [1− 3α, 1], [0, 3α], and [3α − 1, 2− 3α],
respectively.
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The theorem shows that the error distributions for digits 1 and 4 we had observed
in Figure 2 are “for real”: The digit 1 error is indeed uniformly distributed over the
interval [−1, 0], while the “mystery distribution” of the digit 4 error turns out to be
that of the random variable X4 defined in (6.5).

Proof of Theorem 6.1. By Theorem 5.2 we have

E1(n) = −{nα},
E4(n) = {nα}+ {nα+ α}+ {nα− α} − 1.

The distribution of the numbers {nα} in these formulas is well-understood: Indeed,
since α = log10 2 is irrational, by Weyl’s Theorem (see, e.g., [22]), these numbers
behave like a uniform random variable on the interval [0, 1], in the sense that for any
real numbers s, t with 0 ≤ s < t ≤ 1,

lim
N→∞

1

N
#{n ≤ N : s ≤ {nα} < t} = t− s.

It follows that the limit distributions of E1(n) and E4(n) exist and are those of the
random variables

X1 = −U, (6.4)

X4 = U + {U + α}+ {U − α} − 1, (6.5)

where U is a uniform random variable on [0, 1].
From (6.4) we immediately obtain that X1 is a uniform random variable on [−1, 0]

and hence has density given by the function f1(x) defined above. Moreover, by con-
sidering separately the ranges 0 ≤ U < α, α ≤ U < 1− α, and 1− α ≤ U ≤ 1 in
(6.5), one can check that X4 is a mixture of three uniform distributions corresponding
to these three ranges, and that the density ofX4 is given by the function f4(x) defined
above; we omit the details of this routine, but somewhat tedious, calculation.

7. BENFORD ERRORS AND INTERVAL DISCREPANCY. We now consider
the case of a general geometric sequence {an}, where a is a positive real number
(not necessarily an integer), subject only to the condition

log10 a 6∈ Q. (7.1)

Condition (7.1) serves to exclude sequences such as {
√

10
n} for which the leading

digits behave in a trivial manner.
To make further progress, we exploit the connection between the distribution of

leading digits of a sequence and the theory of uniform distribution modulo 1. This
connection is well-known, and it has been used to rigorously establish Benford’s Law
for various classes of mathematical sequences; see, for example, Diaconis [8]. For
our purposes, we need a specific form of this connection that involves the concept of
interval discrepancy defined as follows:

Definition 7.1 (Interval Discrepancy). Let α be a real number, and let I be an inter-
val in [0, 1]. For anyN ∈ N, we define the interval discrepancy of the sequence {nα}
with respect to the interval I by

∆(N,α, I) = #{n ≤ N : {nα} ∈ I} −N |I|, (7.2)

where |I| denotes the length of I .
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The point of this definition is that it allows us to express the Benford error
Ed(N, {an}) directly in the form ∆(N,α, I) with suitable choices of α and I:

Lemma 7.2 (Benford Errors and Interval Discrepancy). Let a be a positive real
number, N ∈ N, and d ∈ {1, 2, . . . , 9}. Then we have

Ed(N, {an}) = ∆(N,α, [log10 d, log10(d+ 1)), (7.3)

where α = log10 a.

Proof. Note that, for any n ∈ N,

D(an) = d⇐⇒ d · 10i ≤ an < (d+ 1) · 10i+1 for some i ∈ Z

⇐⇒ log10 d+ i ≤ n log10 a < log10(d+ 1) + i+ 1 for some i ∈ Z

⇐⇒ {nα} ∈ [log10 d, log10(d+ 1)),

since log10 a
n = n log10 a = nα. It follows that

Sd(N, {an}) = #{n ≤ N : {nα} ∈ [log10 d, log10(d+ 1))},

and subtracting Bd(N) = N log10(1 + 1/d) = N(log10(d+ 1)− log10 d) on each
side yields the desired relation (7.3).

We remark that the interval discrepancy defined above is different from the usual
notion of discrepancy of a sequence in the theory of uniform distribution modulo 1,
defined as (see, for example, [17] and [9])

DN({nα}) = max
0≤s<t≤1

|∆(N,α, [s, t))|. (7.4)

While there exists a large body of work on the asymptotic behavior of the ordinary dis-
crepancy functionDN , much less is known about the interval discrepancy ∆(N,α, I).
Indeed, the asymptotic behavior of the latter quantity is, in some respects, more sub-
tle and more mysterious than that of the usual discrepancy function. In the following
sections we describe some of the key results on interval discrepancies, and we apply
these results to Benford errors.

8. INTERVAL DISCREPANCY: RESULTS OF OSTROWSKI AND KESTEN.
In view of Lemma 7.2, the question of whether the Benford error is bounded leads
naturally to the following question about the behavior of the interval discrepancy:

Question. Under what conditions on α and I is the interval discrepancy ∆(N,α, I)
bounded as N →∞?

It turns out that this question has a simple and elegant answer, given as follows:

Proposition 8.1 (Bounded Interval Discrepancy (Kesten [16])). Let α be irrational,
and let I = [s, t), where 0 ≤ s < t ≤ 1. Then ∆(N,α, I) is bounded as N →∞ if
and only if

t− s = {kα} for some k ∈ Z \ {0}. (8.1)

11



This result has an interesting history going back nearly a century. The sufficiency
of condition (8.1) was established by Hecke [14] in 1922 for the special case s = 0
and by Ostrowski [18] in 1927 for general s. The necessity of the condition had been
conjectured by Erdős and Szüsz [10] and was proved by Kesten [16] in 1966.

For the case when condition (8.1) is satisfied, we have the following more precise
result that gives an explicit formula for the interval discrepancy. This result is implicit
in Ostrowski’s paper [19] (see formulas (6) and (6’) in [19]), but since the original
paper is not easily accessible, we will provide a proof here.

Proposition 8.2 (Explicit Formula for Interval Discrepancy (Ostrowski [19])). Let
α be irrational, k ∈ Z \ {0}, and 0 ≤ s ≤ 1− {kα}. Then we have, for any N ∈ N,

∆(N,α, [s, s+ {kα}) =


−

k−1∑
h=0

(
{Nα− hα− s} − {−hα− s}

)
if k > 0,

|k|∑
h=1

(
{Nα+ hα− s} − {hα− s}

)
if k < 0.

(8.2)

Proof. Let α, k, and s be given as in the proposition. We start with the elementary
identity

{x− t} − {x− s} =

{
1− (t− s) if s ≤ {x} < t,
−(t− s) otherwise.

(8.3)

which holds for any real numbers x and t with 0 ≤ s < t ≤ 1. Setting x = {nα} in
(8.3) and summing over n ≤ N , we obtain

N∑
n=1

(
{{nα} − t} − {{nα} − s}

)
= #{n ≤ N : {nα} ∈ [s, t)} −N(t− s)

= ∆(N,α, [s, t)).

Specializing t to t = s+ {kα}, the latter sum turns into a telescoping sum in which
all except the first and last |k| terms cancel out. More precisely, if k > 0, then

∆(N,α, [s, s+ {kα})) =
N∑
n=1

(
{{nα} − s− {kα}} − {{nα} − s}

)

=
N∑
n=1

(
{(n− k)α− s} − {nα− s}

)

= −
k−1∑
h=0

(
{Nα− hα− s} − {−hα− s}

)
,

which proves the first case of (8.2). The second case follows by an analogous argument.
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9. PERFECT HITS AND BOUNDED ERRORS: THE GENERAL CASE. With
the theorems of Kesten and Ostrowski at our disposal, we are finally in a position to
settle Questions 1 and 2 and provide a partial answer to Question 3. Our main result is
the following theorem, which gives a complete description of all (nontrivial) geometric
sequences {an} and digits d ∈ {1, 2, . . . , 9} for which the Benford prediction has
bounded error or represents one of the “perfect hit” types in Definition 3.1.

Theorem 9.1 (Perfect Hits and Bounded Benford Errors). Let a be a positive real
number satisfying (7.1), and let d ∈ {1, 2, . . . , 9}.

(i) Characterization of bounded Benford errors. The Benford prediction for lead-
ing digit d in {an} has bounded error if and only if

ak =
d+ 1

d
10m for some k ∈ Z \ {0} and m ∈ Z. (9.1)

(ii) Characterizations of perfect hits. The Benford prediction for leading digit d in
{an} is
• an almost perfect hit (i.e., satisfies Sd(N, {an}) = bBd(N) + θc for all
N ∈ N and some fixed θ ∈ [0, 1]) if and only if

a =
d+ 1

d
10m or a =

d

d+ 1
10m for some m ∈ Z. (9.2)

Moreover, if this condition is satisfied, the parameter θ in the definition of an
almost perfect hit is given by

θ =

{
{− log10 d} if the first case of (9.2) holds,
log10(d+ 1) if the second case of (9.2) holds.

• a lower perfect hit (i.e., satisfies Sd(N, {an}) = bBd(N)c for all N ∈ N) if
and only if

d = 1 and a = 2 · 10m for some m ∈ Z; (9.3)

• an upper perfect hit (i.e., satisfies Sd(N, {an}) = dBd(N)e for all N ∈ N)
if and only if

d = 9 and a = 9 · 10m for some m ∈ Z; (9.4)

(iii) Distribution of Benford errors. Suppose one of the above conditions (9.1)–
(9.4)— holds. Then the distribution of the Benford error Ed(N, {an}) (in the
sense of (6.1)) is a finite mixture of finite uniform distributions under (9.1), uni-
form on [θ − 1, θ] under (9.2), uniform on [−1, 0] under condition (9.3), and
uniform on [0, 1] under (9.4).

Special cases and consequences. Before proving Theorem 9.1, we present some spe-
cial cases and consequences of this result.

(1) Up to multiplication of a by a power of 10, there is exactly one case in which
the actual leading count is always given by the floor of the Benford prediction,
namely that of digit 1 and the sequence {2n}. Similarly, up to multiplication of
a by a power of 10, there is exactly one case in which the actual leading count
is always given by the ceiling of the Benford prediction, namely that of digit 9
and the sequence {9n}.
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(2) For each digit d ∈ {1, 2, . . . , 9}, there are exactly two sequences {an}with 1 <
a < 10 for which the Benford prediction is an almost perfect hit, corresponding
to a = (d+ 1)/d and a = 10d/(d+ 1).

(3) If a > 0 is irrational and not a rational power of 10, then the Benford error for
the sequence {an} is unbounded for all digits d ∈ {1, 2, . . . , 9}.

(4) If a is an integer ≥ 2 that is not divisible by 10, then condition (9.1) reduces to
a simple Diophantine equation for the number a and the digit d. This equation
has only finitely many solutions, which can be found by considering the prime
factorizations of the numbers a, d, and d + 1. Table 2 gives a complete list of
these solutions.

Digit d Sequences {an} with bounded Benford error
1 {2n}, {5n}
2 {15n}
3 {75n}
4 {2n}, {5n}, {8n}, {125n}
5 {12n}
6
7 {875n}
8 {1125n}
9 {3n}, {9n}

Table 2. Complete list of digits d and sequences {an}, where a ≥ 2 is an integer not divisible by 10, for
which the Benford prediction has bounded error.

(5) Theorem 9.1 allows us to completely settle Questions 1 and 2 on the true nature
of the nine “perfect hits” observed in Table 1. As Table 3 shows, of these nine
entries only two are “for real”, in the sense of being one of the three types of
perfect hits defined in Definition 3.1. An additional three are cases in which the
Benford error is bounded, while the remaining four entries are cases in which
the Benford error is unbounded.

Sequence Digit Observed status at N = 109 True status
{2n} 1 Lower perfect hit Lower perfect hit
{2n} 4 Upper perfect hit Bounded error
{3n} 1 Lower perfect hit Unbounded error
{3n} 2 Lower perfect hit Unbounded error
{3n} 3 Upper perfect hit Unbounded error
{3n} 5 Upper perfect hit Unbounded error
{3n} 9 Upper perfect hit Bounded error
{5n} 1 Lower perfect hit Almost perfect hit
{5n} 4 Lower perfect hit Bounded error

Table 3. Observed versus true nature of the nine entries in Table 1 for which the actual leading digit count
was within ±1 of the Benford prediction at N = 109.

(6) Theorem 9.1 can be viewed as a far-reaching generalization of the results (The-
orems 5.2 and 6.1) we had obtained above, using a much more elementary ap-
proach, for the cases of leading digits 1 and 4 in the sequence {2n}. In particular,
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the theorem shows that the “brick-shaped” error distributions we had observed in
these particular cases are “for real”, and that error distributions of this type arise
whenever the sequence {an} and the digit d satisfy the boundedness criterion
(9.1) of Theorem 9.1.

Proof of Theorem 9.1. Let a and d be given as in the theorem, and set

α = log10 a, s = log10 d, t = log10(d+ 1). (9.5)

With these notations the four conditions in the theorem, (9.1)—(9.4), can be restated
as follows:

t = s+ {kα} for some k ∈ Z \ {0}. (9.1)’

t = s+ {α} or t = s+ {−α}, (9.2)’

s = 0 and t = α = log10 2, (9.3)’

t = 1 and s = α = log10 9, (9.4)’

To establish parts (i) and (ii) of the theorem, we need to show these four conditions
are, respectively, equivalent to the four cases “bounded Benford error”, “almost perfect
hit”, “lower perfect hit”, and “upper perfect hit”.

We begin by showing that (9.1)’ holds if and only if the Benford error is bounded.
By Lemma 7.2 we have

Ed(N, {an}) = ∆(N,α, [s, t)). (9.6)

By Kesten’s theorem (Prop. 8.1) it follows that Ed(N, {an}) is bounded as a function
of N if and only if condition (9.1)’ holds. This proves part (i) of the theorem.

Next, we assume that (9.1)’ holds and consider the distribution of the Benford error
in this case. Combining (9.6) with Ostrowski’s theorem (Prop. 8.2) gives the explicit
formula

Ed(N, {an}) =


−

k−1∑
h=0

(
{Nα− hα− s} − {−hα− s}

)
if k > 0,

|k|∑
h=1

(
{Nα+ hα− s} − {hα− s}

)
if k < 0,

(9.7)

with s = log10 d and α = log10 a as in (9.5). Since, by Weyl’s Theorem (see (6.4)),
the sequence {Nα} is uniformly distributed modulo 1, it follows that the Benford
errors Ed(N, {an}) have a distribution equal to that of the random variable

Xk,α,s =


−

k−1∑
h=0

(
{U − hα− s} − {−hα− s}

)
if k > 0,

|k|∑
h=1

(
{U + hα− s} − {hα− s}

)
if k < 0,

(9.8)

where U is uniformly distributed on [0, 1]. The latter distribution is clearly a finite
mixture of uniform distributions, thus proving the first assertion of part (iii) of the
theorem.
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We now turn to the proof of part (ii). Suppose first that the “almost perfect hit”
criterion, (9.2)’, is satisfied. Then (9.1)’ holds with k = 1 or k = −1, so by (9.7) we
have

Ed(N, {an}) =

{
−{Nα− s}+ {−s} if k = 1,
{Nα+ α− s} − {α− s} if k = −1.

(9.9)

Moreover, by (9.8) the distribution of Ed(N, {an}) is that of the random variable

X1,α,s =

{
−{U − s}+ {−s} if k = 1,
{U + α− s} − {α− s} if k = −1.

(9.10)

In particular, it follows that Ed(N, {an}) is contained in an interval of the form
(−1 + θ, θ) with θ = {−s} if k = 1, and θ = 1 − {α − s} if k = −1. In either
case, Ed(N, {an}) satisfies the criterion (3.10) for almost perfect hits. Thus we have
established the sufficiency of condition (9.2)’ for an almost perfect hit.

Moreover, if (9.2)’ holds, then (9.10) shows that the Benford error is uniformly
distributed on an interval [θ − 1, θ], where θ = {−s} = {− log10 d} if k = 1 (i.e.,
in the first case of (9.2)’), and θ = 1− {α− s} = 1− {−t} = {t} = log10(d+ 1)
if k = −1 (i.e., in the first case of (9.2)’). This proves the “almost perfect hit” case of
part (iii) of the theorem.

Now suppose that the Benford prediction is an almost perfect hit. Then (3.10) holds,
so the Benford error Ed(N, {an}) is contained in an interval of the form (−1 + θ, θ)
and, in particular, is bounded. By part (i) of the theorem, it follows that Ed(N, {an})
is given by the explicit formula (9.7) and has the same distribution as the random
variable Xk,α,s defined in (9.8). To prove (9.2)’, it remains to show that we must have
k = 1 or k = −1 in (9.7).

We argue by contradiction. Suppose that |k| ≥ 2 in (9.7). We will show below that
then the support of the random variableXk,α,s covers an interval of length greater than
1. Since Xk,α,s is the distribution of the Benford error Ed(N, {an}, it follows that the
Benford error cannot be contained in an interval of the form (−1 + θ, θ), so we have
obtained a contradiction. Therefore we must have k = 1 or k = −1 as desired.

To prove our claim on the support ofXk,α,s, suppose |k| ≥ 2. If we set U ′ = {U −
s} if k > 0 and U ′ = {U + |k|α− s} if k < 0, then U ′ is uniformly distributed on
[0, 1], and (9.8) can be written in the form

Xk,α,s = U ′ +

|k|−1∑
h=1

{U ′ − {hα}}+ C, (9.11)

where C = C(k, α, s) is a constant. Now let 0 < λ1 < · · · < λ|k|−1 < 1 denote the
numbers {hα}, h = 1, . . . , |k| − 1, arranged in increasing order, and set λ0 = 0 and
λ|k| = 1. Then (9.11) yields

Xk,α,s = |k|U ′ + Ci if λi ≤ U ′ < λi+1 (9.12)

for each i ∈ {0, 1, . . . , |k| − 1}, where Ci = Ci(k, α, s) is a constant. In particular,
for each such i the support of Xk,α,s covers an interval of length |k|(λi+1 − λi). so
we have

maxXk,α,s −minXk,α,s ≥ |k|(λi+1 − λi). (9.13)

16



By the pigeonhole principle, one of the intervals [λi, λi+1), i = 0, . . . , |k| − 1, must
have length > 1/|k| except in the case when λi = i/|k| for i = 0, 1, . . . , |k|. But
this case is impossible since the numbers λi are a permutation of numbers of the form
{hα} and α is irrational. It follows that, for some i ∈ {0, . . . , k − 1}, the right-hand
side of (9.13) is strictly greater than 1. Hence Xk,α,s is supported on an interval of
length greater than 1, thus proving the claim.

To prove the assertions on lower and upper perfect hits, note first that the desired
conditions (9.3)’ and (9.4)’ are the special cases s = 0 and k = 1, resp. s = α and
k = −1, of (9.2)’. The latter conditions are equivalent to having θ = 0, resp. θ = 1,
in the distribution interval [θ − 1, θ] for the Benford error. Thus, (9.3)’ holds if and
only if the Benford error is contained in [−1, 0], and (9.4)’ holds if and only if the
Benford error is contained in [0, 1]. But by (3.8) and (3.9) the latter two conditions are
equivalent to the cases of a lower, resp. upper, perfect hit. This completes the proof of
the theorem.

10. THE FINAL FRONTIER: THE CASE OF UNBOUNDED ERRORS. Hav-
ing characterized the cases when the Benford error is bounded and completely de-
scribed the behavior of the Benford error for those cases, we now turn to the final—
and deepest—piece of the puzzle, the behavior of the Benford error in cases where it is
unbounded, i.e., when the boundedness criterion (9.1) of Theorem 9.1 is not satisfied.

Exhibit B, Revisited. For the sequence {2n} the Benford error is unbounded exactly
for the digits d = 2, 3, 5, 6, 7, 8, 9 (cf. Table 2). Remarkably, those are precisely the
digits for which the distribution of the Benford error in Figure 2 has the distinctive
shape of a normal distribution. Is this observed behavior for the sequence {2n} “for
real”, in the sense that the Benford error satisfies an appropriate Central Limit Theorem
for these seven digits? Is this behavior “typical” for cases of sequences {an} and
digits d in which the Benford error is unbounded? Could it be that a Central Limit
Theorem holds in all cases in which the Benford error is unbounded? In other words,
is it possible that the distribution of the Benford error for sequences {an} is either
asymptotically normal, or a mixture of uniform distributions?

These are all natural questions suggested by numerical data, and it is not clear where
the truth lies. Indeed, we do not know the answer, but we will provide heuristics sug-
gesting what the truth is and formulate conjectures based on such heuristics.

Interval Discrepancy, Revisited: The Limiting Distribution of ∆(N,α, I). In
view of the connection between Benford errors and the interval discrepancy ∆(N,α, I)
(see Lemma 7.2), it is natural to consider analogous questions about the limiting dis-
tribution of the interval discrepancy. In particular, one can ask:

Question. Under what conditions onα and I does the interval discrepancy ∆(N,α, I)
satisfy a Central Limit Theorem?

In contrast to the question about bounded interval discrepancy, which had been com-
pletely answered more than 50 years ago by Ostrowski and Kesten (see Propositions
8.1 and 8.2), the behavior of ∆(N,α, I) in the case of unbounded interval discrepancy
turns out to be much deeper, and despite some spectacular progress in recent years, a
complete understanding remains elusive.

The recent progress on this question is largely due to Jozsef Beck, who over the past
three decades engaged in a systematic, and still ongoing, effort to attack questions of
this type, for which Beck coined the term “Probabilistic Diophantine Approximation.”
Beck’s work is groundbreaking and extraordinarily deep. The proofs of the results
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cited below take up well over one hundred pages and draw on methods from multiple
fields, including algebraic and analytic number theory, probability theory, Fourier anal-
ysis, and the theory of Markov chains. Beck’s recent book “Probabilistic Diophantine
Approximation” [4] provides a beautifully written, and exceptionally well motivated,
exposition of this work, and the profound ideas that underly it. We highly recommend
this book to the reader interested in learning more about this fascinating new field at
the intersection of number theory and probability theory.

Beck’s main result on the behavior of ∆(N,α, I) is the following theorem. Detailed
proofs can be found in his book [4], as well as in his earlier papers [2] and [3].

Proposition 10.1 (Central Limit Theorem for Interval Discrepancy (Beck [4, The-
orem 1.1])). Let α be a quadratic irrational and let I = [0, s], where s is a rational
number in [0, 1]. Then ∆(N,α, [0, s)) satisfies the Central Limit Theorem

lim
N→∞

1

N
#

{
n ≤ N : s ≤ ∆(N,α, I)− C1 logN

C2

√
logN

< t

}
=

1√
2π

∫ t

s

e−x
2/2 dx for all s < t, (10.1)

where C1 = C1(α, s) and C2 = C2(α, s) are constants depending on α and s

This result shows that, under appropriate conditions on α and I , the interval dis-
crepancy, ∆(N,α, I), is approximately normally distributed with mean and variance
growing at a logarithmic rate. This is exactly the type of behavior of the Benford error
we had observed in Figure 2 for the digits 2, 3, 5, 6, 7, 8, 9. Indeed, even the logarith-
mic rate of growth of the mean and variances in (10.1) is consistent with that observed
in Figure 2, and with the numerical size of the errors in Table 1.

Can Proposition 10.1 explain, and rigorously justify, these observations? Unfortu-
nately, the assumptions onα and I in the proposition are too restrictive to be applicable
in situations corresponding to Benford errors. Indeed, by Lemma 7.2, the Benford er-
ror, Ed(N, {an}), is equal to the interval discrepancy ∆(N,α, Id) with α = log10 a
and Id = [log10 d, log10(d+ 1)). However, Proposition 10.1 applies only to intervals
with rational endpoints and thus does not cover intervals of the form Id. Moreover, in
the cases of greatest interest such as the sequence {2n}, the number α = log10 2 is
not a quadratic irrational and hence not covered by Proposition 10.1.

Of these two limitations to applying Proposition 10.1 to Benford errors, the restric-
tion on the type of interval I seems surmountable. Indeed, Beck [1, p. 38] proved a
Central Limit Theorem similar to (10.1) for “random” intervals I . Hence, it is at least
plausible that the result remains valid for intervals of the type Id provided |Id| is not of
the form {kα} for some k ∈ Z, which, by Kesten’s theorem (Prop. 8.1), would imply
bounded interval discrepancy.

Beck’s Heuristic. The restriction of α to quadratic irrationals in Proposition 10.1 is
due to the fact that quadratic irrationals have a periodic continued fraction expansion,
which simplifies the argument. Beck remarks that this restriction can be significantly
relaxed, and he provides a heuristic for the class of numbers α for which a Central
Limit Theorem should hold, which we now describe.
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Consider the continued fraction expansion of α:

α = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

. (10.2)

Then, according to Beck’s heuristic (see [1, p. 38]), the interval discrepancy ∆(N,α, I)
behaves roughly like

∆(N,α, I) ≈ ε1a1 + ε2a2 + · · ·+ εsas, (10.3)

where the εi are independent random variables with values ±1 and s = s(N) is a
suitably chosen cutoff index. By the standard Central Limit Theorem in Probability
Theory (see, e.g., Feller [11, Section VIII.4]), such a sum has an asymptotically normal
distribution if it satisfies the Lindeberg condition,

lim
k→∞

a2k∑k
i=1 a

2
i

= 0. (10.4)

Beck [4, p. 247] concludes that a Central Limit Theorem for ∆(N,α, I) can be ex-
pected to hold whenever α is an irrational number whose continued fraction expansion
satisfies (10.4), while for numbers α that do not satisfy (10.4), a Central Limit Theo-
rem cannot be expected to hold.

Application to Benford Errors. Since, by Lemma 7.2,Ed(N, {an}) = ∆(N,α, Id),
where α = log10 a and Id = [log10 d, log10(d + 1)), Beck’s heuristic suggests the
following conjecture.

Conjecture 10.2 (Central Limit Theorem for Benford Errors). Let a > 0 be a
real number satisfying (7.1), and suppose that the continued fraction expansion of
α = log10 a satisfies (10.4). Then, for any digit d ∈ {1, 2, . . . , 9} that does not satisfy
the “bounded error” condition (9.1) of Theorem 9.1, the Benford error Ed(N, {an})
is asymptotically normally distributed in the sense that there exist sequences {AN}
and {BN} such that

lim
N→∞

1

N
#

{
n ≤ N : s ≤ Ed(N, {an})−AN

BN
< t

}
=

1√
2π

∫ t

s

e−x
2/2 dx for all s < t. (10.5)

This conjecture would explain the normal shape of the distributions of the Benford
errors observed in Figure 2 if the number α = log10 2 has a continued fraction expan-
sion satisfying (10.4). Unfortunately, we know virtually nothing about the continued
fraction expansion of log10 2 and thus are in no position to determine whether or not
log10 2 satisfies (10.4). We are similarly ignorant about the nature of the continued
fraction expansion of any number of the form

α = log10 a, a ∈ N, log10 a 6∈ Q. (10.6)
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Thus Conjecture 10.2 does not shed light on the leading digit behavior of the simplest
and most interesting class of sequences {an}, namely those where a a positive integer
that is not a power of 10.

We can certainly construct numbers a for which α = log10 a satisfies (10.4) (for
example, a = 10

√
2), but those constructions are rather artificial, and they do not cover

natural families of numbers a such as positive integers or rationals.
If we are willing to believe that all numbers of the form (10.6) satisfy (10.4) and

assume the truth of Conjecture 10.2, then we would be able to conclude that the Ben-
ford error for sequences {an} with a as in (10.6) satisfies the dichotomy mentioned
above: The error is either bounded with a limit distribution that is a finite mixture of
uniform distributions, or unbounded with a normal limit distribution. This would be a
satisfactory conclusion to our original quest, but it depends on a crucial assumption,
namely that (10.4) holds for the numbers of the form (10.6).

How realistic is such an assumption? Alas, it turns out that this assumption is not at
all realistic, in the sense that “most” real numbers α do not satisfy (10.4). Indeed, Beck
[1, p. 39] (see also [4, p. 244]) showed that the Gauss-Kusmin theorem, a classical
result on the distribution of the terms ai = ai(α) in the continued fraction (10.2) of
a “random” real number, implies that the set of real numbers α > 0 for which (10.4)
holds has Lebesgue measure 0. Thus, the condition fails for a “typical” α. Hence, as
Beck observes, for a “typical” α, the interval discrepancy ∆(N,α, I) does not satisfy
a Central Limit Theorem.

Assuming the numbers log10 a in (10.6) behave like “typical” irrational numbers α,
we are thus led to the following unexpected conjecture:

Conjecture 10.3 (Non-normal Distribution of Benford Errors for Integer Se-
quences {an}). Let a be any integer ≥ 2 that is not a power of 10, and let d ∈
{1, 2, . . . , 9}. Then the Benford error Ed(N, {an}) does not satisfy a Central Limit
Theorem in the sense of (10.5).

This conjecture, which is based on sound heuristics and thus seems highly plausible,
represents a stunning turn-around in our quest to unravel the mysteries behind Figure
2. If true, the conjecture would imply that in none of the cases shown in Figure 2 is
the distribution asymptotically normal. In particular, the seven distributions in Figure
2 that seemed tantalizingly close to a normal distribution and which appeared to be the
most likely candidates for a “real” phenomenon are now being revealed as the (likely)
“fakes”: The observed normal shapes are (likely) mirages and manifestations of Guy’s
“Strong Law of Large Numbers”.

In light of this conjecture, it is natural to ask why the distributions observed in Fig-
ure 2 had such a distinctive normal shape. We believe there are two phenomena at
work. For one, the number of “relevant” continued fraction terms ai in the approxima-
tion (10.3) of ∆(N,α, I) can be expected to be around logN for most α. Thus, even
for values N in the order of one billion, the number of terms in the approximating
sum of random variables on the right of (10.3) may be too small to reliably represent
the long-term behavior of these sums. Furthermore, while, for a “typical” α, the ratio
a2k/(a

2
1 + · · ·+ a2k) appearing in (10.4) is bounded away from 0 for infinitely many

values of k, these values of k form a very sparse set of integers, while for “most” k,
the above ratio remains small. This would suggest that, even for numbers α that do not
satisfy (10.4), ∆(N,α, I) can be expected to be approximately normal “most of the
time”.

11. CONCLUDING REMARKS. While our original goal of getting to the bottom
of the numerical mysteries in Table 1 and Figure 2 and understanding the underlying
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general phenomenon has been largely accomplished, the story does not end here. The
results and conjectures obtained suggest a variety of generalizations, extensions, and
related questions.

One can consider leading digits with respect to more general bases than base 10.
The Benford distribution (1.1) has an obvious generalization for leading digits with
respect to an arbitrary integer base b ≥ 3: simply replace the probabilities P (d) =
log10(1 + 1/d), d = 1, . . . , 9, in (1.1) by the probabilities Pb(d) = logb(1 + 1/d),
d = 1, . . . , b− 1. We have focused here on the base 10 case for the sake of exposi-
tion, but we expect that all of our results and conjectures extend, in a straightforward
manner, to this more general setting.

One can ask if similar results hold for more general classes of sequences than the
geometric sequences we have considered here. We do expect the results to extend to
sequences such as the Fibonacci numbers that are sufficiently to close to geometric
sequences, but not for sequences with significantly different rates of growth.

One can seek to more directly tie the behavior of the Benford error to that of the
continued fraction expansion of α = log10 10. For example, the heuristic of Beck de-
scribed in Section 10 suggests that it might be possible to relate the size and behavior
Benford error Ed(N, {an}) over a specific range for the numbers N to the size and
behavior of the continued fraction terms ak for a corresponding range of indices k.

Finally, one can investigate other measures of “unreasonable” accuracy of the Ben-
ford prediction. A particularly interesting one is provided by “record hits” of the Ben-
ford prediction, defined as cases where the Benford error at index N is smaller in
absolute value than at any previous index. We expect that these indices N are closely
tied to the denominators in the continued fraction expansion of log10 a.
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