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Abstract. We give complete characterizations (in terms of nerves) of
those word hyperbolic Coxeter groups whose Gromov boundary is home-
omorphic to the Sierpi«ski curve and to the Menger curve, respectively.
The justi�cation is mostly an appropriate combination of various results
from the literature.

0. Introduction

0.1. Overview and context. It is a classical and widely open problem to
characterize those word hyperbolic groups whose Gromov boundary is home-
omorphic to a given topological space. The complete answers (for nonele-
mentary hyperbolic groups) are known only for the Cantor set (virtually
free groups) and for the circle S1 (cocompact Fuchsian groups). For the
sphere S2 the expected answer is known as Cannon's Conjecture, and it re-
mains open. Some partial answers are known in the restricted frameworks.
For example, Cannon's conjecture is known to be true for Coxeter groups
(we discuss this issue with more details in Subsection 1.4). In this paper
we deal with spaces known as the Sierpi«ski curve and the Menger curve,
providing complete characterizations of word hyperbolic Coxeter groups for
which these spaces appear as the Gromov boundaries.

Some partial results in this direction have been presented quite recently
by several authors. For example, P. Dani, M. Haulmark and G. Walsh in
[6] have shown that for a word hyperbolic right-angled Coxeter group W
whose nerve L is 1-dimensional, ∂W is homeomorphic to the Menger curve
i� L is unseparable (i.e. connected, with no separating vertex and no sepa-
rating pair of nonadjacent vertices) and non-planar. The third author of the
present paper, in [15], characterized those word hyperbolic Coxeter groups
with Sierpi«ski curve boundary whose nerves are planar complexes. The
�rst author in [7] provided a su�cient condition for the nerve of a word hy-
perbolic right-angled Coxeter group W , which can be applied to nerves of
arbitrary dimension, under which the Gromov boundary ∂W is the Menger
curve.

This paper resulted from an observation (by the second author) that
some results of M. Bourdon and B. Kleiner from [4] can be applied to obtain
the complete characterizations, as presented below.
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0.2. Results. Before stating our main result we need to recall some ter-
minology and notation appearing in its statement. The nerve of a Coxeter
system (W,S) is the simplicial complex L = L(W,S) whose vertex set is
identi�ed with S and whose simplices correspond to those subsets T ⊂ S
for which the special subgroup WT is �nite. The labelled nerve L• of (W,S)
is the nerve L in which the edges are equipped with labels in such a way
that any edge [s, t] has label equal to the exponent mst from the standard
presentation associated to (W,S) (equivalently, mst is the appropriate entry
of the Coxeter matrix of the system (W,S)). Obviously, the labelled nerve of
a Coxeter system carries the same information as its Coxeter matrix. Note
that the labelled nerve of the direct product of two Coxeter systems is the
simplicial join of the nerves of the two factors, where the labels at edges of
the joined complexes are preserved, and the labels at all �connecting� edges
(i.e. edges having endpoints in both joined complexes) are equal to 2. We
call such a labelled nerve the labelled join of the labelled nerves of the two
factors. A Coxeter system is called indecomposable if it cannot be expressed
as a direct product of non-trivial Coxeter systems. Observe that a Coxeter
system is indecomposable i� its labelled nerve cannot be expressed as a
labelled join of two non-trivial labelled complexes.

We use the convention of speaking of topological or simplicial properties
of labelled nerves as of the properties of the corresponding underlying un-
labelled nerves. The labelled nerve of a Coxeter system is unseparable if it
is connected, has no separating simplex, no separating pair of nonadjacent
vertices, and no separating labelled suspension (i.e. a full subcomplex which
is the labelled join of a simplex and a doubleton). The concept of unsepara-
bility is useful because of the following characterization of nonexistence of
a splitting along a �nite or a 2-ended subgroup in a Coxeter group, due to
Mihalik and Tschantz [13]: the group W in a Coxeter system (W,S) has no
nontrivial splitting along a �nite or a 2-ended subgroup i� its labelled nerve
is unseparable (see Subsection 1.2 for more details).

Given a �nite simplicial complex K we de�ne its puncture-respecting
cohomological dimension, denoted as pcd(K), by the formula

pcd(K) := max{n : H
n
(K) ̸= 0 or H

n
(K \ σ) ̸= 0 for some σ ∈ S(K)},

where S(K) is the family of all closed simplices of K. This concept is useful
for us due to its role in a formula (by M. Davis) for the virtual cohomological
dimension of a Coxeter group, see Proposition 1.3 below, and its proof.

A 3-cycle is a triangulation of the circle S1 consisting of precisely 3 edges.

Our main result is the following.

Theorem 0.1. Let (W,S) be an indecomposable Coxeter system such that
W is in�nite word hyperbolic, and let L• be its labelled nerve.

(1) The Gromov boundary ∂W is homeomorphic to the Sierpi«ski curve
i� L• is unseparable, planar (in particular, not a triangulation of
S2), and not a 3-cycle.

(2) The Gromov boundary ∂W is homeomorphic to the Menger curve i�
L• is unseparable, pcd(L•) = 1, and L• is not planar.
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Remarks 0.2. (1) Recall thatW is in�nite i� its nerve is not a simplex.
Recall also that word hyperbolicity of W has been characterized by
G. Moussong (see [14], or Theorem 12.6.1 in [9]) as follows: W is
word hyperbolic i� it has no a�ne special subgroup of rank ≥ 3,
and no special subgroup which decomposes as the direct product of
two in�nite special subgroups.

(2) One of the consequences of the above Moussong's characterization of
word hyperbolicity is as follows. A word hyperbolic in�nite Coxeter
group decomposes (uniquely) into the direct product of an in�nite
indecomposable special subgroup (which is also word hyperbolic)
and a �nite special subgroup (possibly trivial). This allows to extend
Theorem 0.1 in the obvious way to Coxeter systems (W,S) which are
not necessarily indecomposable. Namely, conditions for the nerve L•

have to be satis�ed up to the labelled join with a simplex.
(3) The above two remarks show that Theorem 0.1 actually yields a

complete characterization (in terms of Coxeter matrices or labelled
nerves) of those Coxeter systems (W,S) for which W is word hyper-
bolic and its Gromov boundary ∂W is homeomorphic to the Sier-
pi«ski curve or to the Menger curve. We skip the straightforward
details of such characterizations.

0.3. Plan of the paper. In Section 1 we collect various (rather numer-
ous) preparatory results, and in Section 2 we provide the main line of the
argument of the proof of Theorem 0.1 (which is relatively short).

More precisely, here is the structure of Section 1. In Subsection 1.1 we
recall the famous topological characterizations of the Sierpi«ski curve and of
the Menger curve, due to Whyburn [16] and to Anderson [1], respectively. In
Subsection 1.2 we present a complete characterization (in terms of labelled
nerves) of those word hyperbolic Coxeter groups whose Gromov boundary
is connected and has no local cut points. As we explain, this characteri-
zation is a more or less direct consequence of the results of Bowditch [5],
Davis [8, 9], and Mihalik and Tschantz [13]. In Subsection 1.3 we present a
useful formula for the topological dimension of the Gromov boundary of a
word hyperbolic Coxeter group, which is due to Davis [8] and Bestvina and
Mess [3]. In Subsection 1.4 we recall a result of Bourdon and Kleiner [4],
which con�rms the Cannon's conjecture in the framework of word hyper-
bolic Coxeter groups. In Subsection 1.6 we discuss another result, which is
implicit in the paper [4] by Bourdon and Kleiner, namely the fact that if the
Gromov boundary of an indecomposable word hyperbolic Coxeter group is
the Sierpi«ski curve then the nerve of the corresponding Coxeter system is
a planar simplicial complex. Since the arguments for this fact provided in
[4] are extremely sketchy, we include an extended exposition of its proof. In
particular, in this exposition we refer to some auxiliary result from combi-
natorial group theory, which we state and prove in Subsection 1.5, and for
which we couldn't �nd an appropriate reference in the literature.
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The proof of Theorem 0.1 provided in Section 2 is split into separate
parts concerning the Menger curve and the Sierpi«ski curve. It uses all the
preparatory results from Section 1.

Acknowledgements. The �rst author was partially supported by (Polish)
Narodowe Centrum Nauki, grant no 2020/37/N/ST1/01952. The third au-
thor was partially supported by (Polish) Narodowe Centrum Nauki, grant
no UMO-2017/25/B/ST1/01335 .

1. Preliminaries and preparations

In this section we collect various useful results from the literature (or
some more or less direct consequences of such results), and few other prepara-
tory observations. We will refer to all these results in our main arguments
in Section 2.

1.1. Characterizations of the Sierpi«ski curve and the Menger curve.
By a result of Whyburn [16], the Sierpi«ski curve is the unique metriz-
able topological space which is compact, connected, locally connected, 1-
dimensional, without local cut points and planar. A somewhat similar re-
sult of Anderson [1] characterizes the Menger curve as the unique compact
metrisable space which is connected, locally connected, 1-dimensional, has
no local cut points, and is nowhere planar (nowhere planarity means that
no open subset of the space is planar).

By referring to the above characterizations, the second author and B. Kleiner
made in their paper [12] the following observation.

Proposition 1.1 (M. Kapovich and B. Kleiner [12]). Let G be a word
hyperbolic group, and suppose that its Gromov boundary ∂G is connected,
1-dimensional, and has no local cut points. Then ∂G is homeomorphic either
to the Sierpi«ski curve or to the Menger curve.

1.2. Connectedness and non-existence of local cut points in the
Gromov boundary ∂W . It is a well known fact that once a hyperbolic
group is 1-ended then its Gromov boundary is not only connected, but
also locally connected (see e.g. Theorem 7.2 in [11]). This allows to discuss
existence of local cut points in the boundary. As far as this issue, we have
the following observation, which probably belongs to folklore.

Proposition 1.2. Let (W,S) be a Coxeter system, and let L• be its labelled
nerve. Suppose also that the group W is in�nite and word hyperbolic. Then
the Gromov boundary ∂W is connected and has no local cut points i� L• is
unseparable and not a 3-cycle.

Proof: Step 1. Since connectedness of the boundary ∂W is equivalent to
1-endedness of W , by Theorem 8.7.2 in [9] we get that ∂W is connected i�
the nerve L is connected and has no separating simplex.

Step 2. By Theorem 8.7.3 in [9], a Coxeter group is 2-ended i� it decomposes
as the direct product of its in�nite dihedral special subgroup and its �nite
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(possibly trivial) special subgroup. Equivalently, a Coxeter group is 2-ended
i� its labelled nerve is either a doubleton or a labelled suspension (as de�ned
in the introduction).

As a consequence of the above, if the group W is 1-ended, non-existence
of a separating pair of non-adjacent vertices and of a separating labelled
suspension (in the labelled nerve L•) means exactly thatW does not visually
split (in the sense of the paper [13] by Mihalik and Tschantz) over a 2-ended
subgroup. More precisely, this means that W cannot be expressed as an
essential free product of its two special subgroups, amalgamated along a
2-ended special subgroup. It follows from the main result of the same paper
[13] that non-existence of a separating pair of non-adjacent vertices and of
a separating labelled suspension in L• is equivalent to the fact that W does
not split along any 2-ended subgroup.

Step 3. By a result of Bowditch [5], the Gromov boundary ∂G of a 1-ended
hyperbolic group G has no local cut point i� G has no splitting along a
2-ended subgroup and is not a cocompact Fuchsian group. By a result of
Davis (see Theorem B in [8] or Theorem 10.9.2 in [9]), a Coxeter group is
a cocompact Fuchsian group i� its nerve is either a triangulation of S1 or
the group splits as the direct product of a special subgroup with the nerve
S1, and another special subgroup, which is �nite. It follows from these two
results, and from the conclusion of Step 2, that the Gromov boundary ∂W
of a 1-ended word hyperbolic Coxeter group W has no local cut point i�
its labelled nerve L• has no separating pair of non-adjacent vertices, no
separating labelled suspension, and is not a 3-cycle.

Step 4. Proposition 1.2 follows by combining the observations of Steps 1
and 3. □

1.3. Topological dimension of the Gromov boundary ∂W . Recall
that, given a �nite simplicial complex K we have de�ned (in the introduc-
tion) its puncture-respecting cohomological dimension, denoted as pcd(K),
by the formula

pcd(K) := max{n : H
n
(K) ̸= 0 or H

n
(K \ σ) ̸= 0 for some σ ∈ S(K)},

where S(K) is the family of all closed simplices ofK. The role of this concept
for our considerations in this paper comes from the following observation.

Proposition 1.3. Let (W,S) be a Coxeter system, and let L be its nerve.
Suppose also that the group W is word hyperbolic. Then

dim ∂W = pcd(L).

Proof: Denote by vcd(W ) the virtual cohomological dimension of W . It
follows from results of Mike Davis that vcd(W ) = pcd(L)+1 (see Corollary
8.5.5 in [9]). On the other hand, by the result of M. Bestvina and G. Mess
[3], we have vcd(W ) = dim ∂W + 1, hence the proposition. □
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1.4. Cannon's conjecture for Coxeter groups. The following result has
been proved using quite advanced methods by M. Bourdon and B. Kleiner in
[4], and its short proof as presented below (indicated by M. Davis) has been
also outlined in the same paper. We include this short proof for completeness
(since our statement, being convenient for our applications, is not identical
to that in [4]), and for reader's convenience.

Proposition 1.4. Let (W,S) be an indecomposable Coxeter system, and let
L be its nerve. Suppose also that the group W is word hyperbolic. Then the
following conditions are equivalent:

(1) ∂W ∼= S2,
(2) L is a triangulation of S2,
(3) W acts properly discontinuously and cocompactly, by isometries, as

a re�ection group, on the hyperbolic space H3.

Proof: We justify the implications 1. ⇒ 2. ⇒ 3. ⇒ 1.

Proof of 1. ⇒ 2. By result of M. Bestvina and G. Mess (Corollary 1.3(c)
in [3]), if ∂W ∼= S2 then W is a virtual Poincaré duality group of dimension
3. By result of M. Davis (Theorem 10.9.2 in [9]), the nerve L is then a
triangulation of S2 (here we use the assumption of indecomposability).

Proof of 2. ⇒ 3. This implication follows by applying Andreev's theorem
(see [2], or Theorem 6.10.2 in [9]) to the dual polyhedron of the triangula-
tion.

Proof of 3. ⇒ 1. By the assumptions on W in condition 3, we obviously
have ∂W = ∂H3, and the implication follows from the fact that ∂H3 ∼=
S2. □

For the later arguments of this paper we only need the implication 1. ⇒
2.

1.5. An observation from combinatorial group theory. Let Γ be an
arbitrary group and Hi for 1 ≤ i ≤ n be a collection of its (not necessarily
pairwise distinct) subgroups. In this subsection we describe two group op-
erations associated to this data, and discuss the relationship between the
groups obtained by these operations. This observation (Lemma 1.7 below)
will be useful in the argument in Subsection 1.6.

In the next de�nition we describe the �rst of the two operations, which
the second author and B. Kleiner call the double of Γ with respect to the
tuple (Hi) (see [12]).

De�nition 1.5. Given a group Γ and a �nite tuple of its subgroups (Hi),
the double Γ ⃝⋆ Γ is the fundamental group π1G of the graph of groups G
described as follows. The underlying graph of G consists of two vertices v and
v′ and n edges e1, . . . , en each of which has both v and v′ as its endpoints.
The vertex groups at v and v′ are both identi�ed with Γ while the edge
group at any edge ei is identi�ed with Hi. The structure homomorphisms
are all taken to be the inclusions.



COMPLETE CHARACTERIZATIONS OF HYPERBOLIC COXETER GROUPS
WITH SIERPI�SKI CURVE BOUNDARY AND WITH MENGER CURVE
BOUNDARY

7

Let Γ = ⟨S|R⟩, and let Γ′ = ⟨S ′|R′⟩ be a second copy of Γ (given by
the same presentation). Denote by WHi

the set of words over S ∪ S−1 that
represent elements of the subgroup Hi and for a word w over S ∪S−1 let w′

be the word over S ′∪S ′−1 obtained from w by substituting each letter with
its counterpart from S ′∪S ′−1. Note that (e.g. by De�nition 7.3 in [10]), the
double Γ⃝⋆ Γ can be also described as follows. Consider an auxilliary group
P = P (Γ, (Hi)) given by the presentation

⟨S ⊔ S ′ ⊔ {ui : 1 ≤ i ≤ n}|R ∪R′ ∪ {hiui = uih
′
i : 1 ≤ i ≤ n, hi ∈ WHi

}⟩.
Then Γ ⃝⋆ Γ is a subgroup of P consisting of all elements p such that there
exists an expression p = w0ui1w1u

−1
i2
w2 . . . w2m−1u

−1
i2m

w2m for some m ≥
0, 1 ≤ ik ≤ n and words wk over S ∪ S−1 and S ′ ∪ S ′−1 for even and odd k
respectively.

The second of the group operations is given in the following.

De�nition 1.6. Given a group Γ = ⟨S|R⟩ and a �nite tuple of its subgroups
(Hi), the mirror double Γ̃ of the group Γ with respect to the tuple (Hi), is
the group given by the presentation

Γ̃ :=⟨S ⊔ {si : 1 ≤ i ≤ n}|
R ∪ {s2i = 1 : 1 ≤ i ≤ n} ∪ {hisi = sihi : 1 ≤ i ≤ n, hi ∈ WHi

}⟩.

Observe that the mirror double is (up to isomorphism) independent of
the presentation of Γ used in the de�nition above.

Lemma 1.7. For each group Γ and any �nite tuple of its subgroups (Hi)
the double Γ⃝⋆ Γ is isomorphic to an index 2 subgroup of the mirror double
Γ̃.

Remark. The concepts of a double Γ ⃝⋆ Γ and a mirror double Γ̃ are
well known e.g. in the context of compact hyperbolic manifolds, M , with
nonempty totally geodesic boundary ∂M . If we take Γ = π1M , and if sub-
groups Hi < Γ correspond to the fundamental groups of the boundary
components, the double Γ⃝⋆ Γ is the fundamental group of the double DM

of the manifold M along ∂M . In the same situation, the mirror double Γ̃
corresponds to the fundamental group of the orbifold OM with the under-
lying space M , in which the local groups at the boundary are the groups of
order 2 representing geometrically local re�ections. Since the double DM
is obviously a degree 2 covering of the orbifold OM (in the orbifold sense),
the assertion of Lemma 1.7 is obvious in this situation. The full statement
of Lemma 1.7 is just a group theoretic extension of that observation (which
could be also given a geometrical sense).

Proof: Consider the homomorphism ρ : P → Γ̃ given by ρ(s) = ρ(s′) = s
for each s ∈ S, and ρ(ui) = si for each 1 ≤ i ≤ n. Consider also the
homomorphism σ : Γ̃ → Z2 given by σ(s) = 0 for s ∈ S, and σ(si) = 1 for
1 ≤ i ≤ n. It su�ces to show that ρ restricts to an isomorphism between
Γ⃝⋆ Γ and kerσ, which is an index 2 subgroup of Γ̃. It is easy to check that
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ρ(Γ ⃝⋆ Γ) = kerσ, so it remains to show that ρ|Γ⃝⋆Γ is injective. To this end
we introduce the following lift function ℓ : kerσ → Γ ⃝⋆ Γ. For an element
ξ ∈ kerσ, and for its any expression by a word of the form w0s

ϵ1
i1
w1s

ϵ2
i2
· . . . ·

w2m−1s
ϵ2m
i2m

w2m for some (possibly empty) words wi over the alphabet S∪S−1,
ϵj ∈ {−1, 1} and for 1 ≤ ij ≤ n, put ℓ(ξ) := w0ui1w

′
1u

−1
i2

· . . . ·w′
2m−1u

−1
i2m

w2m.
The map ℓ is well de�ned, since it is easy to check that for each word

U = w0s
ϵ1
i1
w1s

ϵ2
i2
· . . . · w2m−1s

ϵ2m
i2m

w2m,

and for each elementary operation consisting of inserting at an arbitrary
place in U (or deleting) a subword of the form a−1a for some letter a,
or a relator (in Γ̃) or inverse of such, resulting in the word Û , the words
representing ℓ(U) and ℓ(Û) in the de�nition of ℓ di�er by an analogous
elementary operation (in P ). Moreover, since we then clearly have that
ℓ ◦ ρ|Γ⃝⋆Γ = idΓ⃝⋆Γ, we conclude that ρ|Γ⃝⋆Γ is injective, hence the lemma. □

1.6. Planarity of nerves. We recall the following rather easy observation
from the paper [15] written by the third author of the present paper.

Lemma 1.8 (J. �wi¡tkowski, Lemma 1.3 in [15]). If the nerve L of a word
hyperbolic Coxeter group W is a planar complex then the Gromov boundary
∂W is a planar topological space.

The converse implication is not true in general [6], but it does hold in an
important special case. This is the contents of the next result which appears
implicitly as Corollary 7.5 in [4]. The proof given below is an expansion of
a rather sketchy argument provided in [4].

Proposition 1.9. Let (W,S) be an indecomposable Coxeter system such
that the group W is word hyperbolic. If the Gromov boundary ∂W is home-
omorphic to the Sierpi«ski curve then the nerve L of the system (W,S) is
a planar simplicial complex.

Proof: We will embed the group W , as a special subgroup, in some larger
indecomposable and word hyperbolic Coxeter group W̃ such that ∂W̃ ∼= S2.
The assertion will follow then from the implication 1. ⇒ 2. in Proposition
1.4.

We start by recalling some facts established in the paper [12] by the
second author and B. Kleiner. First, the Sierpi«ski curve contains the family
of topologically well distinguished pairwise disjoint subsets homeomorphic
to S1, called peripheral circles. Moreover, in its action on ∂W the group
W maps peripheral circles to peripheral circles. A setwise stabilizer of each
peripheral circle in ∂W , called a peripheral subgroup of W , is a quasi-convex
subgroup of W for which the circle is its limit set, and consequently each
such stabilizer is a cocompact Fuchsian group. The action of W on the
family of peripheral circles in ∂W has �nitely many orbits, and thus we
have �nitely many conjugacy classes of peripheral subgroups in W .

Claim. Each peripheral subgroup of W is a conjugate of some special sub-
group of W .
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To prove this claim we need some terminology and notation as in Section
5.1 in [4]. For a generator s ∈ S, the wall Ms is the set of setwise s-stabilized
open edges of Cay(W,S) (the Cayley graph of W with respect to the set of
generators S). Then Cay(W,S) \Ms consists of two connected components
H−(Ms) and H+(Ms). For a generator s ∈ S and for an arbitrary element
g ∈ W we consider the re�ection r := gsg−1, its wall Mr := gMs and
components H−(Mr) and H+(Mr) of Cay(W,S) \Mr. The components are
closed and convex subsets of Cay(W,S) and ∂H−(Mr) ∪ ∂H+(Mr) = ∂W ,
∂H−(Mr) ∩ ∂H+(Mr) = ∂Mr and r pointwise stabilizes ∂Mr.

Proof of Claim: In view of De�nition 5.4 and Theorem 5.5 in [4] it su�ces
to show that for each peripheral circle F and each re�ection r such that
∂H−(Mr) ∩ F and ∂H+(Mr) ∩ F are non-empty, it holds that F is setwise
stabilized by r. Since (∂H−(Mr)∩F )∪ (∂H+(Mr)∩F ) = ∂W ∩F = F , by
connectedness of F ∼= S1, we have that ∅ ≠ (H−(∂Mr) ∩ F ) ∩ (H+(∂Mr) ∩
F ) = ∂Mr ∩ F . Since ∂Mr is pointwise stabilized by r, rF ∩ F ̸= ∅, and,
�nally, rF = F by the fact that each element of W maps peripheral circles
to peripheral circles.

Coming back to the proof of Proposition 1.9, denote by Hi : 1 ≤ i ≤ n a
set of representatives of the conjugacy classes of peripheral subgroups of W
consisting of special subgroups of W . For each 1 ≤ i ≤ n, denote by Li the
nerve ofHi, and view it as a subcomplex of the nerve L ofW . We will discuss
below the double W ⃝⋆ W and the mirror double W̃ of W with respect to the
tuple (Hi) (see Subsection 1.5). As it is shown in [12], the doubleW⃝⋆ W is a
hyperbolic group and its Gromov boundary is homeomorphic to S2. Observe
also that the mirror double W̃ is (isomorphic to) a Coxeter group with nerve
L̃ obtained from the nerve L of W by adding a simplicial cone over each of
the subcomplexes Li. Moreover, since each Hi is a proper special subgroup
of W , indecomposability of W implies indecomposability of W̃ . By Lemma
1.7, the group W̃ contains W ⃝⋆ W as a subgroup of index 2, and hence
it is also word hyperbolic and its Gromov boundary is homeomorphic to
S2. By Proposition 1.4, L̃ is then a triangulation of S2. Since L is clearly a
proper subcomplex of L̃, it is necessarily planar, which completes the proof
of Proposition 1.9. □

2. Proof of the main theorem

2.1. Sierpi«ski curve boundary. In this rather short subsection we prove
part 1 of Theorem 0.1.

Proof of the implication ⇒. Suppose that ∂W is homeomorphic to the
Sierpi«ski curve. Then, in view of the fact that the Sierpi«ski curve is con-
nected and has no local cut points, it follows from Proposition 1.2 that L•

is unseparable and not a 3-cycle. Moreover, by Proposition 1.9, L is then a
planar simplicial complex, which completes the proof.

Proof of the implication ⇐. As any Gromov boundary of a hyperbolic
group, ∂W is a compact metrisable space. Since L is planar, it follows from
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Lemma 1.8 that ∂W is a planar space. Since L• is unseparable and not a
3-cycle, it follows from Proposition 1.2 that ∂W is connected, locally con-
nected, and has no local cut point. Finally, it is not hard to see that since L
is planar, connected, has no separating simplex, and does not coincide with
a single simplex, its puncture-respecting cohomological dimension pcd(L)
is equal to 1. Consequently, due to Proposition 1.3, ∂W has topological di-
mension 1. Thus, by Whyburn's characterization recalled in Subsection 1.1,
∂W is homeomorphic to the Sierpi«ski curve, as required.

2.2. Menger curve boundary. We now pass to the proof of part 2 of
Theorem 0.1.

Proof of the implication ⇒. Suppose that ∂W is homeomorphic to the
Menger curve. Then, in view of the fact that the Menger curve is connected
and has no local cut points, it follows from Proposition 1.2 that L• is unsep-
arable. Since the Menger curve has topological dimension 1, it follows from
Proposition 1.3 that pcd(L) = 1. Since the Menger curve is not planar, it
follows from Lemma 1.8 that L is also not planar, and this completes the
proof of the �rst implication.

Proof of the implication ⇐. The boundary ∂W is obviously a compact
metrisable space. Since L• is not planar, not a 3-cycle, and since L• is
unseparable, it follows from Proposition 1.2 that ∂W is connected, locally
connected, and has no local cut point. Since pcd(L) = 1, it follows that ∂W
has topological dimension 1. In view of the above properties, it follows from
Proposition 1.1 that ∂W is homeomorphic either to the Sierpi«ski curve
or to the Menger curve. However, since L is not planar, it follows from
Proposition 1.9 that ∂W cannot be homeomorphic to the Sierpi«ski curve.
Consequently, it must be homeomorphic to the Menger curve, as required.
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