Processing math: 100%


SOLUTION 1: Draw a square with edges labeled x, and assume each edge is a function of time t.

tex2html_wrap_inline125



     a.) The perimeter of the square is P=x+x+x+x     P=4x GIVEN:    dxdt=3 cm/sec.

FIND:    dPdt when x=10 cm.

Now differentiate the perimeter equation with repect to time t, getting

D{P}=D{4x}    dPdt=4dxdt   

( Now let dxdt=3.)

dPdt=4(3)=12 cm/sec.

     b.) The area of the square is A=(base)(height)=xx     A=x2 GIVEN:    dxdt=3 cm/sec.

FIND:    dAdt when x=10 cm.

Now differentiate the area equation with respect to time t, getting

D{A}=D{x2}    dAdt=2xdxdt   

( Now let dxdt=3 and x=10.)

dAdt=2(10)(3)=60 cm2/sec.

Click HERE to return to the list of problems.