Processing math: 100%


SOLUTION 16: Consider the given side view of the conical tank of height 10 meters and base radius 8 meters.

tex2html_wrap_inline125



Consider the cone of water of depth h meters and the right triangle with legs r and h in the side view of the conical tank. Assume that lengths r and h are both functions of time t.

tex2html_wrap_inline125



RECALL: The volume of a right circular cone of height h and base radius r is

V=13πr2h

GIVEN:    dVdt=π m3/min.

FIND:    dhdt when    a.)  h=1 m.    b.)  h=9 m.

First consider the two given similar right triangles. Use them to write r in terms of h.

tex2html_wrap_inline125



Using similar triangles we can conclude that

rh=810     rh=45     r=45h

The volume equation can now be rewritten as

V=13π{45h}2h     V=1675πh3

Differentiating the volume equation, we get

D{V}=D{1675πh3}     dVdt=1675π3h2dhdt     ()                     dVdt=1625πh2dhdt    

( a.) Now let dVdt=π and  h=1.)

π=1625π(1)2dhdt    

(Divide both sides of the equation by π.)

1=1625dhdt     dhdt=2516=1.5625 meters/min.

( b.) Now let dVdt=π and  h=9 in equation (**). )

π=1625π(9)2dhdt     1=1625(81)dhdt     1=129625dhdt     dhdt=2512960.019 meters/min.

Click HERE to return to the list of problems.