Processing math: 100%


SOLUTION 6: Compute the area of the region enclosed by the graphs of the equations y=lnx, y=1 and x=e2 . Begin by finding the points of intersection of the two graphs. From y=lnx and y=1 we get that lnx=1     x=e Now see the given graph of the enclosed region.

tex2html_wrap_inline125

Using vertical cross-sections to describe this region, we get that exe2  and  1ylnx, so that the area of this region is AREA=e2e(Top  Bottom) dx =e2e(lnx1) dx =e2elnx dxe2e1 dx (For lnx dx  use Integration by Parts. Recall that the Integration by Parts Formula is  u dv=uvv du . Let  u=lnx  and  dv=dx , so that  du=1x dx  and  v=x . Then lnx dx=xlnx(1x)(x) dx=xlnx1 dx=xlnxx+C.) =((xlnxx)x)|e2e =(xlnx2x)|e2e =(e2lne22e2)(elne2e) =(e2(2)2e2)(e(1)2e) =(0)(e) =e

Click HERE to return to the list of problems.