1.) Graph the curve represented by the following pairs of parametric equations. If possible, eliminate t and write an equation for the curve in rectangular coordinates.

```
a.) x = t-1, y = t+1
```

b.)
$$x = t, y = t^2$$

c.)
$$x = t^2$$
, $y = t^4$

c.)
$$x = t^2$$
, $y = t^4$
d.) $x = e^t$, $y = e^2t$

e.)
$$x = \cos t$$
, $y = \sin t$

f.)
$$x = 3 \cos t$$
, $y = \sin t$

g.)
$$x = t^2 - t$$
, $y = t^2$

h.)
$$x = \ln t, y = t + 1/t$$

2.) Determine the slope of the line tangent to the following graphs at the indicated value.

a.)
$$y = (\pi - \arctan x)^4$$
 at $x = 1$

a.)
$$y = (\pi - \arctan x)^4$$
 at $x = 1$
b.) $x = t^2 + 1$, $y = e^{-t} + t$ at $t = 1$

c.)
$$r = 3 + \sin \theta$$
 at $\theta = \pi/4$

3.) Compute dy/dx and d²y/dx² for each of the following.

a.)
$$y = x/(x^2 + 1)$$

b.)
$$x = t + \sin t$$
, $y = e^{\tan t} - t$

c.)
$$r = \theta$$

d.)
$$r = \sin \theta$$

4.) Consider the curve given parametrically by

$$x = t^2 + e^t$$
 and $y = t + e^t$ for t in [0, 1].

Find the area of the region lying under the curve and above the x-axis for x in [1, 1+e].

- 5.) Compute the arc lengths of the given curves over the indicated intervals.
 - a.) $y = x^{5/4}$ for x in [0, 1]
 - b.) $y = 1/(2x^2) + x^4/16$ for x in [2, 3]
 - c.) $x = \cos t + t \sin t$ and $y = \sin t t \cos t$ for t in $[\pi/6, \pi/4]$
 - d.) $r = \sin^2(\theta/2)$ for θ in $[0, \pi]$
- 6.) Consider a particle moving along the curve given parametrically by

$$x = t + \cos t$$
 and $y = t - \sin t$ for $t \ge 0$.

- a.) Determine a formula for the speed (ft./sec.) of the particle at time t .
- b.) What is the speed when t=0 sec. ? $t=\pi/2$ sec. ? t=100 sec. ?
- 7.) Compute the curvature of the given curve at the given point.
 - a.) $y = x^3$ at (-1, 1)
 - b.) $y = e^{x^2}$ at (1, e)
 - c.) $x = t^2 t$, $y = t^2 + t$ at t = 1