Differentiate each of the following.

a.
$$F(x) = \arcsin(e^{x^2})$$

b.
$$F(x) = \ln \left\{ 1 + \int_{0}^{X} \sqrt{t^3 + 5} dt \right\}$$

c.
$$F(x) = \frac{\tan (\ln x)}{\ln (\tan x)}$$

d.
$$F(x) = \int_{0}^{3} \cos x^{2} \cdot e^{\sin^{2} x^{2}} dx$$

e.
$$F(x) = \int_{1}^{\sin x} e^{1-t} dt$$

f.
$$F(x) = \int_{3}^{4} \cos(t^2 + 1) dt$$

g.
$$F(x) = \int_{-\sqrt{x-t}}^{3} \cos(t^2 + 1) dt$$

g.
$$F(x) = \int_{\sqrt{x-1}}^{3} \cos(t^2 + 1) dt$$
 h. $F(x) = \int_{\frac{1}{x}}^{3} (3 - t^5)^{100} dt$

i.
$$F(x) = x^5 \cdot \int_0^X \frac{t^2}{t^2 + 1} dt$$

2. Find the x-value(s) for which each of the following functions has a global minimum value.

a.
$$F(x) = e^{x^2-7}$$

b.
$$F(x) = 9 + \int_{0}^{x} (t-1)(2-t)^{6} dt$$
 for $x \ge 0$

3. Evaluate the following definite integrals. Think carefully. Nothing sophisticated is needed to solve these problems.

a.
$$\int_{1}^{2} (2/x^{2} + x^{2}/2) dx$$
 b. $\int_{-1}^{0} (1+x)^{2} dx$
c. $\int_{-1}^{0} (1+x)^{200} dx$ d. $\int_{0}^{\frac{\pi r}{4}} \frac{\sin x}{x^{2}} dx$

b.
$$\int_{-1}^{0} (1+x)^2 dx$$

c.
$$\int_{-1}^{0} (1+x)^{200} dx$$

$$d. \int_{0}^{\frac{\pi}{6}} \frac{\sin x}{\cos^{2} x} dx$$

e.
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} (\sin x + \cos x)^2 dx$$

g. $\int_{0}^{1} \cos^2 x dx$
i. $\int_{0}^{1} 2x \sec^2 (x^2) dx$

f.
$$\int_{0}^{1} x^{2} (1 + x^{3})^{1/10} dx$$
h.
$$\int_{0}^{\frac{\pi}{20}} \sec^{2} 5 x dx$$
j.
$$\int_{0}^{\infty} (x \cos x + \sin x) dx$$

- 4. a. Make a sketch of the region bounded by the graphs of y = 1/2 x, y = 2, and x = 0.
 - b. Set up definite integrals which represent the volumes of the solids formed by revolving the region in part a. around
 - i. the x-axis
 - ii. the y-axis
- 5. A large bucket full of water weighing 100 lbs. is slowly lowered 25 feet by a rope and pulley.
 - a. How much work is done in lowering the bucket?
- b. How much work is done in lowering the bucket if the bucket is leaking, losing 4 in.³ of water per foot lowered. (Assume that one cubic foot of water weighs 62.4 lbs.)
- 6. Find the average value of each function over the indicated interval.

a.
$$f(x) = x^3$$
 on [0, 1]

b.
$$f(x) = \sin x$$
 on $[0, \pi/2]$

c.
$$f(x) = 2 x e^{x^2}$$
 on $[\sqrt{\ln 2}, \sqrt{\ln 5}]$

d.
$$f(x) = x \sec^2 x + \tan x$$
 on $[0, 1/2]$